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Birkhoff's Theorem for Categories

Walter Tholen *

Intxoduction

In this paper we investigate the relations between two basic properties of

categories
(I) the existence of a cogenerating set of objects, and
(II) the existence of enough injective objects.

In the first patt we prove the validity of implication (II) = (I) under some mild
side conditions, whereas (I) => (II) is discussed in the second part. The implica-

tion (II) => (I) is proved by generalizing

Birkhoff's gubdirect Representation Theorem (cf. [51): Every (finitary) universal

algebra is a subdirect product of subdirectly irreducible algebras.

By this theorem, varieties admitting only a set of non-isomorphic subdirectly
irreducible algebras possess a cogenerating set. They are called residually small
and are well characterized by Taylor [8] and Banaschewski and Nelson [3]. It will
be shown that many of their results still hold in fairly general categories
admitting a certain generating set. These categories include all wellpowered
locally R‘O-presentable categories in the sense of Gabriel and Ulmer, in partic-
ular all Grothendieck categories with a generator and all quasi-varieties of
(finitary) universal algebras.

The second part of the paper consists of a generalization of Barr's result [4]
on the existence of injective effacements in coregular categories and of an applica-
tion of Banaschewski's important result [1], [2] on the existence of injective
hulls. By the generalization of Barr's Theorem we are able to show that property
(I) is equivalent to a weakening of (II), namely the existence of so called local
injective effacements, whereas Banaschewski's Theorem shows the equivalence between
(II) and a strengthening of (I), namely the existence of a cogenerating set
consisting of injective objects.

Throughout the paper, for the sake of brevity, let A be an abstract category

with small hom-sets satisfying the following properties:

(a) A is complete and cocomplete,

(B) A is endowed with a proper (F,M) - factorization

*
I am indebted to B. Banaschewski for useful directions.




system such that A is E-cowellpowered and A is M- cowellpowered (cf. Freyd

and Kelly [61),

(C) A possesses a generating set G of objects (i.e., for every pair of
different morphisms g,h:A + B there isa GeG and a morphism f:G > A with
gf # gh) such that, for evexry Ge G , the hom-functor A(G,-) : A » Set preserves
colimits of chains (i.e., direct limits indexed by some segment of the ordinals).

Most of the results given in this paper hold under weaker conditions. A
careful analysis of the assumptions really needed at each single stage can be
found in an extended version of this paper (cf. [L0]). Note that all definitions

are with respect to the chosen (E,M) - factorization system.

Tt (II) = (I) "

The first definition contains the basic notion of the paper:

Definition. (1) An object S of A is called subdirectly irreducible, if there

exists an object X and two different morphisms x,y :X -+ 8 such that any

morphism f with domain § and £x # fy belongs to M .

(2) A is called residually small, if there is, up to isomorphisms,

only a set of subdirectly irreducible objects.

One easily proves that S is subdirectly irreducible, iff any small mono-
source (e, : S =+ B,), (i.e., e,u=-e,v for all i only if u = v) with all
1 1 iel 1 i
e, belonging to E contains at least one isomorphism. Since mono-sources corr-
espond to monomorphisms into direct products the notion given above coincides
with the classical concept of subdirect irreducibility. But, throughout this
paper, we only need the description given in the Definition which avoids any use

of direct products and which allows an immediate proof of the following

Proposition (Birkhoff's Subdirect Representation Theorem). For every object A of

A there is a small mono-source (ei : A > Si)ieI with all e, belonging to [

and with all Si being subdirectly irreducible.

Proof: For a given Ge (G and a pair x,vy:G > A of different morphisms
consider a representative set of € -morphisms with domain A which leave x and
y different. By Zorn's Lemma, we find a maximal element exy :A > Sxy in this

partially ordered set. For this purpose, let (fas :Xa -+ YB)OSuSB<A be any chain

in this set with X = A . Iet (ha: Xu > L) A be its colimit which is pre-

0
served by A(G,-) . Therefore, as all f

o<ox<

0q satisfy the inequality anx # an .

we have h.x # hyy . Iet hy = me be an (E,M) - factorization. Then, as

me = hafoa and by the diagonalization property, one recognizes e as an upper

bound of the fOQ'S .



Obviously, the family ( G forms a small mono-source, since for

Cxy) xfy , Ge

every pair of different morphisms wu,v:B > A one has a Ge G and a morphism

w:G>B with x:=uw # vw = : whence e x # e and thus e_ u# e v .
# Y « Xy # XYY xy # Xy

It remains to be proved that every Sxy is subdirectly irreducible: Every g

with gexyx # gexyy can be (E,M) - factorized as g = np and hence

pexyx # pexyy . Since pexy € E, by maximality of exy + p has to be an

isomorphism. 'This means g 2 neM .

Remarks. (1) 1In this form the above Proposition was first announced in [9].
Two other categorical versions of the Subdirect Representation Theorem were known
before, both being more restrictive than the above result: Wiegandt [12] is deal-
ing with "group like" categories, and Vinarek [11] is working within certain
concrete categories admitting a two-point cogenerator. Both theorems do not cover

Birkhoff's original result (in contrast to the above Proposition).

(2) The proof of the Proposition shows which items of the general
assumptions (A) -~ (C) are really needed. For instance, completeness is oﬁviously
not needed. However, condition (C) turns out to be essential even if one only
deals with monadic categories over Sef:Iet A be the category of compact
aAbelian groups which is dually equivalent to the category Ab of Abelian groups.
The sphere st e A corresponds to Ze Ab . Since all subgroups of Z are not
subdirectly irreducible in Ab°F , g' has no subdirect representation in A .

This example is due to Wiegandt {12].

By the Proposition, every residually small category (satisfying (A) - (C))
possesses a cogenerating set consisting of subdirectly irreducible objects. It
turns out that residual smallness is not only a sufficient but also a necessary

condition for the existence of a cogenerating set:

Corollary 1. A possesses a cogenerating set if and only if A is residually

small.

Proof: ILet C be a cogenerating set of A , and let S be subdirectly
irreducible. We choose X,y :X =+ § as in the Definition and will find an
f:8+C with fx# fy and CeC . Since f must belong to M, S appears
as a subobject of a member of C , and there is, up to isomorphisms, only a set

of those.

This proof generalizes earlier observations due to Isbell and Pareigis and
Sweedler [7], namely that a category with a cogenerating set contains only a set
of simple objects which are in partiéular subdirectly irreducible.

To complete the proof of (II) = (I) we need two lemmas which are well known
for universal algebras. The first one is based on the observation that a sub-

directly irreducible object is representable as an essential extension of an



object with two generators. As usual, an M-morphism m is called essential,
if for all £ one has fmeM only if feM . M*¥ denotes the class of all

essential M- morphisms.
lemma 1. If A is M*-cowellpowered, then A is residually small.

Proof: For every subdirectly irreducible object S one can choose a
Ge G and different morphisms g,h:G + S such that any £:8 +A with fg # fh
belongs to M . With i,j being canonical injections one has a t:G G - §
with ti =g and tj =h which can be (E,M) - factorized: t = me . We show
that meM* . Assume fmeM ; since fg=£fh would impl'y fmei = fmej ,
hence ei =ej and so g = h , we have immediately feM . Hence we proved that
the subdirectly irreducible objects appear as M* - extensions of E ~ quotients of

twofold copowers of objects of (G , and there is only a set of those.

Now, property (II) is easily seen to imply M*-—cowellpoweredness. In fact,

one needs less than enough injectives. Recall that an injective effacement (cf.

zimmermann [13]) of an object X is an M-morphism u:X > I such that every

diagram

with meM can be completed to a commutative square by a morphism f£' :%2 > I ;

if this property is assumed to hold only for £ =1 we call u a local injective

effacement of X . A is said to have (local) injective effacements, if every

object of A has a (local) injective effacement.
Lemma 2. If A has local injective effacements, A is M" - cowellpowered.

Proof: For a given object X of A one chooses a local injeétive effacement
u:X+I . Then u factors over every essential extension of X ; moreover, it
factors by an M-morphism. Therefore, the essential extensions of X appear as

subobjects of I .

Corollary 2. (II) => (I) .
(1) = (1m)"

As property (I) is implied by a weakening of (II) one cannot expect that
(I) => (II) holds in general. One can, however, expéct that this weakening is
a necessary condition of (I). This turns out to be true up to the condition that
A has cointersections of M- morphisms, i.e., multiple pushouts of M- morphisms
belong to M , provided one useé a stronger notion of a cogenerating set: A set
C of A-objects is called M- cogenerating, iff for every object A of A

the canonical morphism
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belongs to M . For M=monomorphisms this means nothing new, and for M= external
monomorphisms one has the known notion of a strong cogenerating set. Analyzing

a result due to Barr [ 4] one now gets:

Iemma 3. Let A possess an M- cogenerating set. A then has local injective

effacements if and only if A has cointersections of M- moxphisms.

Proof: The necessity of the cointersection condition is obvious. TIet us
therefore construct a local injective effacement of an object X assuming this
condition. We consider the set HX of all morphisms with domain X and with co-
domain in the cogenerating set C . For each subset FSEHX let F be the induced
morphism

X > erF codomain (£) .

Take now u:X + I to be the multiple pushout of those F's which belong to
M. 1In order to see that u is a local injective effacement consider any
M-morphism m:X + Y for which, by assumption on ( there exists some M-
morphism n:Y » Hielcﬁ. with CiezC . The M-morphism nm factorizes over
F with F = {pinndiel} (pi being projections) such that F belongs to M .
On the other hand, F also factorizes over nm , and, therefore, u factorizes
over m . »

In order to apply Lemma 3 in connection with the preceding results we have
to restrict ourselves to the case M=monomorphisms. This is assumed for the

rest of the paper.
Theorem 1. If A has cointersections, the following conditions are equivalent:

(i}

has a cogenerating set (<= (I)) ,

(ii) is residually small,

A
A

(iii) A 1is cowellpowered with respect to essential extensions,
A

(iv) has local injective effacements.

Proof: (iv) => (iii) = (ii) = (i) = (iv) follows by Lemma 2, Lemma 1,

the Proposition, and Lemma 3 successively.

One easily checks that A has injective effacements, iff A has local
injective effacements and M is couniversal i.e., M-morphisms are preserved by
pushouts. Therefore, by adding this last condition to each of the equivalent
conditions of Theorem 1 one obtains characterizations for the existence of

injective effacements. The assumption that A has to have cointersections is




then automatically satisfied since cointersections can be formed by transfinite
induction using (twofold) pushouts and colimits of chains of monomorphisms which
are again monomorphic by condition (C).

The surprising fact is that in this way not only injective effacements can
be obtained, but extensions into injective objects, even essential extensions into
injective objects, i.e., injective hulls. 1In order to prove this we‘apply
Banaschewski's existence theorem on injective hulls (cf. [2]). We have to check
his conditions (El) to (E6) on M , of which (El) and (E2) are automatically
fulfilled for any class M belonging to a factorization system. (E4) means
couniversality, (E5) means closedness under colimits of chains and is implied by
(C), and (E6) is M*-—cowellpoweredness. It remains to be proved, that (E3)
is always fulfilled within the present context. This is done by the following

lemma (which holds for arbitrary M) :
Lemma 4. For any meM there is an ec¢f with em being M- essential.

Proof: Very similarly to the corresponding part of the proof of the Prop-
osition one chooses a maximal element in a representative set of all E -morphisms
whose domain is the codomain of m and whose composition with m belongs still
to M.

We are now ready to state

Theorem 2. The following conditions are equivalent:
(i) A has a cogenerating set consisting of injective objects,
(ii) A is residually small, and monomorphisms are couniversal,

(iii) A is cowellpowered with respect to essential extensions, and mono-

morphisms are couniversal,
(iv) A has injective effacements,
(v) A has enough injective objects (<= (II)),
(vi) A has injective hulls.

Proof: (vi) = (v) = (iv) is trivial. (iv) = (iii) = (ii) follows from
Theorem 1. (ii) => (vi) follows from Lemma 4 and Banaschewski's Theorem.
(v) = (i) follows from the Proposition and the trivial observation, that in a
category with enough injectives and a cogenerating set the latter can be choosen

as in condition (i). (i) = (v) is wellknown {and trivial).

Remark. From the esthetic point of view it is a little disappointing that,
in the last part of the paper, we had to restrict ourselves to the case M= mono-
morphisms. The reason for this lies in the fact that the Proposition only yields

the existence of a cogenerating set instead of an M~ cogenerating set. One



therefore wishes to solve the following problem: 1Is there a generalized version

of the notions "subdirectly irreducible object" and "residual smallness" such

that Corollary 1 holds with "M cogenerating" instead of "cogenerating"?
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