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Abstract. We investigate those lax extensions of a Set-monad T =
(T,m, e) to the category V-Rel of sets and V-valued relations for a quan-
tale V = (V,⌦, k) that are fully determined by maps ⇠ : TV ! V . We pay
special attention to those maps ⇠ that make V a T-algebra and, in fact,
(V,⌦, k) a monoid in the category SetT with its cartesian structure. Any
such map ⇠ forms the main ingredient to Hofmann’s notion of topological
theory.

Introduction

The lax-algebraic setting, originally considered in [5] and [4] as a common
syntax for the categories of lax algebras discussed in [2], was generalized by Seal
in [9] and in this form adopted in [7] and studied by various authors. A very
powerful specialization of the lax-algebraic setting was introduced by Hofmann
[6] in the form of his topological theories, which in particular cover Barr’s pre-
sentation of topological spaces [1] and the Clementino-Hofmann presentation
of approach spaces (see [2, 7]). This paper carefully studies how the Hofmann
notion may be characterized within the Seal setting.

Recall that, for an endofunctor T of sets and maps and a (commutative
and unital) quantale V = (V,⌦, k), Seal considers lax functors T̂ of sets and
V-valued relations (or “matrices”) which, when applied to maps or their oppo-
sites, will generally increase the value in the pointwise order of their hom-sets in
comparison to an application by T ; furthermore, if T carries a monad structure,
T̂ is said to laxly extend the monad if the unit and the multiplication of the
monad become oplax transformations when T is replaced by T̂ . In Hofmann’s
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Coimbra (CMUC), funded by the European Regional Development Fund through the pro-
gram COMPETE and by the Portuguese Government through the FCT - Fundação para a
Ciência e a Tecnologia under the project PEst-C/MAT/UI0324/2013. The second author is
supported by the National Sciences and Engineering Council of Canada.

1



2 MARIA MANUEL CLEMENTINO AND WALTER THOLEN

setting, such lax extensions get constructed from a mere function ⇠ : TV ! V

satisfying certain compatibility conditions with the monad and the quantale V

(see also [8]). One of their special properties not available in the general Seal
environment is that these lax extensions are dualizing, i.e., they are invariant
under the involution given by inverting V-relations.

But being dualizing does not characterize Hofmann’s lax monad extensions
among all. In this paper we identify a stronger property, called algebraicity here,
as the key ingredient to a property-based characterization of the Hofmann ex-
tensions amongst all lax extensions of a Set-monad satisfying the so called
Beck-Chevalley property (BC). Algebraicity ensures that, given a V-relation
r : X�!7 Y , which may be equivalently described as a V-relation r̃ : X⇥Y�!7 1,
the value of T̂ r may actually be recovered from T̂ r̃. Such lax extensions are
necessarily induced by a single map ⇠ : TV ! V the additional properties of
which are shown to correspond to known properties of the induced lax exten-
sion. Our central result establishes a 1-1 correspondence between algebraic lax
extensions of a given Set-functor T satisfying BC and monotone maps ⇠ that are
laxly compatible with the monoid structure of V (Theorem 1.4.4). Hofmann’s
theories, whether in their lax or strict forms, are shown to grow naturally out
of this basic correspondence (Theorems 1.6.2 and 2.2.1).

While many of the key ideas and techniques of the proofs presented here
are already present in [6], our presentation within the Seal context is new.
We have also tried to minimize the use of “elementwise calculations”; in fact,
most of our extensive calculations use exclusively the compositional structure
of the monoidal-closed category V-Rel of sets and V-relations with its order
enrichment.

1. Algebraic lax extensions

1.1 The symmetric monoidal-closed quantaloid V-Rel. Let V = (V,⌦, k)
be a quantale1 which, for simplicity, is always assumed to be commutative.
One associates with V the quantaloid2 V-Rel of sets and V-relations3; here a

1A quantale is a complete lattice with a monoid structure such that the binary operation
⌦ distributes over arbitrary suprema in each variable. The neutral element k may be smaller
than the top element > but it is always assumed to be larger than the bottom element ?.

2A quantaloid is a Sup-enriched category, where Sup is the monoidal-closed category of
complete lattices and sup-preserving maps.

3A V-relation r : X�!7 Y may have di↵erent set-theoretic representations. For example,
for V = 2 the two-element chain, r is usually represented by a subset of X ⇥ Y . The repre-
sentation that matters in this paper is that of a function X ⇥ Y ! V for which we introduce
the notation �!r in (1.1.i) below whenever we want to emphasize its role as an arrow in Set
in this specific form, rather than as a morphism in V-Rel.
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V-relation from a set X to a set Y is given by a function X ⇥ Y ! V, written
as r : X�!7 Y , and composition with s : Y�!7 Z is defined by

s · r(x, z) =
_

y2Y

r(x, y)⌦ s(y, z).

When considering V as a one-object quantaloid, we obtain a homomorphism

V
op ! V-Rel, v 7! (v : 1�!7 1),

which embeds Vop fully into V-Rel. There is an obvious isomorphism

V-Relop ! V-Rel, (r : X ! Y ) 7! (r� : Y�!7 X) with r
�(y, x) = r(x, y),

of quantaloids, which makes V-Rel self-dual. There is also a faithful functor

(�)� : Set! V-Rel, (f : X ! Y ) 7! (f = f� : X�!7 Y )

with f�(x, y) =

⇢
k if f(x) = y,

? else

�
, whose opposite we may compose with

the above functor (r 7! r
�) to obtain

(�)� : Setop ! V-Rel, (f : X ! Y ) 7! (f� : Y�!7 X).

Note that in V-Rel, considered as a 2-category, one has f� a f
� for every map

f in Set. The functor (�)� has a right adjoint

V-Rel! Set, (r : X�!7 Y ) 7! (r] : V X ! V
Y ),

with r
](')(y) =

W
x2X '(x) ⌦ r(x, y) for all ' 2 V

X , y 2 Y . This functor is
represented by 1 and induces the V-powerset monad on Set (see 1.5.2 below).
Here we are only interested in the counits of this adjunction,

◆X : V X�!7 X, ◆X(', x) = '(x),

in particular in

◆ : V ⇠= V
1 ◆1�!7 1, ◆(v) = v.

When we write a V-relation r : X�!7 Y equivalently as r̃ : X ⇥ Y�!7 1, the
couniversal property of ◆ makes r̃ factor uniquely through the map
�!
r : X ⇥ Y ! V :

(1.1.i) V
�◆
// 1

X ⇥ Y

�!r

OO

8
r̃

<<

This trivial observation is of great importance to our further study of lax ex-
tensions T̂ : V-Rel ! V-Rel of a given functor T : Set ! Set as defined below.
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In fact, the extensions of interest will preserve the composition of a V-relation
preceded by a Set-map strictly, so that

T̂ r̃ = T̂ ◆ · T (�!r ).

Consequently, the value of T̂ r̃ is already determined by T̂ ◆ and the given functor
T , a fact that we will exploit shortly.

With X ⌦ Y = X ⇥ Y and

r ⌦ r
0 : X ⇥X

0�!7 Y ⇥ Y
0
, r ⌦ r

0((x, x0), (y, y0)) = r(x, y)⌦ r
0(x0

, y
0),

for r : X�!7 Y , r0 : X 0�!7 Y
0, we obtain a 2-functor

(�)⌦ (�) : V-Rel⇥ V-Rel! V-Rel,

which preserves suprema in each variable and makes V-Rel a symmetric monoidal
category whose tensor product is compatible with the ordered structure (in fact,
with the Sup-enrichment). Moreover, since the natural isomorphisms

(1.1.ii) V-Rel(X,Y )
⇠�! V-Rel(X ⇥ Y, 1), r 7! r̃,

used above trivially generalize to natural isomorphisms

V-Rel(X,Y ⇥ Z)
⇠�! V-Rel(X ⇥ Y, Z),

so that (�)⌦Y a Y ⌦ (�), V-Rel is actually monoidal closed, with the internal
hom being given by the tensor product again.

Our up-coming treatment of lax extensions of monads from Set to V-Rel
entails intensive use of compatibility rules of the passages from r to r

�, r̃,
�!
r with the various structures of V-Rel. We summarize them in the following
Proposition, the proof of which may be left as a straightforward exercise.

1.1.1. Proposition. For maps f : X ! Y , f
0 : X

0 ! Y
0, g : Z ! Y ,

h : Y ! Z, j : Y ! X, and V-relations r : X�!7 Y , r0 : X 0�!7 Y
0, s : Y�!7 Z,

one has:

(1)
�!
r
� = �!r · �Y,X , er� = r̃ · �Y,X ;

(2) ◆ ·�!1X = !X · ��X = f1X ;

(3)
��!
s · f = �!s · (f ⇥ 1Z), gs · f = s̃ · (f ⇥ 1Z);

(4)
���!
g
� · r = �!r · (1X ⇥ g), ]g� · r = r̃ · (1X ⇥ g);

(5) ◆ ·
��!
h · r = ◆ ·�!r · (1X ⇥ h)�, gh · r = r̃ · (1X ⇥ h)�;

(6) ◆ ·
���!
s · j� = ◆ ·�!s · (j ⇥ 1Z)�, ]s · j� = s̃ · (j ⇥ 1Z)�;

(7) ◆ ·��!s · r = ◆ ·⌦ · (�!r ⇥�!s ) · (1X ⇥ �Y ⇥ 1Z) · (1X⇥ !Y ⇥ 1Z)�,
gs · r = (r̃ ⌦ s̃) · (1X ⇥ �Y ⇥ 1Z) · (1X⇥ !Y ⇥ 1Z)�;

(8) �!◆ = 1V , ◆̃ = ◆,
��!
◆⌦ ◆ = ⌦, ◆ · k = 11, g◆⌦ ◆ = ◆⌦ ◆ = ◆ ·⌦;

(9) (f ⇥ f
0)� = f� ⌦ f

0
�, (f ⇥ f

0)� = f
� ⌦ (f 0)�; (r ⌦ r

0)� = r
� ⌦ (r0)�;
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(10)
���!
r ⌦ r

0 = ⌦·(�!r ⇥
�!
r
0 )·(1X⇥�X0,Y ⇥1Y 0), r̂ ⌦ r0 = (r̃⌦r̃0)·(1X⇥�X0,Y ⇥1Y 0).

(Here !X : X ! 1, �X : X ! X ⇥X, �X,Y : X ⇥ Y ! Y ⇥X, k : 1 ! V ,
⌦ : V ⇥ V ! V have the obvious meaning. We identify X, X ⇥ 1, 1 ⇥X and
disregard all associativity isomorphisms for ⇥.)

Note that (9) implies that (�)� : Set ! V-Rel, (�)� : Setop ! V-Rel are
homomorphisms of monoidal categories when Set is provided with its cartesian
structure; furthermore, V-Rel is selfdual, not only as a Sup-enriched category,
but also as a monoidal category.

1.2 Algebraic lax extensions. Recall from [7, 9] the following definition:

1.2.1. Definition. Given a Set-functor T , a lax extension T̂ of T to V-Rel is a
lax functor T̂ : V-Rel! V-Rel that coincides with T on objects and satisfies

V-Rel
T̂
// V-Rel V-Rel

T̂
// V-Rel

Set

�(�)�

OO

T
// Set

(�)�

OO

Set

�(�)�

OO

T
// Set

(�)�

OO

Hence, T̂ is given by functions

T̂X,Y : V-Rel(X,Y )! V-Rel(TX, TY ) (X,Y 2 Set)

such that

(1) r  r
0 =) T̂ r  T̂ r

0,
(2) T̂ s · T̂ r  T̂ (s · r),
(3) Tf  T̂ f and (Tf)�  T̂ (f�),

for all sets X,Y, Z, V-relations r, r0 : X�!7 Y , s : Y�!7 Z and maps f : X ! Y .

As shown in [7, 9], these conditions imply that, respectively, composition
with maps from the right and with converses of maps from the left are preserved
strictly:

T̂ (s · f) = T̂ s · Tf and T̂ (g� · r) = (Tg)� · T̂ r
(where g : Z ! Y is a map). The lax extension T̂ is flat if T̂1X = 1TX ; because
of the whiskering properties, the lax-commutative diagrams above commute
strictly in this case.

If T is the carrier of a monad T = (T,m, e), one says that T̂ = (T̂ ,m, e)
is a lax extension of T to V-Rel if the lax extension of the functor T makes
m : T̂ T̂ ! T̂ and e : 1V-Rel ! T̂ oplax natural transformations. Hence, in
addition to (1)-(3) above, one must have

(4) mY · T̂ T̂ r  T̂ r ·mX ,
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(5) eY · r  T̂ r · eX
for all V-relations r : X�!7 Y . With the adjunctions mX a m

�
X and eX a e

�
X

(for all X), these conditions may be written equivalently as

(4�) T̂ T̂ r ·m�
X  m

�
Y · T̂ r,

(5�) r · e�X  e
�
Y · r.

Let us now consider a lax extension T̂ : V-Rel ! V-Rel of a Set-functor T

and check on its compatibility with the natural isomorphisms (1.1.ii). More
concretely, we wish to study lax extensions T̂ that allow us to naturally recover
T̂ r from T̂ r̃, for every V-relation r : X�!7 Y , and therefore consider the diagram
(1.2.i)

V-Rel(X,Y )
g(�)

tt

T̂X,Y

**

V-Rel(X ⇥ Y, 1)

T̂X⇥Y,1
&&

V-Rel(TX, TY )

g(�)
xx

V-Rel(T (X ⇥ Y ), T1)
V-Rel(can�

X,Y , !T1)
// V-Rel(TX ⇥ TY, 1)

with canX,Y = hT⇡1, T⇡2i : T (X ⇥ Y )! TX ⇥ TY .

1.2.2. Definition. The lax extension T̂ of T is algebraic if diagram (1.2.i)
commutes for all X, Y , that is: if

(1.2.ii) f̂
Tr = (TX ⇥ TY

can�
�!7 T (X ⇥ Y )

T̂ r̃�!7 T1
!T1! 1)

for all r : X�!7 Y .

Hence, if T̂ is algebraic, the value of T̂ r may be obtained from T̂ r̃ in a
natural way, despite the fact that the maps canX,Y and !T1 will generally “lose
information”, i.e., will generally not be injective. If they are injective (and
especially if T preserves finite products, so that canX,Y and 1T1 are bijective),

then also the map V-Rel(can�X,Y , !T1) is injective and T̂ r̃ may be recovered from

T̂ r, as T̂ r̃ = !�T1 ·
f̂
Tr · canX,Y .

Before discussing examples, let us state some immediate facts.

1.2.3. Proposition. (1) A lax extension T̂ of T is algebraic if, and only if,
there is a map ⇠ : TV ! V with

(1.2.iii) f̂
Tr = ◆ · ⇠ · T�!r · can�X,Y

for all r : X�!7 Y .
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(2) Any map ⇠ with (1.2.iii) for all r must make the diagram

(1.2.iv) TV

⇠

✏✏

�̂T ◆
// T1

!T1

✏✏

V
�◆
// 1

commutative and is therefore uniquely determined.
(3) An algebraic lax extension T̂ is dualizing, that is: T̂ (r�) = (T̂ r)� for all r.

Moreover, if the ⌦-neutral element k is the top element in V, T̂ is flat on
!X : X ! 1, that is: T̂ !X = T !X for all sets X.

Proof. (1),(2): Since ◆ is the counit for the left-adjoint functor (�)� : Set !
V-Rel (see 1.1), we may define ⇠ by (1.2.iv), i.e., ⇠ =

�����!
1T1 · T̂ ◆. If T̂ is algebraic,

from r̃ = ◆ ·�!r we obtain T̂ r̃ = T̂ ◆ · T�!r and then

(1.2.v) f̂
Tr = !T1 · T̂ r̃ · can�X,Y = !T1 · T̂ ◆ · T�!r · can�X,Y = ◆ · ⇠ · T�!r · can�X,Y .

Conversely, exploiting (1.2.iii) for r = ◆ gives

f̂
T ◆ = ◆ · ⇠ · can�V,1

since �!◆ = 1V . With canV,1 = h1TV , T !V i : TV ! TV ⇥ T1 one obtains for all
v 2 TV , a 2 T1

(1.2.vi) T̂ ◆(v, a)) =

(
⇠(v) if a = T !V (v),

? else,

and then

( !TV · T̂ ◆)(v) =
_

a2T1

T̂ ◆(v, a) = ⇠(v) = (◆ · ⇠)(v).

Hence, (1.2.iv) commutes, and algebraicity of T̂ follows from interchanging the
computational steps in (1.2.v).

(3)

^̂
T (r�) = !T1 · T̂ ( er�) · can�X,Y

= !T1 · T̂ r̃ · T�Y,X · can�X,Y

= !T1 · T r̃ · can�X,Y · �TY,TX

= f̂
Tr · �TY,TX

= (̂T̂ r)�,
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for all r : X�!7 Y . Writing temporarily u : 1! 1 for the identity morphism on
the singleton set 1, one has (with the identification 1⇥ 1 = 1) ũ = u, hence

f̂
Tu = !T1 · T̂ u · can�1,1 = !T1 · T̂ u · ��T1.

Consequently, T̂ u(a, b) = ? whenever a 6= b in T1, and since Tu  T̂ u we
conclude T̂ u = Tu if k = > in V. Now, for all X,

T̂ !X = T̂ (u· !X) = T̂ u · T !X = Tu · T !X = T !X

follows. ⇤

1.2.4. Examples. (1) The Barr extension T of T to Rel = 2-Rel (see [7, 2])
is algebraic. Indeed, when representing a relation r : X�!7 Y as a

span (X
r1 R

r2! Y ) we obtain r̃ represented by (X ⇥ Y
i R

!R! 1)
with i = hr1, r2i the inclusion map, so that Tr = Tr2 · (Tr1)� and
T r̃ = T !R · (T i)�, by definition of the Barr extension T . But

T (X ⇥ Y )

canX,Y

✏✏

TR
Ti
oo

T !R
//

j
yy

!TR
!!

T1

!T1

✏✏

TX ⇥ TY 1

with j := hTr1, T r2i commutes, which shows f
Tr = !T1 · T r̃ · can�X,Y .

(2) The Kleisli extension Ť of T to Rel (see [7, 9]) generally fails to be
algebraic. For example, for the powerset functor P , P̌1X is the inclusion
relation on PX which, even for X = 1, is not the identity relation.
Consequently, by 1.2.3(3), P̌ cannot be algebraic; likewise for the Kleisli
extension F̌ of the filter functor F (see [7, 9]).

1.3 The structure map of an algebraic lax extension. For an algebraic
lax extension T̂ of a Set-functor T we call the map ⇠ : TV ! V with (1.2.iii)
the structure map of T̂ . Our goal is to identify necessary properties of the map
⇠ which, in turn, will make T̂ (when defined by 1.2.iii) a lax extension of T .

Let us first observe that when Set(X,V ) is provided with the pointwise order
of V , there are order isomorphisms

Set(X,V ) ! V-Rel(X, 1), ' 7! ◆ · '

V-Rel(X,Y ) ! V-Rel(X ⇥ Y, 1) ! Set(X ⇥ Y, V ).
r 7! r̃ 7! �!

r
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1.3.1. Proposition. The structure map ⇠ of an algebraic lax extension T̂ of a
Set-functor T satisfies

k· !T1  ⇠ · Tk and ⌦ ·h⇠ · T⇡1, ⇠ · T⇡2i  ⇠ · T ⌦ .

(1.3.i) T1
Tk
//

!T1

✏✏

TV

⇠

✏✏

T (V ⇥ V )
T⌦
//

h⇠·T⇡1,⇠·T⇡2i
✏✏

TV

⇠

✏✏

1
k
//



V V ⇥ V
⌦

//



V

Proof. Exploiting the commutativity of

X
�X
//

!X
✏✏

X ⇥X

�!
1X
✏✏

1
k

// V

for first X = T1 and then X = 1, and writing u for the identity map of 1, we
obtain from Tu  T̂ u the first of the two claims:

◆ · k· !T1 = ◆ ·�!1T1 · �T1 = ◆ ·�!Tu · �T1  ◆ ·
�!
T̂ u · �T1 = f̂

Tu · �T1

= ◆ · ⇠ · T�!u · can�1,1 · �T1 = ◆ · ⇠ · T�!u · T �1 = ◆ · ⇠ · Tk.
In order to show the second inequality, we need the auxiliary inequality

(1.3.ii) (T̂ ◆⌦ 1TV ) · canV,V  can1,V · T̂ (◆⌦ 1V )

which is proved afterwards. With (1.3.ii) and the lax functoriality of T̂ we then
obtain:

◆ ·⌦ · h⇠ · T⇡1, ⇠ · T⇡2i = (◆⌦ ◆) · (⇠ ⇥ ⇠) · canV,V
= ((◆ · ⇠)⌦ (◆ · ⇠)) · canV,V
= (( !T1 · T̂ ◆)⌦ ( !T1 · T̂ ◆)) · canV,V
= !T1⇥T1 · (T̂ ◆⌦ T̂ ◆) · canV,V
= !T1⇥T1 · (1T1 ⌦ T̂ ◆) · (T̂ ◆⌦ 1TV ) · canV,V
 !T1⇥T1 · (1T1 ⌦ T̂ ◆) · hT !V , 1TV i · T̂ (◆⌦ 1V )
= !T1 · T̂ ◆ · T̂ (◆⌦ 1V ) (⇤)
 !T1 · T̂ (◆ · (◆⌦ 1V ))
= !T1 · T̂ (◆ ·⌦)
= !T1 · T̂ ◆ · T⌦ = ◆ · ⇠ · T⌦;

here step (⇤) follows from the easily established fact that

!Z⇥Y · (1Z ⌦ r) · hf, 1Xi = !Y · r
holds for all r : X�!7 Y and f : X ! Z.
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Attending now to (1.3.ii), let us first note that with 1.1.1 one has

◆̂⌦ 1V = ◆̃⌦f1V = ◆⌦ ( !V · ��V ) = ◆ · (1V⇥ !V ) · (1V ⇥ �V )� = ◆ · ⇡1 · (1V ⇥ �V )�,

with ⇡1 : V ⇥ V ! V . Consequently, since with s := ◆ · ⇡1 and j := (1V ⇥ �V )
one has T̂ s = T̂ (s · j� · j) = T̂ (s · j�) · Tj and, hence, T̂ s · (Tj)�  T̂ (s · j�), we
obtain

T̂ ◆ · T⇡1 · T (1V ⇥ �V )�  T̂ (◆̂⌦ 1V ).

This gives

^
T̂ (◆⌦ 1V ) = !T1 · T̂ (◆̂⌦ 1V ) · can�V⇥V,V

� !T1 · T̂ ◆ · T⇡1 · T (1V ⇥ �V )� · can�V⇥V,V

= ◆ · ⇠ · T⇡1 · h1T (V⇥V ), T⇡2i�

and, when we evaluate the last term at (w, v) 2 T (V ⇥ V )⇥ TV ,

(1.3.iii) (T̂ (◆⌦ 1V ))(w, v) �
(
⇠(T⇡1(w)) if T⇡2(w) = v,

? else

Consequently, since can1,V = hT !V , 1TV i, with (a, u) 2 T1⇥TV one has on the
one hand

(can1,V ·T̂ (◆⌦1V ))(w, (a, u)) �
(
⇠(T⇡1(w)) if T⇡2(w) = u and T !V⇥V (w) = a

? else.

On the other hand one easily sees that the right-hand side of the last inequality
is precisely the value of

((T̂ ◆⌦ 1V ) · canV,V )(w, (a, u)) = (T̂ ◆⌦ 1TV )((T⇡1(w), T⇡2(w)), (a, u))
= T̂ ◆(T⇡1(w), a)⌦ 1TV (T⇡2(w), u)

when one takes (1.2.vi) into account. ⇤

1.4 Obtaining a lax extension from a structure map. Given a map
⇠ : TV ! V we may define a family of maps

T̂X,Y : V-Rel(X,Y )! V-Rel(TX, TY )

by (1.2.iii): f̂Tr := ◆·⇠ ·T�!r ·can�X,Y for all r : X�!7 Y ; elementwise, this formula
translates to

(1.4.i) (T̂ r)(x, y) :=
_

{⇠ · T�!r (w) |w 2 T (X ⇥ Y ), T⇡1(w) = x, T⇡2(w) = y}

We write

�(⇠) := T̂ = (T̂X,Y ).
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Calling the map ⇠ to be monotone if all maps

Set(X,V )! Set(TX, V ), ' 7! ⇠ · T'

are monotone, with Set(X,V ) carrying the pointwise order of V (see 1.3), we
have the following easy lemma:

1.4.1. Lemma. Every map T̂X,Y is monotone if and only if ⇠ is monotone.

Proof. Assuming first ⇠ to be monotone, we see that r  s in V-Rel(X,Y )
implies �!r  �!s and then ⇠ · T�!r  ⇠ · T�!s , which gives

f̂
Tr = ◆ · ⇠ · T�!r · can�X,Y  ◆ · ⇠ · T�!s · can�X,Y = f̂

Ts.

Conversely, '   in Set(X,V ) means ◆ · '  ◆ ·  in V-Rel(X,Y ), hence
T̂ (◆ · ')  T̂ (◆ ·  ) by hypothesis. Since ��!◆ · ' = ', this means

◆ · ⇠ · T' · can�X,1 = ˆ̂T (◆ · ')  ˆ̂T (◆ ·  ) = ◆ · ⇠ · T · can�X,1.

But can�X,1 · canX,1 = 1TX , so that ⇠ · T'  ⇠ · T in Set(TX, V ) follows. ⇤

1.4.2. Definition. (see [7, 3]) Recall that a commutative diagram

(1.4.ii) W
h2
//

h1

✏✏

Y

g

✏✏

X
f
// Z

of Set maps is a Beck-Chevalley square (or BC-square) if h2 · h�
1 = g

� · f
(or, equivalently, h1 · h�

2 = f
� · g) in V-Rel (or, equivalently, in 2-Rel, with

2 = {? < >}). This means, equivalently, that (1.4.ii) is a weak pullback
diagram in Set, so that the canonical map

W �! X ⇥Z Y

is surjective.
A Set-functor T satisfies the Beck-Chevalley condition (or BC ) if it sends

BC-squares to BC-squares:

h2 · h�
1 = g

� · f =) Th2 · (Th1)
� = (Tg)� · Tf,

for all commutative diagrams (1.4.ii).
A natural transformation ↵ : S ! T of Set-functors satisfies BC if all its

naturality squares are BC-squares.

We can now prove:
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1.4.3. Proposition. If T satisfies the Beck-Chevalley condition, then, for any
map ⇠ : TV ! V , the family T̂ = �(⇠) is right-whiskering4, that is:

T̂ (r · f) = T̂ r · Tf
for all maps f : Z ! X and V-relations r : X�!7 Y .

Proof. Since the bottom square of (1.4.iii) is a pullback diagram, the top
square is BC since the outer diagram is BC.

(1.4.iii) T (Z ⇥ Y )
T (f⇥1Y )

//

canZ,Y

✏✏

T⇡Z

((

T (X ⇥ Y )

canX,Y

✏✏

T⇡X

vv

TZ ⇥ TY
Tf⇥1TY

//

✏✏

TX ⇥ TY

✏✏

TZ
Tf

// TX

Applying 1.1.1(7) twice we now obtain:

ˆ̂T (r · f) = ◆ · ⇠ · T (
��!
r · f ) · can�Z,Y

= ◆ · ⇠ · T�!r · T (f ⇥ 1Y ) · can�Z,Y

= ◆ · ⇠ · T�!r · can�X,Y · (Tf ⇥ 1TY ) (BC)

= f̂
Tr · (Tf ⇥ 1TY )

= ˆ̂Tr · Tf.
⇤

1.4.4. Theorem. Let T : Set! Set be a functor satisfying BC and ⇠ : TV ! V

be a map. Then there is a uniquely determined algebraic lax extension T̂ of T
to V-Rel with structure map ⇠ if, and only if, ⇠ is monotone and satisfies the
inequalities (1.3.i).

Proof. The necessity of the conditions follows from 1.2.3, 1.3.1 and 1.4.1 (and
does not require BC). Conversely, given a map ⇠, any algebraic lax extension
T̂ of T with structure map ⇠ must necessarily satisfy (1.2.ii), by 1.2.3. Defining
now T̂ = �(⇠) via (1.2.iii), T̂ is monotone if ⇠ is monotone (1.4.1). Hence, the
proof is complete once we have shown that the implications

(1) k· !T1  ⇠ · Tk ) 8f (Tf  T̂ f and (Tf)�  T̂ (f�)),

4We use this term here di↵erently from [7].
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(2) ⌦·(⇠⇥⇠)·canV,V  ⇠·T⌦ ) 8r : X�!7 Y, s : Y�!7 Z (T̂ s·T̂ r  T̂ (s·r))
hold whenever ⇠ is monotone and T satisfies BC.

(1) The diagram

X
h1X ,fi

//

!X
✏✏

X ⇥ Y

�!
f
✏✏

1
k
// V

commutes for every map f . Furthermore, since canX,Y · T h1X , fi = h1TX , T fi
one has T h1X , fi  can�X,Y · h1TX , T fi. Consequently, for all x 2 TX, with
y := Tf(x) and k· !T1  ⇠ · Tk by hypothesis we obtain:

f̂
Tf(x, y) = ◆ · ⇠ · T

�!
f · can�X,Y · h1TX , T fi(x)

� ◆ · ⇠ · T
�!
f · T h1X , fi(x)

= ◆ · ⇠ · Tk · T !X(x)

� ◆ · k· !T1 · T !X(x) = k,

which gives T̂ f � Tf . In addition, the proof of 1.2.3(3) shows

T̂ (f�) = (T̂ f)� � (Tf)�.

(2) From the commutativity of the diagram

T (X ⇥ Z)
canX,Z

//

(a)

TX ⇥ TZ

T (X ⇥ Y ⇥ Z)

(b1)

T (1X⇥ !Y ⇥1Z)

OO

canX,Y,Z
//

T (1X⇥�Y ⇥1Z)

✏✏

TX ⇥ TY ⇥ TZ

1TX⇥ !TY ⇥1TZ

OO

1TX⇥�TY ⇥1TZ

✏✏

T (V ⇥ V )

canV,V

✏✏

T (X ⇥ Y ⇥ Y ⇥ Z)

(b2)canX⇥Y,Y ⇥Z

✏✏

T (�!r ⇥�!s )
oo

canX,Y,Y,Z
// TX ⇥ TY ⇥ TY ⇥ TZ

1

✏✏

TV ⇥ TV T (X ⇥ Y )⇥ T (Y ⇥ Z)
T�!r ⇥T�!s
oo

canX,Y ⇥canY,Z
// TX ⇥ TY ⇥ TY ⇥ TZ

one obtains immediately:

(a) T (1X⇥ !Y ⇥ 1Z)� · can�X,Z = can�X,Y,Z · (1TX⇥ !TY ⇥ 1TZ)�.

In addition, the combined square (b1)&(b2) satisfies BC. Indeed, for (u, v) 2
T (X ⇥ Y )⇥ T (Y ⇥Z) and (x, y,Z) 2 TX ⇥ TY ⇥ TZ with canX,Y (u) = (x, y),
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canY,Z(v) = (y,Z), since T transforms the pullback diagram

X ⇥ Y ⇥ Z
⇡2,3
//

⇡1,2

✏✏

Y ⇥ Z

✏✏

X ⇥ Y // Y

into a BC square, we find w 2 T (X ⇥ Y ⇥ Z) with T⇡1,2(w) = (x, y) and
T⇡2,3(w) = (y,Z), which implies canX⇥Y,Y⇥Z(T (1X ⇥ �Y ⇥ 1Z)(w)) = (u, v),
canX,Y,Z(w) = (x, y,Z). Hence:

(b) canX⇥Y,Y⇥Z ·T (1X⇥�Y ⇥1Z)·can�X,Y,Z � (canX,Y ⇥canY,Z)� ·(1TX⇥
�TY ⇥ 1TZ),

with “” holding by adjunction. Furthermore, from 1.1.1 one obtains by ad-
junction first

◆ · (��!s · r) · (1X⇥ !Y ⇥ 1Z) � ◆ ·⌦ · (�!r ⇥�!s ) · (1X ⇥ �Y ⇥ 1Z)

and, with the monotonicity of ⇠,

(c) ◆ ·⇠ ·T (��!s · r) � ◆ ·⇠ ·T ⌦ ·T (�!r ⇥�!s ) ·T (1X ⇥�Y ⇥1Z) ·T (1X⇥ !Y ⇥1Z)�.

Combining (a)-(c) with the hypothesis we can complete the proof of the lax
functoriality of T̂ :

ˆ̂T (s · r) = ◆ · ⇠ · T (��!s · r) · can�X,Z

� ◆ · ⇠ · T ⌦ ·T (�!r ⇥�!s ) · T (1X ⇥ �Y ⇥ 1Z)·
T (1X⇥ !Y ⇥ 1Z)� · can�X,Z (c)

� ◆ ·⌦ · (⇠ ⇥ ⇠) · canV,V · T (�!r ⇥�!s )·
T (1X ⇥ �Y ⇥ 1Z) · T (1X⇥ !Y ⇥ 1Z)� · can�X,Z

= ◆ ·⌦ · (⇠ ⇥ ⇠) · (T�!r ⇥ T
�!
s ) · canX⇥Y,Y⇥Z ·

T (1X ⇥ �Y ⇥ 1Z) · can�X,Y,Z · (1TX⇥ !TY ⇥ 1TZ)� (a)
� (◆⌦ ◆) · (⇠ ⇥ ⇠) · (T�!r ⇥ T

�!
s ) · (can�X,Y ⌦ can�Y,Z)·

(1TX ⇥ �TY ⇥ 1TZ) · (1TX⇥ !TY ⇥ 1TZ)� (b)
= ((◆ · ⇠ · T�!r · can�X,Y )⌦ (◆ · ⇠ · T�!s · can�Y,Z))·

(1TX ⇥ �TY ⇥ 1TZ) · (1TX⇥ !TY ⇥ 1TZ)�

= (f̂Tr ⌦ f̂
Ts) · (1TX ⇥ �TY ⇥ 1TZ) · (1TX⇥ !TY ⇥ 1TZ)�

= ˆ̂Ts · T̂ r.
⇤

1.5 Left-whiskering algebraic lax extensions. Our next goal is to find
conditions on the map ⇠ : TV ! V that make T̂ = �(⇠) a lax extension not
just of T , but of the monad T = (T,m, e), so that e : 1! T̂ and m : T̂ T̂ ! T̂
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become oplax natural transformations. It turns out that in order for us to verify
these conditions, we actually need T̂ not only to be right-whiskering (see 1.4.3)
but also left-whiskering, so that

T̂ (h · r) = Th · T̂ r

for all r : X�!7 Y , h : Y ! Z. Since T̂ = �(⇠) is dualizing (by the proof of
1.2.3(3)), the family T̂ = �(⇠) is left-whiskering precisely when it satisfies

T̂ (s · j�) = T̂ s · (Tj)�

for all j : Y ! X, s : Y�!7 Z. Indeed, if T̂ is left-whiskering, then

T̂ (s ·j�) = T̂ ((j ·s�)�) = (T̂ (j ·s�))� = (Tj · T̂ s�)� = T̂ (s��) · (Tj)� = T̂ s · (Tj)�;

likewise for the converse statement.

1.5.1. Proposition. For any map ⇠ : TV ! V with T̂ = �(⇠) right-whiskering,
the following conditions are equivalent:

(i) T̂ is monotone and left-whiskering;
(ii) for all maps f : X ! Y , ' : X ! V ,  : Y ! V ,

◆ ·   ◆ · ' · f� ) ◆ · ⇠ · T  ◆ · ⇠ · T' · (Tf)�

(iii) for all maps f,', as in (ii),

8y 2 Y ( (y) 
_

x2f�1y

'(x)) ) 8y 2 TY (⇠(T (y)) 
_

x2(Tf)�1y

⇠(T'(x))).

Proof. (iii) is obviously just a pointwise rendering of (ii). For (i) ) (ii), if
◆ ·   ◆ · ' · f�, the hypotheses guarantee T̂ ◆ · T  T̂ ◆ · T' · (Tf)�. Since
!T1 · T̂ ◆ = ◆ · ⇠ (see the proof of 1.2.3), ◆ · ⇠ · T  ◆ · ⇠ · T' · (Tf)� follows.
We are left with having to prove (ii) ) (i). By Lemma 1.4.1, condition (ii)
certainly guarantees monotonicity of T̂ : just consider f = 1X . Now consider

j : Y ! X and s : Y�!7 Z. Since ◆ ·
���!
s · j� = ◆ ·�!s · (j ⇥ 1Z)� (see 1.1.1) implies

◆ · �!s  ◆ ·
���!
s · j� · (j ⇥ 1Z), with T monotone and right-whiskering one obtains

on the one hand T̂ ◆ · T�!s  T̂ ◆ · T (
���!
s · j�) · T (j ⇥ 1Z) and then

◆ · ⇠ · T�!s · T (j ⇥ 1Z)
�  ◆ · ⇠ · T (

���!
s · j�).

On the other hand, ◆ ·
���!
s · j� = ◆ ·�!s · (j ⇥ 1Z)� implies with (ii)

◆ · ⇠ · T (
���!
s · j�)  ◆ · ⇠ · T�!s · T (j ⇥ 1Z)

�
,
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so that the two displayed inequalities are in fact equalities. Now

^
T̂ (s · j�) = ◆ · ⇠ · T (

���!
s · j�) · can�X,Z

= ◆ · ⇠ · T�!s · T (j ⇥ 1Z)� · can�X,Z

= ◆ · ⇠ · T�!s · can�Y,Z · (Tj ⇥ 1TZ)�

= ^
T̂ s · (Tj)�

follows. ⇤
1.5.2.Remark. When T̂ = �(⇠) is monotone, the order dualizations of 1.5.1(ii)
also holds:

◆ · ' · f�  ◆ ·  ) ◆ · ⇠ · T' · (Tf)�  ◆ · ⇠ · T 
for all f,', . (Just write the premiss equivalently as ◆ · '  ◆ ·  · f , and use
the monotonicity of ⇠ and then again the adjunction.)

Here is another conceptual interpretation of the equivalent conditions of
1.5.1. By the Yoneda Lemma, there is a natural bijection

{↵ |↵ : Set(�, V )! Set(T�, V ) nat. transf.}! Set(TV, V ), ↵ 7! ↵V (1V ),

the inverse of which assigns to ⇠ : TV ! V the natural transformation with
components

(1.5.i) ⇠X(') = ⇠ · T' (' : X ! V );

by abuse of notation we write ⇠ = (⇠X)X2obSet. Calling a natural transforma-
tion ↵ monotone if every component is monotone, then such transformations
correspond to monotone maps ⇠ by definition:

{↵ |↵ : Set(�, V )! Set(T�, V ) n. t., ↵ monot.}! {⇠ 2 Set(TV, V ) | ⇠ monot.}.
Now, let us notice that, since every function f : X ! Y has a right adjoint
f
� : Y ! X in V-Rel, the map

V-Rel(Y, 1)
V-Rel(f,1)

//

⇠=

V-Rel(X, 1)

⇠=

Set(Y, V )
Set(f,V )

// Set(X,V )

has the left adjoint V-Rel(f�
, 1) in Ord; when written at the level of functions,

that left adjoint is precisely PVf , with PV denoting the V-powerset functor :

Set(f, V ) ` PVf : Set(X,V )! Set(Y, V ),

with (PVf)(')(y) = (◆ · ' · f�)(y) =
W

x2f�1y '(x) for all ' : X ! V, y 2 Y .
So the question arises: which monotone natural transformations

↵ : Set(�, V ) ! Set(T�, V ) produce simultaneously natural transformations
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↵ : PV ! PVT? Answer: precisely those that under the Yoneda bijection cor-
respond to maps ⇠ satisfying the equivalent conditions (ii), (iii) of 1.5.1, as we
show next.

1.5.3. Proposition. A map ⇠ : TV ! V satisfies the equivalent conditions (ii),
(iii) of 1.5.1 if, and only if, (1.5.i) defines a natural transformation PV ! PVT

whose components are monotone.

Proof. For ⇠ with 1.5.1(ii), we must show that

(1.5.ii) PVX
PVf

//

⇠X
✏✏

PVY

⇠Y
✏✏

PVTX
PVTf

// PVTY

commutes. But with  := (PVf)('), ' 2 PVX, we have by 1.5.1(ii) in
V-relational notation

⇠Y ((PVf)(')) = ◆ · ⇠ ·   ◆ · ⇠ · T' · (Tf)� = (PVTf)(⇠X(')),

and “�” holds by 1.5.2. Conversely, commutativity of (1.5.ii) in conjunction
with monotonicity similarly implies condition (ii) of 1.5.1. ⇤

1.6 Algebraic lax monad extensions. For a monad T = (T,m, e), a
commutative quantale V = (V,⌦, k), and a map ⇠ : TV ! V we first prove:

1.6.1. Proposition. Let T̂ = �(⇠) be monotone and right- and left-whiskering.
Then:

(1) e : 1V-Rel ! T̂ is an oplax natural transformation if and only if
1V  ⇠ · eV .

(2) m : T̂ T̂ ! T̂ is an oplax natural transformation if and only if
⇠ · T ⇠  ⇠ ·mV .

(1.6.i) V
eV
//

1V
!!

TV

⇠

✏✏

TTV
T⇠
oo

mV

✏✏



V



TV
⇠

oo

Proof. (1) If e : 1! T̂ is oplax, one obtains

◆ · ⇠ · eV = !T1 · T̂ ◆ · eV � !T1 · e1 · ◆ = ◆ · 1V ,
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hence ⇠ · eV � 1V . Conversely, with r : X�!7 V this inequality implies

êY · r = ◆ ·���!eY · r
 ◆ · ⇠ · eV ·�!r · (1X ⇥ eY )�

= ◆ · ⇠ · T�!r · eX⇥Y · (1X ⇥ eY )�

 ◆ · ⇠ · T�!r · can�X,Y · (eX ⇥ 1TY )

= f̂
Tr · (eX ⇥ 1TY )

= ˆ̂Tr · eX ,

with the second inequality arising from canX,Y ·eX⇥Y = (eX⇥1TY ) ·(1X⇥eY ).
(2) Since T̂ is right- and left-whiskering, for m : T̂ T̂ ! T̂ oplax one obtains

◆ · ⇠ · T ⇠ = !T1 · T̂ ◆ · T ⇠ = ! · T̂ (◆ · ⇠) = ! · T̂ ( ! · T̂ ◆) = ! · T ! · T̂ T̂ ◆
= ! ·m1 · T̂ T̂ ◆  !T1 · T̂ ◆ ·mV = ◆ · ⇠ ·mV ,

hence ⇠ ·T ⇠  ⇠ ·mV . Conversely, let us first note that the commutative diagram

TT (X ⇥ Y )

mX⇥Y

✏✏

T canX,Y
// T (TX ⇥ TY )

canTX,TY
// TTX ⇥ TTY

1⇥mY
// TTX ⇥ TY

mX⇥1

✏✏

T (X ⇥ Y )
canX,Y

// TX ⇥ TY

gives mX⇥Y · (T canX,Y )� · can�TX,TY · (1TTX ⇥mY )�  can�X,Y · (mX ⇥ 1TY ).

Since T̂ is right- and left-whiskering, from ⇠ · T ⇠  ⇠ ·mV one derives for every
r : X�!7 Y

^
mY · T̂ T̂ r = ĝ

T T̂ r · (1TTX ·mY )�

= ! · T̂ ◆ · T (
�!
T̂ r) · can�TX,TY · (1TTX ⇥mY )�

= ! · T̂ (◆ ·
�!
T̂ r) · can�TX,TY (1TTX ⇥mY )�

= ! · T̂ (f̂Tr) · can�TX,TY · (1TTX ⇥mY )�

= ! · T̂ (◆ · ⇠ · T�!r · can�X,Y ) · canTX,TY · (1TTX ⇥mY )�

= ◆ · ⇠ · T ⇠ · TT�!r · (T canX,Y )� · canTX,TY · (1TTX ⇥mY )�

 ◆ · ⇠ · T�!r ·mX⇥Y · (T canX,Y )� · canTX,TY · (1TTX ⇥mY )�

 ◆ · ⇠ · T�!r · can�X,Y · (mX ⇥ 1TY )

= ˆ̂Tr ·mX .

⇤
Combining 1.4.4, 1.5.1 and 1.6.1 we may summarize our results, as follows.
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1.6.2.Theorem. Let T = (T,m, e) be a Set-monad satisfying BC, V = (V,⌦, k)
a quantale, and ⇠ : TV ! V a map. Then

(T̂ r)(x, y) =
_

{⇠(T�!r (w)) |w 2 T (X ⇥ Y ), T⇡1(w) = x, T⇡2(w) = y}

for all V-relations r : X�!7 Y and x 2 TX, y 2 TY defines a left-whiskering
lax extension of the monad T = (T,m, e) to V-Rel if, and only if, the following
conditions hold:

(LIM) k· !T1  ⇠ · Tk and ⌦ · h⇠ · T⇡1, ⇠ · T⇡2i  ⇠ · T⌦;
(LEM) 1V  ⇠ · eV and ⇠ · T ⇠  ⇠ ·mV ;
(MON) ⇠X : Set(X,V )! Set(TX, V ), ' 7! ⇠ · T', is monotone for all sets X;
(NAT) (⇠X)X2obSet : PV ! PVT is a natural transformation.

We refer to these four conditions as the Lax Internal Monoid, the Lax
Eilenberg-Moore, the Monotonicity and the Naturality conditions on ⇠, respec-
tively. When the inequality signs in (LIM) or (LEM) may be replaced by equal-
ity signs, then we can drop “Lax” and write (IM) and (EM) respectively. In-
deed, (EM) obviously just means that (V, ⇠) is an object of the Eilenberg-Moore
category Set

T, while (IM) then means that the monoid operations

k : (1, !T1)! (X, ⇠), ⌦ : (X, ⇠)⇥ (X, ⇠)! (X, ⇠)

live in the cartesian category Set
T (=the monoidal category (SetT,⇥, 1)). But

note that also in the absence of (EM), condition (IM) still makes ((V, ⇠),⌦, k)
an internal monoid, namely of the larger category T -Alg of “T -algebras” (X,↵ :
TX ! X) (that are not required to satisfy any further conditions) and
“T -homomorphisms” (that are defined as in Set

T, which becomes a full subcat-
egory of T -Alg.)

The impact of the more restrictive conditions (IM), (EM) (in the presence
of (MON) and (NAT)) on the lax extension T̂ = �(⇠) will be discussed in the
next section.

Here we just re-state Theorem 1.6.2 in terms of the bijective correspondence

(1.6.ii) � : {⇠ 2 Set(TV, V ) | (LIM)& (MON)}! V-AlgLxt(T )

given by Theorem 1.4.4 whose inverse assigns to an algebraic lax extension
of the functor T to V-Rel its structure map ⇠. We note that � is actually an

order isomorphism when we order lax extensions T̂ , ˆ̂
T of T by T̂ r  ˆ̂

Tr for all

V-relations r (so that 1T : (T, T̂ ) ! (T, ˆ̂T ) becomes a morphism of lax exten-
sions, see [7, III.3.4]).

1.6.3. Corollary. The order-isomorphism (1.6.ii) restricts to a bijective cor-
respondence between left-whiskering algebraic lax extensions to V-Rel of the
monad T and maps satisfying (LIM), (LEM), (MON), (NAT).
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1.6.4. Remark. For (V,⌦, k) = (V,^,>) a frame, in the presence of (MON)
condition (LIM) automatically implies (IM). Indeed, ⇠ · Tk  k· !T1 holds triv-
ially when k = >, and when one has also ⌦ = ^, so that ⌦  ⇡i (i = 1, 2),
monotonicity of ⇠ gives ⇠ · T⌦  ⇠ · T⇡i and then ⇠ · T⌦  ⌦ · h⇠ · T⇡1, ⇠ · T⇡2i.

2. Topological theories

2.1 Monoids in Set
T. For a monad T = (T,m, e), by 1.6.2 we are led to

considering monoids in Set
T: for a monoid V = (V,⌦, k) in Set one has a map

⇠ : TV ! V satisfying (IM) and (EM) precisely when V⇠ = ((V, ⇠),⌦, k) is a
monoid in the cartesian category Set

T. With the Set-monoid V we may associate
the Set-monad V = (V ⇥ (�), ⌧,) with

(2.1.i)
X : X ! V ⇥X and ⌧X : V ⇥ V ⇥X ! V ⇥X

x 7! (k, x) (v, w, x) 7! (v ⌦ w, x)

whose Eilenberg-Moore category is precisely the category of (left) V -actions.
Likewise, the SetT-monoid V⇠ gives us the SetT-monad V⇠ = ((V, ⇠)⇥ (�), ⌧,)
where

(V, ⇠)⇥ (X,↵) = (V ⇥X,T (V ⇥X)
canV,X

// TV ⇥ TX
⇠⇥↵
// V ⇥X),

whose Eilenberg-Moore category is the category of (left) V⇠-actions in Set
T.

Here we denoted the unit and multiplication of the monad V⇠ as for V; in fact,
it is easy to show that condition (IM) makes the maps X and ⌧X of (2.1.i)
T-homomorphisms. In other words, the monad V⇠ of SetT is a lifting of V along
the forgetful GT : SetT ! Set (see [7, II.3.8]).

2.1.1. Proposition. For a monad T and a quantale V, maps ⇠ : TV ! V sat-
isfying (IM) and (EM) correspond bijectively to distributive laws of the monad
V over T. In particular, for any such ⇠, the category of V⇠-actions in Set

T is
monadic over Set.

Proof. Since (V,⌦, k) may be recovered from the monad V as ⌦ = ⌧1, k = 1,
maps ⇠ with (IM), (EM) correspond bijectively to liftings of V along G

T. But
such liftings V⇠ correspond in turn bijectively to distributive laws � : TV ! V T

(where we have written V instead of V ⇥ (�)), by [7, II.3.8.2]. Furthermore,

(SetT)V⇠ ! Set

is just the forgetful functor of the Eilenberg-Moore category of the composite
monad VT. ⇤
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2.1.2. Remark. The correspondence described by 2.1.1 associates with a dis-
tributive law � : TV ! V T the map

⇠ = ( TV
�1
// V ⇥ T1

p1
// V ).

In fact, the free (VT)-algebra over (X,↵) 2 obSetT is generally given by

T (V ⇥X)
�X
// V ⇥ TX

1V ⇥↵
// V ⇥X

which specializes to p1 · �1, for X = 1.

2.1.3. Examples. (1) Let � = (�,m, e) be the ultrafilter monad and V = 2
the two-element chain. Since 2 is finite, �2 ⇠= 2, with e2 (and m2)
bijective and ⇠ = e

�1
2 the only map satisfying (EM); ⇠ also satisfies

(IM). The Eilenberg-Moore category of the composite monad 2� may
be equivalently described as having objects compact Hausdor↵ spaces
X that come equipped with a continuous projection p : X ! X with
p · p = p, with morphisms continuous maps that commute with the
attached projections.

(2) Let L = (L,m, e) be the word monad (i.e., the free-monoid monad) on
Set, and let V = (V,⌦, k) be any quantale. Then

⇠ : LV ! V, (v1, . . . , vn) 7! v1 ⌦ · · ·⌦ vn, ( ) 7! k,

satisfies (IM) and (EM). Since Set
L ⇠= Mon, (VL)-algebras may be

described as monoids M which come with a V-action

a : V ⇥M !M, (v, x) 7! vx,

which must be a homomorphism of monoids; hence, if we denote the
binary operation of M by ⇤, that means

(v ⌦ w)(x ⇤ y) = (vx) ⇤ (wy)
for all v, w 2 V , x, y 2M .

2.2 Algebraic lax extensions arising from monoids. By Theorem 1.6.2,
maps ⇠ : TV ! V satisfying (LIM), (LEM), (MON), (NAT) correspond to left-
whiskering algebraic lax extensions T̂ of the monad T to V-Rel. The question
arises which additional properties T̂ may enjoy if ⇠ satisfies even (IM), (EM).

2.2.1. Theorem. Let ⇠ : TV ! V satisfy (LIM), (LEM), (MON), (NAT),
and let T̂ = �(⇠) be the algebraic lax extension with structure map ⇠, with T

satisfying BC. Then:

(1) T̂ is flat (so that T̂ f = Tf for all maps f) if and only if k· !T1 = ⇠ ·Tk.
(2) T̂ is a functor if and only if (IM) holds.
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(3) If e : 1V-Rel ! T̂ is a natural transformation, then ⇠ · eV = 1V , with the
converse statement holding when e : 1Set ! T satisfies BC.

(4) If m : T̂ T̂ ! T̂ is a natural transformation, then ⇠ · T ⇠ = ⇠ ·mV , with
the converse statement holding when m : TT ! T satisfies BC.

(5) If e : 1 ! T and m : TT ! T satisfy BC, then (T̂ ,m, e) is a monad
on V-Rel if, and only if, ⇠ satisfies (IM) and (EM).

Proof. (1) If T̂ is flat, one has in particular T̂ u = Tu for u the identity map
of 1. The first calculation of the proof of 1.3.1 shows that k· !T1 = ⇠ ·Tk follows.
Conversely, assuming this equation to hold, it su�ces to show T̂1X = 1TX for
all X since T̂ is right-whiskering. But since ◆ · �!1X = ◆ · k· !X · ��X , from (NAT)
one obtains

ĝ
T1X = ◆ · ⇠ · T�!1X · can�X,X = ◆ · ⇠ · Tk · T !X · (T �X)� · can�X,X

= ◆ · k· !T1 · T !X · ��TX

= !TX · ��TX = g1TX .

(2) That (IM) is a necessary condition for T̂ being a functor follows from
(1) and a re-examination of the proof of 1.3.1. Indeed, it su�ces to make sure
that the inequality (1.3.ii) is actually an equality. But since the algebraic lax

extension T̂ is right- and left-whiskering, from ◆̂⌦ 1V = ◆ · ⇡1 · (1V ⇥ �V )� one
obtains

^
T̂ (◆⌦ 1V ) = !T1 · T̂ (◆̂⌦ 1V ) · can�V⇥V,V

= !T1 · T̂ ◆ · T⇡1 · (T (1V ⇥ �V ))� · can�V⇥V,V

= ◆ · ⇠ · T⇡1 · h1T (V⇥V ), T⇡2i,
which forces equality in (1.3.ii).

Conversely, in the presence of (IM) we must show that the lax extension T̂

satisfies T̂ (s · r)  T̂ s · T̂ r for all V-relations r : X�!7 Y , s : Y�!7 Z. For that
it su�ces to recognize that the inequality (c) used in the proof of 1.4.4(2) is
actually an equality, by 1.5.1, 1.5.2.

(3) Revisiting the proof of 1.6.1(1) we see that naturality of e : 1! T̂ implies
⇠ · eV = 1V , with the converse statement holding true if eX⇥Y · (1X ⇥ eY )� =
can�X,Y · (eX ⇥ 1TY ). But when e satisfies BC, so that the outer rectangle of

X ⇥ Y
1X⇥eY

//

eX⇥Y

✏✏

X ⇥ TY
⇡1

//

eX⇥1TY

✏✏

X

eX

✏✏

T (X ⇥ Y )
canX,Y

// TX ⇥ TY
⇡1
// TY

is BC, then also the left rectangle is BC since the right one is a pullback.
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(4) Turning back to the proof of 1.6.1(2) now we see that naturality of
m : T̂ T̂ ! T̂ implies ⇠ · T ⇠ = ⇠ ·mV , and that the necessity of this condition is
guaranteed if

mX⇥Y · (T canX,Y )
� · can�TX,TY · (1TTX ⇥mY )

� = can�X,Y · (mX ⇥ 1TY )

holds. But if m satisfies BC one can argue as in (3), considering the diagram

TT (X ⇥ Y )
T canX,Y

//

mX⇥Y

✏✏

T (TX ⇥ TY )
canTX,TY

// TTX ⇥ TTY
1⇥mY

// TTX ⇥ TY
⇡1

//

mX⇥1TY

✏✏

TTX

mX

✏✏

T (X ⇥ Y )
canX,Y

// TX ⇥ TY
⇡1

// TX

(5) follows from (2)-(4). ⇤
2.2.2. Remarks. (1) The proof of 2.2.1 shows that, without the require-

ment that T satisfies BC, for any ⇠ : TV ! V satisfying (LIM), (LEM),
(MON), (NAT), T̂ = �(⇠) is op-lax, that is:

T̂1X  1TX , T̂ (s · r)  T̂ s · T̂ r

for all r : X�!7 Y , s : Y�!7 Z in V-Rel.
(2) While both the unit and the multiplication of the word monad (2.1.3(2))

satisfy BC, for the ultrafilter monad only the multiplication satisfies
BC. In fact, any Set-monad T = (T,m, e) with T1 ⇠= 1 and e satisfying
BC must be isomorphic to the identity monad: see [7, II.1.12.4], [3].

2.2.3. Definition. ([6]) A topological theory is given by a Set-monad T =
(T,m, e), a quantale V = (V,⌦, k) and a map ⇠ : TV ! V such that conditions
(LIM), (LEM), (MON), (NAT) of 1.6.2 hold; the theory is strict if also (IM),
(EM) hold true.

2.2.4. Examples. ([6])

(1) For every quantale V, the identity monad on Set and ⇠ = 1V define a
strict topological theory (the lax algebras of which are V-categories).
Less trivially, the word monad L and the function ⇠ as defined in
2.1.3 define a strict topological theory (the lax algebras of which are
V-multicategories; see [5]).

(2) If the quantale V = (V,⌦, k) is (constructively) completely distributive
(see [10, 7]), then the ultrafilter monad � together with the function
⇠ : �V ! V with

⇠(x) =
_

A2x

^

v2A

v =
^

A2x

_

v2A

v
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(for every ultrafilter x on V) define a (generally non-strict) topological
theory (which, for V = 2, has topological spaces as lax algebras, and
for V = [0,1]op approach spaces: see [5, 7]).

2.2.5. Example. (D. Hofmann, private communication) For any monoid H,
consider the free H-act-monad (X 7! H ⇥ X). Then, for every quantale V =
(V,⌦, k), the second projection H ⇥ V ! V defines a strict topological theory.
Here is an example showing that, in general, one may have various choices for
such a map H ⇥ V ! V . Indeed, for H = ([0, 1], ·) and V = [0,1]op, the
multiplication map

[0, 1]⇥ [0,1]! [0,1]

defines a strict topological theory as well.
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