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Abstract

Exponentiable maps in the category Top of topological spaces are characterized by an
easy ultrafilter-interpolation property, in generalization of a recent result by Pisani for spaces.
From this characterization we deduce that perfect (= proper and separated) maps are ex-
ponentiable, generalizing the classical result for compact Hausdor↵ spaces. Furthermore,
in generalization of the Whitehead-Michael characterization of locally compact Hausdor↵
spaces, we characterize exponentiable maps of Top between Hausdor↵ spaces as restrictions
of perfect maps to open subspaces.
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1 Introduction

That compact Hausdor↵ spaces are exponentiable in the category Top of topological spaces
has been known since at least the 1940s (see Fox [17] and Arens [1]). Our original motivation
for writing this paper was to establish the fibred version of this fact which, despite the exten-
sive literature on exponentiability, does not seem to have been treated conclusively in previous
articles.

Recall that a space X is exponentiable if it allows for the natural formation of function
spaces Y

X for every other space Y; more precisely, if the functor (�) ⇥ X : Top ! Top
has a right adjoint, which turns out to be equivalent to the preservation of quotient maps
by (�) ⇥ X. Exponentiable spaces were characterized topologically by Day and Kelly [13].
As Isbell [22] observed, their characterization amounts to saying that the lattice of open sets
must be continuous; equivalently, these are the core-compact spaces, in the sense that every
neighbourhood of a point contains a smaller one with the property that every open cover of the

⇤The first two authors acknowledge partial financial assistance by Centro de Matemática da Universidade de

Coimbra. The first author also thanks Project PRAXIS XXI 2/2.1/MAT/46/94.
†The third author acknowledges partial financial assistance by NSERC.
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given neighbourhood contains a finite subcover of the smaller one. Generalizing Whitehead’s
result [41] for Hausdor↵ spaces, Brown [5] already in 1964 showed that locally compact spaces
(in which every point has a base of compact neighbourhoods) are exponentiable. For Hausdor↵
spaces the two notions become equivalent (Michael [29]), even for sober spaces (Hofmann-Lawson
[21]). There is no known constructive example of an exponentiable space that is not locally
compact (Isbell [22]). For an elementary account of these results, see [16].

Trading now Top for the category Top/Y of spaces X over the fixed base space Y , given
by continuous maps f : X ! Y , Niefield [31], [32] gave an elegant but, when put in standard
topological terminology, generally complicated topological characterization of exponentiable maps

in Top, which entails the Day-Kelly result in case Y = 1 is a one-point space. Niefield’s result
becomes very tractable though when f is a subspace embedding, in which case exponentiability
of f means local closedness of X in Y (so that X is open in its closure X in Y ), and even when
f is just an injective map, as was shown by Richter [37]. Under suitable restrictions on X and Y

it becomes very applicable as well; for instance, it shows that every map from a locally compact
space to a locally Hausdor↵ space is exponentiable (Niefield [33]). However, it seems to be very
cumbersome to derive from it the statement we are aiming for, namely:

Theorem A Every perfect map of topological spaces is exponentiable in Top.

Here we call a continuous map f : X ! Y perfect if it is both

- stably closed, so that every pullback of f is a closed map, which is equivalent to f being proper

in the sense of Bourbaki [4], so that f ⇥ 1Z : X ⇥ Z ! Y ⇥ Z is closed for every space Z;
and

- separated, so that the diagonal �X is closed in the fibred product X ⇥Y X, which means
that any distinct points x, y in X with f(x) = f(y) may be separated by disjoint open
neighbourhoods in X.

Thanks to the Kuratowski-Mrowka Theorem, stable closedness of X ! Y for Y = 1 means
compactness of X , while separatedness obviously amounts to Hausdor↵ness of X in this case.
Categorically it is clear that Theorem A is the “right” map generalization of the space result of
the 1940s (see [8]).

Pisani’s characterization of exponentiable spaces X in Top is based on Barr’s presentation
[2] of topological spaces as relational algebras (which recently has led to much more general
studies of so-called lax algebras, see [10] and [12]), and it reads as follows. Let UX be the set of
ultrafilters on X, and for U 2 UUX, let

µX(U) =
[

A2U

\

a2A

a

be the sum of the ultrafilters a (a 2 A ✓ UX, A 2 U); see [19]. Now X is exponentiable if and
only if X has the ultrafilter interpolation property: whenever µX(U) ! x in X, then there is
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a 2 UX with U ! a and a ! x (with a naturally defined notion of convergence in UX). For
simplicity we often write

U ) x

instead of µX(U) ! x.
It turns out that Pisani’s characterization allows for a natural generalization from spaces

to maps, which occured to us after seeing the Janelidze-Sobral criterion (see [24] and [7]) for
triquotient maps of finite topological spaces in the sense of Michael [30]. Hence, we first looked
at the category PrSet of preordered sets (= reflexive transitive graphs = sets with a reflexive,
transitive binary relation !) and monotone maps; here every object is exponentiable, while a
map f : X ! Y is exponentiable in PrSet if and only if it has the following interpolation (or
convexity) property:

whenever u ! x in X and f(u) ! b ! f(x) in Y , then there is a in X with f(a) = b

and u ! a ! x in X;

f(u) b f(x)

u x

a

- -

X X X Xz ⇠ ⇠ ⇠ ⇠:
-

Y

X

?

f

(1)

see the recent papers [34] and [39] which draw on the more general result of Giraud [18] in Cat.
Writing now

•
u ! x instead of u ! x we obtain also a characterization of exponential maps in

the (isomorphic) category of Alexandro↵ topological spaces (where every point has a least open
neighbourhood). Now, the characterization in Top comes about by just appropriately replacing
principal ultrafilters by arbitrary ones:

Theorem B A continuous map f : X ! Y is exponentiable in Top if and only if f has the

ultrafilter interpolation property:

whenever U ) x in X and f(U) ! b in UY and b ! f(x) in Y , then there is a 2 UX

with f(a) = b, U ! a in UX, and a ! x in X.

f(U) b f(x)

U x

a

-

X X X Xz ⇠ ⇠ ⇠ ⇠:

-

>

Y

X

?

f

(2)

The first purpose of this paper is to prove Theorem B and derive Theorem A from it.
While the derivation of Theorem A from B is easy, the proof of Theorem B is quite involved.

We employ the approach first developed in [10] and work within the category URS whose ob-
jects are simply sets provided with an ultrarelational structure, i.e., any (“convergence”) relation
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between ultrafilters on X and points in X – no further condition. Within this category, topolog-
ical spaces are characterized by a reflexivity and transitivity property, just like preordered sets
amongst graphs.

In Section 2 we give a summary of the main categorical and filter-theoretic notions and tools
used in Section 3, which contains the proofs of Theorems A and B. Section 4 is devoted to
a discussion of some of the immediate consequences of these theorems. In particular, we give
refined versions and generalizations of the invariance and inverse invariance theorems of local
compactness under perfect mappings, as first established by [26] and [40] and recorded in [15].

Finally, coming back to our discussion of exponentiable spaces, we study in Section 5 the
map-version of the Whitehead-Michael characterization of exponentiable spaces as locally com-
pact spaces, within the realm of Hausdor↵ spaces. Since the locally compact Hausdor↵ spaces
are precisely the open subspaces of compact Hausdor↵ spaces, at the map level one would ex-
pect exponentiable separated maps to be characterized as restrictions of perfect maps to open
subspaces. We succeeded proving this for maps with Hausdor↵ codomain:

Theorem C For Y a Hausdor↵ space, the exponentiable, separated maps f : X ! Y in Top
are precisely the composites

X Z Y-i⇤⇥ -p

with an open embedding i and a perfect map p.

We conjecture, however, that the assumption on Y may be dropped.
In this paper we neither discuss any of the many localic or topos-theoretic aspects of the

theme of this paper, nor do we elaborate here on the presentation of exponentiable spaces as lax
Eilenberg-Moore algebras, but refer the Reader to [32], [34] and to [35], respectively.

Acknowledgement. After the results of this paper had been presented by the third author at
the CATMAT2000 meeting in Bremen in August 2000, G. Richter found a point-set proof of
Theorem A and kindly informed him of this. It turns out that the alternative proof may be
formulated in a very general categorical context, for which the Reader is referred to a forth-
coming joint paper. We point out that, while the alternative proof is more constructive than
the one presented here, since it does not rely on the Axiom of Choice, it is at the same time less
constructive, since it establishes only the mere existence of the needed exponential structures,
without describing them. We received further valuable comments from many other colleagues at
the Bremen conference, especially from R. Börger, for which we are grateful. The authors also
thank the anonymous referee for a number of very useful comments which helped them refine a
number of points in the paper.
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2 Preparations

2.1 (The ultrafilter monad). The assignment X 7! UX defines a functor U : Set ! Set; for a
mapping f : X ! Y in Set, Uf : UX ! UY assigns to a 2 UX the (ultra)filter f(a), generated
by {f(A) |A 2 a}. This functor preserves coproducts (disjoint unions), and it is terminal with
this property: for any coproduct-preserving functor F : Set ! Set there is a unique natural
transformation F ! U (see [3]). Therefore U carries a unique monad structure (which was first
discussed in [27]; its Eilenberg-Moore algebras are precisely the compact Hausdor↵ spaces – see
also [28]). Hence, there are natural maps

⌘X : X ! UX, µX : UUX ! UX

satisfying the monad conditions

µX · ⌘UX = 1X = µX · U⌘X , µX · µUX = µX · UµX .

⌘X(x) =
•
x and µX defined as in the Introduction. Hence, for U 2 UUX, a typical set in

µX(U) 2 UX has the form [

a2A

Aa

for some A 2 U and with all Aa 2 a; alternatively, a subset A ✓ X lies in µX(U) precisely when
the set

A
] = {a 2 UX |A 2 a}

lies in U.

2.2 (Extension of U to Rel(Set), see [35]). Let Rel(Set) be the category whose objects are
sets, while a morphism ⇢ : X �!+ Y is a relation ⇢ ✓ X ⇥ Y from X to Y and composition is as
usual:

� · ⇢ = {(x, z) |9y : (x, y) 2 ⇢ and (y, z) 2 �}.

Hence, Set is a non-full subcategory of Rel(Set). Now U can be extended to a functor U :
Rel(Set) ! Rel(Set) when for ⇢ : X �!+ Y we define U⇢ : UX �!+ UY by

(a, b) 2 U⇢ i↵ ⇢
op(B) 2 a for all B 2 b.

(For A ✓ X we write ⇢(A) = {y |9x 2 A : (x, y) 2 ⇢} , and ⇢
op ✓ Y ⇥X is the relation opposite

to ⇢). Furthermore, if ⇢ ✓ � : X �!+ Y , then also U⇢ ✓ U�.

2.3 (Ultrarelational structures, grizzly spaces). By an ultrarelational structure on a set X we
mean a relation ⇢ : UX �!+ X; we write

a
⇢�! x or a ! x if (a, x) 2 ⇢.
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A map f : (X, ⇢) ! (Y, �) of such (very general) structures is continuous if

a
⇢�! x in X implies f(a) ��! f(x) in Y.

This defines the category URS, the objects of which are also called grizzly spaces. The relational
extension of U yields for a grizzly space (X, ⇢) a grizzly space (UX, U⇢); hence, there is a functor

U : URS ! URS

(since f · ⇢ ✓ � · Uf implies Uf · U⇢ ✓ U� · UUf , by 2.2).
Explicitly, the ultrarelational structure of UX is given by

U ! a ,# A 2 U for all A 2 a,

where # A = ⇢
op(A) = {c 2 UX |9x 2 A : c ! x}. One easily shows:

U ! a ," A 2 a for all A 2 U,

where " A = ⇢(A) = {x 2 X |9c 2 A : c ! x}.

2.4 (Topological spaces amongst grizzly spaces). Via the usual notion of (ultra)filter conver-
gence, the category Top is fully embedded into URS, and it is essentially known how to recognize
topological spaces inside URS: a grizzly space X is topological if and only if

(1) ⌘X(x) ! x for all x 2 X,

(2) whenever U ! a in UX and a ! x in X, then U ) x in X (that is: µX(U) ! x in X).

Proofs of this fact are normally given within the realm of pseudo-topological spaces (those
X 2 URS satisfying (1), see [36]) or of pretopological spaces, i.e., those X 2 URS satisfying (1)
and

(11
2) a ! x whenever

\

b!x

b ✓ a (see [35]).

For a categorical analysis of the first two in the chain of bireflective embeddings

Top ! PrTop ! PsTop ! URS,

see also [20].

2.5 (Prime Filter Theorem, see [25]). Recall that a filter of a 0-1-lattice is an up-closed subset
F ✓ L which is a sub-semilattice of (L,^, 1); it is prime if 0 62 F , and if a_ b 2 F implies either
a 2 F or b 2 F ; the lattice-dual notion is (prime) ideal. Now, if I is an ideal of L and F a filter
disjoint from I, then there is a filter U of L which is maximal amongst those containing F and
disjoint from I. Moreover, if L is distributive, any such filter U is prime.
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2.6 (Extension Lemma, see [35]). Let U be an ultrafilter on UX and f a filter on a grizzly space

X such that # F 2 U for all F 2 f. Then there is an ultrafilter a on X containing f with # A 2 U

for all A 2 a, hence U ! a in UX.

The proof is an application of the Prime Filter Theorem to the ideal i = {B ✓ X | # B 62 U}
in the lattice PX of all subsets of X.

2.7 (Exponentiability of maps via partial products, see [14]). By definition, a morphism f :
X ! Y in a finitely-complete category X is exponentiable if the functor “pulling back along f”

�⇥Y X : X/Y �! X/Y

has a right adjoint. This is equivalent to the existence of the partial products P = P (f, Z), for
each object Z in X, which are universally defined by a diagram

P Y

Z P ⇥Y X X

-
p

-
⇡2

?

⇡1

?

f

� e

(3)

such that every diagram

Q Y

Z Q⇥Y X X

-
q

-⇡̃2

?

⇡̃1

?

f

� d

(4)

factors as p · t = q and e · (t⇥ 1X) = d, by a unique morphism t : Q ! P .
Considering Q = 1 the terminal object one sees that, in X = URS, P should have underlying

set
P = {(y, ↵) | y 2 Y, ↵ : f

�1
y ! Z continuous} with projection p : P ! Y,

so that the pullback with f has underlying set

P ⇥Y X = {(↵, x) |x 2 X, ↵ : f
�1

f(x) ! Z continuous} with evaluation map e : P ⇥Y X ! Z.

2.8 (Canonical structures in URS). URS is a topological category over Set. Hence, given
any morphisms p : P ! Y , f : X ! Y in URS, their pullback is formed by providing the set
P ⇥Y X with the ultrarelational structure given by

c ! (u, x) :, ⇡1(c) ! u and ⇡2(c) ! x, (⇤)

for all u 2 P , x 2 X with p(u) = f(x), and c 2 U(P ⇥Y X).
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Suppose now that we are given f : X ! Y and Z in URS and p : P ! Y and e : P⇥Y X ! Z

in Set. We shall call an ultrarelational structure ⇢ on P admissible if it makes both p and e

continuous, where of course the structure of P ⇥Y X is induced by ⇢ via (⇤). The point is that
there always exists a largest (w.r.t. ✓) admissible ultrarelational structure on P , given by

b ! u :,

8
><

>:

p(b) ! p(u) and e(c) ! e(u, x)
whenever c 2 U(P ⇥Y X) and x 2 X

with ⇡1(c) = b, f(x) = p(u) and ⇡2(c) ! x,

(⇤⇤)

for all u 2 P and b 2 UP .

2.9 (Generation of ultrafilters on pullbacks). Consider the pullback diagram of (3) in Set and
b 2 UP , a 2 UX with p(b) = f(a). Then there is an ultrafilter c on P ⇥Y X with ⇡1(c) = b and
⇡2(c) = a. Indeed, for all B 2 b and A 2 a there is B

0 2 b with p(B0) ✓ f(A) and then A
0 2 a

with f(A \ A
0) ✓ f(A0) ✓ p(B \ B

0), which shows B ⇥Y A = (B ⇥ A) \ (P ⇥Y X) 6= ;. Hence,
there is an ultrafilter c containing the filterbase

b⇥Y a = {B ⇥Y A |B 2 b, A 2 a}

and therefore ⇡
�1
1 (b) [ ⇡

�1
2 (a), and any such ultrafilter has the desired properties.

2.10 (Local cartesian closedness of PsTop). For f : X ! Y and Z in PsTop, one forms the
partial product P = P (f, Z) as in 2.7 and provides it with the largest admissible ultrarelational
structure as in 2.8. First we make sure that P is a pseudotopological space and show that
for (y, ↵) 2 P , e := ⌘P (y, ↵) converges to (y, ↵). By naturality of ⌘, clearly p(e) ! y since
Y 2 PsTop. According to (⇤⇤) we must show e(f) ! ↵(x) whenever x 2 f

�1
y and f 2 U(P⇥Y X)

satisfies ⇡1(f) = e and ⇡2(f) ! x. But ⇡2(f) defines an ultrafilter x on f
�1

y since

f(⇡2(f)) = p(⇡1(f)) = p(e) ! y,

and we obtain ↵(x) = e(f). Indeed, for every A 2 x and F 2 f, the hypotheses on f give

F \ ⇡
�1
1 (y, ↵) \ ⇡

�1
2 (A) 6= ;,

so that there is a 2 A with (a,↵) 2 F , hence

e(a,↵) 2 e(F ) \ ↵(A) 6= ;.

Now, with the continuity of ↵ we readily conclude from x ! x

e(f) = ↵(x) ! ↵(x) = e(↵, x).

This concludes the proof of e ! (y, ↵), hence of P 2 PsTop.
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Given diagram (4) in PsTop, it remains to be shown that the unique Set-map t : Q ! P

with p · t = q and e · (t⇥1X) = d is continuous1. For that it su�ces to see that the final structure
⇢ on P with respect to the map t is admissible.

Hence, let b
⇢! u in P , which means d ! v in Q for some d, v with t(d) = b, t(v) = u. We

must verify b ! u in the sense of (⇤⇤). Since q is continuous, p(b) = p·t(d) = q(d) ! q(v) = p(u).
Let c 2 U(P ⇥y X), x 2 X with ⇡1(c) = b, f(x) = p(u) and ⇡2(c) ! x, and consider the pullback
diagram

PQ

Q⇥Y X P ⇥Y X

-t

-t⇥ 1X

?

⇡1

?

⇡̃1

(5)

Once we have found e 2 U(Q⇥Y X) with ⇡̃1(e) = d and (t⇥ 1X)(e) = c, we conclude e ! (v, x)
in Q (since ⇡̃1(e) = d ! v and ⇡̃2(e) = ⇡̃2((t⇥ 1X)(e)) = ⇡2(c) ! x), which implies

e(c) = e((t⇥ 1X)(e)) = d(e) ! d(v, x) = e(u, x),

by continuity of d. For the existence of e, since ⇡1(c) = t(d), one can just use the pullback (5) in
Set and apply 2.9.

Hence, every morphism in PsTop is exponentiable, i.e., PsTop is locally cartesian closed.

2.11 (Coincidence of partial products in Top and in PsTop, see [6]). For f : X ! Y

and Z in Top, f exponentiable in Top, one may on the one hand form the partial product
PTop(f, Z) in Top, and on the other hand, like for any morphism in PsTop, the partial product
PPsTop = P (f, Z) in PsTop. But there is no need to distinguish between these two objects: see
Theorem 2.1 of [6].

2.12 (Perfect and open maps in URS). We call a map f : X ! Y in URS

- proper if for all a 2 UX and y 2 Y with f(a) ! y there is x 2 X with a ! x and f(x) = y,

Y f(a) y

X a x

-

-

?

f

(6)

- separated if for all a 2 UX and x1, x2 2 X with a ! x1, a ! x2 and f(x1) = f(x2) one has
x1 = x2,

1Note that, in order for t to take values in P , one really needs pseudo-topological spaces, and not just grizzly

spaces. In fact, URS fails to be locally cartesian closed, as erroneously claimed in an early version of this paper.
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- perfect if it is proper and separated, and

- open if for all b 2 UY and x 2 X with b ! f(x) there is a 2 UX with a ! x and f(a) = b.

For f : X ! Y in Top, these notions characterize the corresponding properties mentioned
in the Introduction in terms of ultrafilter convergence (see [4] and [10]).

3 The proofs of Theorems A and B

3.1 (The ultrafilter interpolation property is su�cient for exponentiability in Top). Let f :
X ! Y and Z be in Top and construct their partial product diagram (3) in URS as in 2.10. It
then su�ces to show P 2 Top, via 2.4. Hence, we consider u 2 P , b 2 UP , and V 2 UUP with
V ! b and b ! u and must verify V ) u, that is: µP (V) ! u, using (⇤⇤) of 2.8.

First, by continuity of p and of Up one has p(V) ! p(b) and p(b) ! p(u), hence

p(µP (V)) = µX(p(V)) ! p(u)

by naturality of µ and topologicity of Y .
Next, we consider c 2 U(P⇥Y X) and x 2 X with ⇡1(c) = µP (V), f(x) = p(u) and ⇡2(c) ! x

and must show e(c) ! e(u, x), which we shall do in three steps.
Step 1: We construct W 2 UU(P ⇥Y X) with ⇡1(W) = V and µP⇥Y X(W) = c. For that, for
each C 2 c, let

C
⇤ := {d 2 U(P ⇥Y X) |C 2 d},

and observe that {C⇤ |C 2 c} is a filterbase in U(P ⇥Y X). This system may be enlarged by the
elements of (U⇡1)�1(V). Indeed, for every C 2 c and V 2 V, the definition of µP (V) = ⇡1(c)
gives V0 2 V with ⇡1(C) 2 v0 for all v0 2 V0. Hence, for any chosen v0 2 V\V0 we have ⇡1(C) 2 v0

and find an ultrafilter d ◆ {C} [ ⇡
�1
1 (v0). Then d 2 C

⇤ \ (U⇡1)�1(V) 6= ;. Now any ultrafilter

W ◆ {C⇤ |C 2 c} [ (U⇡1)�1(V)

has the desired properties.

Step 2: We put U := ⇡2(W) and obtain U ) x since

µX(U) = µX(⇡2(W)) = ⇡2(µP⇥Y X(W)) = ⇡2(c) ! x.

Furthermore, since p(V) ! p(b) ! p(u) with

f(U) = f(⇡2(W)) = p(⇡1(W)) = p(V) and f(x) = p(u),

the ultrafilter interpolation property of f gives a 2 UX with f(a) = p(b) and U ! a ! x.

Step 3: We construct d 2 U(P ⇥Y X) with W ! d and ⇡1(d) = b, ⇡2(d) = a. Indeed, since
V ! b and U ! a, with ⇡1(W) = V and ⇡2(W) = U one obtains

# (⇡�1
1 (B) \ ⇡

�1
2 (A)) = ⇡

�1
1 (# B) \ ⇡

�1
2 (# A)) 2 W
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for all B 2 b and A 2 a. Hence, an application of the Extension Lemma 2.6 to the filter generated
by the sets ⇡

�1
1 (B) \ ⇡

�1
2 (A) gives an ultrafilter d with the desired properties.

Finally, since b ! u and a ! x, we have d ! (u, x), hence e(W) ! e(d) ! e(u, x) and
e(W) ) e(u, x) in the topological space Z. Consequently,

e(c) = e(µP⇥Y X(W)) = µZ(e(W)) ! e(u, x),

which finishes the proof of the “if” part of Theorem B.

3.2 Proposition (Preservation of properness by U). For every proper map f : X ! Y in

URS, also Uf : UX ! UY is proper.

Proof. For U 2 UUX and b 2 UY with f(U) ! b we must find a 2 UX with U ! a and
f(a) = b. By the Extension Lemma it would su�ce to show # f

�1(B) 2 U for all B 2 b. In
fact, the set # f

�1(B) intersects each U 2 U: since f(U) ! b we have # B \ f(U) 6= ;, so that
there are a 2 U, y 2 B with f(a) ! y; by hypothesis, then there is x 2 f

�1
y with a ! x, hence

a 2 U\ # f
�1(B). ⇤

3.3 (Perfect maps in Top satisfy the ultrafilter interpolation property). Let f : X ! Y in
URS with X in Top be perfect, and consider U 2 UUX, b 2 UY , x 2 X with U ) x and
f(U) ! b ! f(x). Since Uf is proper by 3.2, there is a 2 UX with U ! a and f(a) = b,
and since f is proper, there is x

0 2 X with a ! x
0 and f(x0) = f(x). Topologicity of X shows

U ) x
0, hence µX(U) ! x

0 and, by hypothesis, µX(U) ! x. Since f is separated, x = x
0 follows.

Hence, Theorem A follows from (the “if” part of) Theorem B.

3.4 (The ultrafilter interpolation property is necessary for exponentiability in Top). Let f :
X ! Y be exponentiable in Top, and consider U 2 UUX, v 2 UY , x0 2 X with U ) x0 and
f(U) ! v ! f(x0) =: y0. We must find a0 2 UX with f(a0) = v and U ! a0 ! x0.

Step 1: With Z = IS = {0 ! 1} the Sierpiński space, we form the partial product P = P (f, IS) in
URS as in 2.10. Since f is exponentiable in Top, by 2.11 we have P 2 Top.

Step 2: Our first goal is now to find b 2 UP and ↵0 such that b ! (y0,↵0) in P with p(b) = v.
To this end, for all A 2 U and V 2 v, let

B(V,A) := {(y, ↵) 2 P | y 2 V ^ 8x 2 f
�1

y : (↵(x) = 1 ) x 2" A)}.

These sets form a filterbase on P , since

B(V,A) \B(V 0
,A0) ◆ B(V \ V

0
,A \A0).

Hence, we can choose an ultrafilter b containing them, which necessarily must satisfy p(b) = v.
Having any such b we may define ↵0 : f

�1
y0 ! IS by

↵0(x) = 1 :, 9a 2 UX : a ! x, f(a) = v, e(b⇥Y a) ✓
•
1 ,
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where b ⇥Y a is as in 2.9, and
•
1 = ⌘S(1). In other words, ↵0(x) = 1 holds true precisely when

x 2 f
�1

y0 is an adherence point in X of the filter generated by

f
�1(v) [ ⇡2(⇡�1

1 (b) [ e
�1(

•
1 )).

Since this is a closed set in X, ↵0 is continuous. Hence, (y0,↵0) 2 P .
We must show b ! (y0,↵0), using (⇤⇤) of 2.8. Since p(b) = v ! y0 by hypothesis, we consider

c 2 U(P ⇥Y X), x 2 X with ⇡1(c) = b, f(x) = y0 and a := ⇡2(c) ! x, hence f(a) = p(b) = v.
If e(b ⇥Y a) ✓

•
1 , then ↵0(x) = 1, and trivially e(c) ! 1; if e(b ⇥Y a) ✓

•
0 , then e(c) =

•
0 and

e(c) ! 0 and e(c) ! 1. Hence, always e(c) ! e(↵0, x).

Step 3: For any a 2 UX such that there is x 2 f
�1

y0 with a ! x, f(a) = v and e(b⇥Y a) ✓
•
1 ,

we shall show that U ! a. For that is su�ces to verify that each A 2 a intersects all sets " A,
A 2 U (see 2.3). Indeed, by hypothesis one has

1 2 e(B(Y, A)⇥Y A),

so that there is x 2 A and (y, ↵) 2 B(Y,A) with f(y) = x, ↵(x) = 1, where the latter equation
means x 2" A by definition of B(Y, A). Hence, A\ " A 6= ;.

To complete the proof of Theorem B, it would now su�ce to show ↵0(x0) = 1, by definition
of ↵0. This would be accomplished once we have found V 2 UUP with

p(V) = f(U), V ! b, and e(µP (V)⇥Y µX(U)) ✓
•
1 . (⇧)

Indeed, since p(µP (V)) = f(µX(U)) one would then have an ultrafilter d ◆ µP (V) ⇥Y µX(U)
with d ! (↵0, x0) in P ⇥Y X, since ⇡1(d) = µP (V) ! (y0,↵0) by topologicity of P , and since
⇡2(d) = µX(U) ! x0 by hypothesis. Hence e(d) ! ↵0(x0); but e(d) =

•
1 , hence ↵0(x0) 6= 0.

Step 4: In order to obtain V as in (⇧) we construct W 2 UU(P ⇥Y X) with

⇡2(W) = U, ⇡
�1
1 (# B(V,A)) 2 W for all V 2 v and A 2 U, and {d 2 U(P⇥Y X) | e�11 2 d} 2 W.

(⇧⇧)
One can then put V := ⇡1(W) and has p(V) = f(⇡2(W)) = f(U). Since # B(V,A) 2 V

for all V 2 v, A 2 U, by 2.6 we can modify our choice of b in Step 2 such that # B 2 V for
all B 2 b, hence V ! b. Finally, since µP⇥Y X(W) ◆ µP (V) ⇥Y µX(U), and since C 2 W with
C := {d | e�11 2 d} gives e

�11 2 µP⇥Y X(W), also e(µP (V)⇥Y µX(U)) ✓
•
1 holds true.

Hence we are left with having to find W satisfying the conditions (⇧⇧). For that, it su�ces
to show that for all A, B 2 U and V 2 v the intersection

⇡
�1
2 (B) \ ⇡

�1
1 (# B(V,A)) \ C

is not empty; hence, we must find d 2 U(P ⇥Y X) with ⇡2(d) 2 B, ⇡1(d) ! (y, ↵) for some
(y, ↵) 2 B(V,A), and e

�11 2 d.

12



To this end, we first note that, since f(U) ! v we have # V 2 f(U) and therefore f(B\A)\ #
V 6= ;, which means that there are a 2 B\A and y 2 V with f(a) ! y. Let now a⇤ be the filter
on P generated by the sets A

⇤ = {(f(a),�a) | a 2 A}, with �a(x) = 1 if and only if x 2 cl{a}.
Then p(a⇤) = f(a). We claim that

a⇤ ! (y, �a) 2 B(V,A),

with �a(x) = 1 being defined by (�a(x) = 1 if and only if a ! x).
To prove that a⇤ ! (y, �a) we use condition (⇤⇤) of 2.8: p(a⇤) = f(a) ! y holds true; for

c 2 U(P ⇥Y X), x 2 X with ⇡1(c) = a⇤, f(x) = p(y, �a) and ⇡2(c) ! x, we need to check that
e(c) ! e(�a, x). If e(c) =

•
0 then trivially e(c) ! e(�a, x), since

•
0 converges to both 0 and 1.

Assume now that e(c) =
•
1 . Since ⇡2(c) ! x (hence ⇡2(c) contains the filter of neighbourhoods

⌦(x) of x), ⇡1(c) = a⇤ and c ◆ ⇡1(c) ⇥Y ⇡2(c), then, for all O 2 ⌦(x) and for all A 2 a,
O ⇥Y A

⇤ 2 c. Therefore 1 2 e(O ⇥Y A
⇤), which means that there exist x

0 2 O and a 2 A such
that �a(x0) = 1, i.e. x

0 2 cl{a}, which implies that a 2 O and, consequently, O \ A 6= ;. This
means that a ! x, hence e(c) ! e(�a, x) = 1.

Now we can finish the proof by noting that (a⇤ ⇥Y a) [ e
�11 is a filterbase, since for all

A,B 2 a and a 2 A\B, one has (�a, a) 2 A
⇤ ⇥Y B with e(�a, a) = �a(a) = 1. Any ultrafilter d

containing this base has the desired properties. ⇤

4 Invariance of local compactness under perfect maps

It is well known that, for a perfect surjective map f : X ! Y with X Hausdor↵, also Y is
Hausdor↵, and that in this case X is locally compact if and only if Y is locally compact (see
[15]). Here we show that the separation conditions on X and Y can be relaxed considerably:

4.1 Proposition. Let f : X ! Y in Top be proper.

(1) If X is locally compact, Y sober, and f surjective, then Y is locally compact.

(2) If Y is locally compact, X sober, and f separated, then X is locally compact.

In fact, in conjunction with Theorem A and the Hofmann-Lawson result [21], these assertions
follow from statements (1), (2) of the following Proposition, which in turn follow from statements
(3), (4):

4.2 Proposition. Let f : X ! Y and g : Y ! Z be in Top.

(1) If X is exponentiable and if f is proper and surjective, then also Y is exponentiable.

(2) If Y and f are exponentiable, so is X.

(3) If g · f is exponentiable and if f is proper and surjective, then g is exponentiable.

13



(4) If f and g are exponentiable, so is g · f .

Proof. (3) We use Theorem B and 2.12, and consider V 2 UUY , c 2 UZ and y 2 Y with V ) y

and g(V) ! c ! g(y). Since f is surjective, there is an ultrafilter U 2 UUX with f(U) = V,
and since f is proper and f(µX(U)) = µY (V), there is x 2 X with µX(U) ! x and f(x) = y.
Now exponentiability of g · f gives a 2 UX with g(f(a)) = c and U ! a ! x, which implies
V ! f(a) ! y.
(4) is well known (and trivial), see [31]. ⇤

Remark. Proper surjective maps are biquotient maps, i.e., pullback-stable quotient maps (see
[29]). As was noted by the anonymous referee (as well as in the recent paper [9]), statements (1)
and (3) of 4.2 can be generalized considerably by trading “proper and surjective” for “biquotient”.
The proof of this generalization is in fact purely categorical if one uses the well-known fact (see
[31]) that a map f : X ! Y is exponentiable in Top if and only if the pullback X ⇥Y Z ! X

along f of any quotient map Z ! Y is again a quotient map.

For the sake of completeness, we list here some further rules which, unlike 4.2(1), (3), can
be obtained purely categorically, just using the fact that the class of exponentiable morphisms
contains all isomorphisms, is closed under composition and stable under pullback. Recall that
a space X is locally Hausdor↵ (cf. [33]) if the diagonal �X is locally closed in X ⇥ X; more
generally, a map f : X ! Y is locally separated if the diagonal �X is locally closed in X ⇥Y X,
which simply means that every point in X has a neighbourhood U such that f|U is separated.
Equivalently: the diagonal map X ! X ⇥Y X is exponentiable. Note that local Hausdor↵ness
implies soberness.

4.3 Proposition. Let f : X ! Y , g : Y ! Z and p : P ! Y be in Top.

(1) If X is exponentiable and Y is locally Hausdor↵, then f is exponentiable (see [33]).

(2) If g · f is exponentiable and g locally separated, then f is exponentiable.

(3) If f and P are exponentiable, so is P ⇥Y X; in particular, the fibres f
�1

y (y 2 Y ) of the

exponentiable map f are exponentiable spaces.

(4) The full subcategory of exponentiable and locally Hausdor↵ spaces in Top is closed under

finite limits. It is contained in the full subcategory of sober locally compact spaces.

Proof. (1) Factor f (in any finitely-complete category) as

X X ⇥ Y Y-< 1X , f > -pY

where both factors are exponentiable (see [8], [38]).
(2) Apply the categorical version of (1) to Top/Z in lieu of Top.
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(3), (4) follow from [38], Corollary 3.4(3) and Proposition 3.6, respectively. ⇤

We also mention that Theorem B as well as Proposition 4.3(1) make it easy to provide:

4.4 (Example of an exponentiable map which is not proper). While every finite space is compact,
locally compact and exponentiable, exponentiable maps between finite spaces have obviously
(locally) compact fibres, but may fail to be closed, hence they may fail to be proper: simply
consider X = {a ! b, a ! b

0
, b
0 ! c}, Y = {0 ! 1 ! 2}, and f : X ! Y with f(a) = 0,

f(b) = f(b0) = 1, and f(c) = 2. Then f is exponentiable but not proper.

5 Characterization of separated exponentiable maps

5.1 In what follows, we freely restrict and extend ultrafilters along subsets without change
of notation, just forming inverse images and images along inclusion maps. Hence, for a subset
Z ✓ X and a 2 UX with Z 2 a, we regard a also as an ultrafilter on Z; and any b 2 UZ is also
regarded as an ultrafilter on X.

We will also use the idempotent hull cl1 of the natural closure cl in URS defined by

clA = {x 2 X |x 2 A or 9a 2 UX : (A 2 a ^ a ! x)},

for every subset A of X. Thus cl1(A) is the least subset of X containing A as well as every
limit point of an ultrafilter to which it belongs.

5.2 (Factorization in URS). Let f : X ! Y be a continuous map of grizzly spaces, and let

Y0 := {y 2 Y |9a 2 UX : (f(a) ! y ^ @x 2 f
�1

y : a ! x)}.

With X
⇤ the (disjoint) union of X and Y1 := cl1Y0, one obtains a factorization

X X
⇤

Y

Z
ZZ~f

⇢
⇢⇢= p

-
i⇤⇥

(7)

where p maps points of Y1 identically. The maps i and p become continuous if we make X
⇤ a

grizzly space by declaring a ! z in X
⇤ whenever one of the following cases applies:

1. X 2 a, z 2 X, and a ! z in X;

2. X 2 a, z 2 Y1, f(a) ! z in Y , and @x 2 f
�1

z with a ! x in X;

3. Y1 2 a, z 2 Y1, and a ! z in Y1 (as a subspace of Y ).

5.3 Proposition.

(1) i is an open cl1-dense embedding.
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(2) p is proper.

(3) With f also p is separated.

Proof. (1) If a ! x in X
⇤ with x 2 X, then necessarily X 2 a, and we have a ! x in X.

Moreover, in X
⇤, cl(X) = X [ Y0, hence cl1(X) = X

⇤.
(2) For a 2 UX

⇤, suppose p(a) ! y in Y , and let first X 2 a. If there is no x 2 f
�1

y with a ! x

in X, then y 2 Y0 (since f(a) = p(a)), and one has a ! y in X
⇤. In case Y1 2 a we have a ! y

in Y (since p maps Y1 identically), hence y 2 clY1 = Y1; by definition, this means a ! y in X
⇤.

(3) Consider a ! z, a ! z
0 in X

⇤ with p(z) = p(z0), and let first X 2 a. If both z, z
0 2 X,

then z = z
0 follows from separatedness of f , and if both z, z

0 2 Y1, then trivially z = z
0; the case

z 2 X and z
0 2 Y1 cannot occur, according to the definition of the structure of X

⇤. For Y1 2 a

we necessarily have the trivial case z, z
0 2 Y1 again. ⇤

We point out that, since cl is idempotent when restricted to Top, if Y is a topological space
then X

⇤ is simply X [ cl(Y0).

5.4 Proposition. For f : X ! Y exponentiable in Top, each of the following conditions

implies the next:

(i) X and Y are Hausdor↵ spaces;

(ii) whenever U ! a and U ! a0 in UX
⇤

with p(a) = p(a0), then " a =" a0;

(iii) X
⇤

is a topological space.

Proof. (ii) ) (iii): For U ! a ! z in X
⇤ we must show µX⇤(U) ! z. Continuity of p gives

p(U) ! p(a) ! p(z) in Y , hence µY (p(U)) ! p(z) in the topological space Y .
Case 1: X 2 a. Then the set

# X = {c 2 UX
⇤ |9x 2 X : c ! x}

lies in U and consists entirely of ultrafilters on X. Hence,

X
] = {c 2 UX

⇤ |X 2 c}

lies in U, so that U can be considered as an ultrafilter on UX, and we have X 2 µX⇤(U), and
µX(U) is the restriction of µX⇤(U).

Now, if z 2 X, topologicity of X gives µX(U) ! z and therefore µX⇤(U) ! z. If z 2 Y1, since
p(µX⇤(U)) = µY (p(U)) ! p(z) = z, in order to have µX⇤(U) ! z it su�ces to show that there is
no x 2 f

�1
z with µX⇤(U) ! x. Assuming the contrary, we may apply the ultrafilter interpolation

property of f to obtain an ultrafilter a0 on X (and therefore on X
⇤) with U ! a0 ! x and

f(a0) = p(a), hence p(a0) = p(a). From (ii) we then have a ! x, which contradicts a ! z 2 Y1.
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Case 2: Y1 2 a, hence necessarily z 2 Y1. If (Y1)] 2 U, then µX⇤(U) ! z by topologicity of Y1

(just as in Case 1 for z 2 X). If (Y1)] 62 U, UX
⇤ \ (Y1)] = X

] 2 U, so that X 2 µX⇤(U) as above,
and we can conclude the proof precisely as in the second half of Case 1.
(i) ) (ii): Consider U ! a, U ! a0 in X

⇤ with p(a) = p(a0). We first claim that X 2 a if and
only if X 2 a0. Indeed, if X 2 a, then # X 2 U from U ! a and "# X 2 a0 from U ! a0; but
"# X ✓ X, since for z 2"# X one has c 2 UX

⇤ with c ! z in X
⇤ and c ! x for some x 2 X,

whence p(z) = p(x) = f(x) when Y is Hausdor↵, which makes z 2 Y1 impossible. Consequently,
X 2 a0.

Now, let z 2" a. If X 2 a, z 2 X, then z 2" a0, as follows: for every A 2 ⌦(x) one has A 2 a,
hence # A 2 U and then "# A 2 a0; but as above one has "# A ✓ A since X and Y are Hausdor↵.
If X 2 a, z 2 Y , then p(a) = f(a) ! z in Y , hence p(a0) = f(a0) ! z; if there were x 2 f

�1
z

with a0 ! x in X, then also a ! x in X as above, in contradiction to z 2" a. Hence z 2" a0. If
Y1 2 a, z 2 Y1, Hausdor↵ness of Y implies z 2" a0 as above. ⇤

5.5 (Proof of Theorem C). Let first f : X ! Y be exponentiable and separated, with Y

Hausdor↵. Then also X is Hausdor↵, and from 5.4 we obtain the factorization

f = (X X
⇤ Y )-i⇤⇥ -p

in Top which, by 5.3, has the desired properties. Conversely, open embeddings are trivially
separated and locally closed and therefore exponentiable (see [31]), and so are perfect maps, by
Theorem A. Furthermore, exponentiable and separated maps are closed under composition. ⇤

5.6 Remark. James ([23], p.58) gives the construction of the fibrewise Alexandro↵ compacti-

fication, which provides for every continuous map f : X ! Y a factorization

f = (X X
+ Y )-j⇤⇥ -q

with an open embedding j and a proper map q. However, even for X and Y Hausdor↵, q need
not be separated; it is so, if X is also locally compact.
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