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Abstract

For a C-indexed category A, an A-descent equivalence is a morphism of bundles in C
which induces an equivalence between the A-descent categories of its domain and codomain.
In this note, properties of such morphisms are studied, and those morphisms which are
A-descent equivalences for all C-indexed categories A are fully characterized.
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0. Introduction. Descent Theory was developed by Grothendieck [1], [2] in the context of
fibred categories. If the category E is fibred over the category C with pullbacks, then each
morphism p : E — B of C is associated with its descent category Desg(p) (see, for example, [4],
for details). Having defined descent structures, it seems natural to us to compare two bundles

(E,p) and (X, ¢) over B in the descent sense and to ask:
When do two bundles (E,p) and (X, ) over B have the “same descent behavior”?

More clearly, we would like to know under which conditions a morphism of the two bundles (E, p)
and (X, ) over B would render equivalent descent categories. To this end, we shall examine
here for morphisms of bundles the notion of descent equivalence, which was introduced in the
first author’s Ph.D. thesis [3], and study its properties.

We formulate this notion in the (essentially equivalent) language of internal categories and
of indexed categories (see [5,6,7]), rather than that of fibrations, making extensive use of some
of the results of [5], which we recall here in sufficient detail.

After some preliminary observations concerning descent equivalences and their comparison
with effective descent morphisms, in Theorem 1 we give a somewhat surprising necessary and
sufficient condition for a morphism of bundles to be a descent equivalence (with respect to all
indexed categories): one just needs the existence of any morphism of bundles in the opposite
direction. In Theorem 2, we characterize those descent equivalences whose domain or codomain

is given by an effective descent morphism.

Acknowledgement: We thank the anonymous referee for a suggestion which led to an improved

exposition of the first part of the proof of Theorem 1.

1. Internal categories. Recall that an internal category D (cf. [6]) in C is given by a diagram
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Do m Dy = € Dy
US| C

in C, which satisfies
I1. de = 1p, = ce,
12. dm = dmy, cm = cmq,
I13. m(1p, x m) = m(m x 1p,),
4. m<1p,,ed >=1p, =m <ec,1p, >,

where Do, w1, mo are given by the following pullback diagram in C:
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An internal functor f : D — D' between two internal categories D, D’ in C is given by two
morphisms fo : Dy — D, f1 : D1 — D/ of C such that

Fl. fod =d'f1, foc="{fi,
F2. fie=¢€'fy, fim =m'fs,

where f2:f1 XfllDl xDoDl —)Dll XDlel'

Composition of internal functors is defined in the obvious way. Hence one obtains cat(C),
the category of all internal categories and internal functors in C. It is actually a 2-category (see
[5]) since one can define the notion of internal natural transformation « : f — g of internal

functors f, g : D — D', given by a morphism « : Dy — D} in C such that
T1. da = fy, da= gy,
T2. m' < ac, f1 >=m/ < g1,ad > .

The composite Sa : f — h of internal natural transformations o : f - gand 8:9 — h is
the morphism
m' < B,a >: Dy — Dj,

and the identity internal natural transformation 15 : f — f is the morphism
le() : D() — D,1

An internal functor f : D — D' of C is an internal category equivalence if there is an internal
functor g : D' — D such that

gf =1p and fg=1p.

For example, if p: E — B is a morphism in C, then

723 ™2
(EXBE)XE(EXBE)gEXBEXBE —7T1-3—>E><BE € E
™12 ™1

is an internal category in C, where e =< 1g, 1g >, (71, m2) is the kernel pair of p, 712 and mo3 are
such that mmeg = momie (pullback square) and 73 =< w1719, mome3 >. This internal category

is denoted by Eq(p). Every object B in C can be viewed as a discrete internal category B of C:



1p lp
B— BB
T; T;

Clearly, Eq(1p) is isomorphic to the above discrete internal category B.

For any morphism q : (F,p) — (X, ) in C/B, as in [5] one constructs the internal functor
g: Eq(p) — Eq(p),
where ¢y = q, G1 = ¢ X q. Then, for a fixed object B of C, the assignments:
(E,p) — Eq(p) and ¢+ ¢,

define the functor
Eqp: C/B — cat(C).

2. Indexed categories. A C-indezed category A or a pseudo-functor A : C°? — CAT (cf.
[5,7,8]) consists of the following data:

- for every object E of C a category A"
- for every morphism f : E — D of C a functor f*: AP — AP

-forevery f: E — D, g: D — B in C, two natural isomorphisms:
i? 10 = (1p)*, 59 frg" = (9f)
which make the diagrams

f*'iD

—’f*(lD)*
’LEf* 1f* jf,lD

le‘af

and



g h ~f*(hg)*
jF9R* jf:hg
* ¥ ~(h *
(9f) ot (hgf)

commute.

For example,
A: C° - CAT

given by B— C/B and (f : E — B) — f*: C/B — C/E, the pullback functor along f, is a

C-indexed category, also called the basic C-indexed category.
Let D be an internal category in C. One defines AP (cf. [5]) to be the category with

- objects all pairs of (C,¢), where C' € obAP? and ¢ : d*C — ¢*C is a morphism in APt such
that

e*é

e*d*C > e*c*C
C

and
(m2)*¢*C —— = (m1)*d*C
(m2)*€ (m1)*€
(ﬁg)*d*o (7‘(’1)*6*0
m*
m*d*C m*c*C

commute, in AP0 and AP?| respectively, with the above natural isomorphisms arising from I1
and 12,

- morphisms h : (C,&) — (C',&') of AP given by morphisms h : C — C' of AP° such that



d*h

a*C dxc’
ey e
cC ctC’

commutes in AP1.
In [5], it was proved that, for every C-indexed category A : C°P — CAT, the extension
A : cat(C)°® —» CAT

given by the assignment D — AP, is a pseudo-functor of 2-categories. As a consequence, one
obtains that for every internal category equivalence f : D — D' of C, the functor f* : AP 5 AD

is an equivalence of categories.

3. Effective descent, descent equivalence. Now, let Desy be the pseudo-functor AcEqp:

~ (C/B)\CAT

o \
cat(C

The discrete functor p : £ — B can be factored as

B ~ Eq(p)
X /
E

where py = p, P, = pm = pma, & = 1lg, 61 = e =< 1g,1g >, with (w1, m2) the kernel pair of

p. Applying A to the last diagram, one has a commutative diagram (up to natural isomorphism)
in CAT:

p_—*

Desy (p

N4



p is called an A-descent morphism (effective A-descent morphism) if the comparison functor
P is full and faithful (an equivalence of categories). p is called an absolute (effective) descent

morphism if it is an (effective) A-descent morphism for every C-indexed category A.

For a morphism ¢ : (E,p) — (X,¢) in C/B, the authors of [9] considered the following
diagram in cat(C):

Eq(1p)
© p
Eq(p) ; Eq(p)
Sx iy
Eq(lx) L Ea(q) (1)

where (iy)o = 1g, (ip)1 = 1e Xy 1g, o = ¢, @1 = ¢ xXB¢q, (0x)o = 1x, (6x)1 = Ax, Py =
p, Py = pm1 = pme, and where (71, 73) is the kernel pair of p.

Applying A to diagram (1), one obtains the following commutative diagram (up to natural
isomorphisms) in CAT:

AB
o P
Desa (X, ¢) ~ Desy(E,p)
Desa(q)
Ue Ve
AX ~ Desa(E,q) (2)
@q

where U¥ = 6%, V¥ =i}, ® =p*, and Desy(q) = §".

Definition. Let q: (E,p) = (X, @) be a morphism in C/B. We call g an A-descent equivalence
(A-descent pre-equivalence) if Desa(q) is an equivalence of categories (full and faithful). We call



g an absolute descent equivalence (absolute descent pre-equivalence) if Desy(q) is an equivalence

of categories (full and faithful) for every C-indezed category A.

4. Properties of descent equivalences. Functoriality of Dess( ) leads immediately to a

number of consequences.

Proposition 1. The morphism p : (E,p) — (B,1p) in C/B is an A-descent pre-equivalence
(A-descent equivalence) if and only if p is an A-descent (effective A-descent) morphism.

Proof. Applying Eq to the following commutative diagram:

Eq(1p)

=

Clearly, with the notation of the previous section, 13 = 1gq(1p), P = p- Hence, p* is an equiva-

lence of categories if and only if p* is an equivalence of categories, as desired. O

One also easily obtains:
Proposition 2. Let q: (E,p) = (X, p), r: (X,¢) = (Y,£) be morphisms in C/B.
(1) If two of q, T, and rq are A-descent equivalences, so is the third one.

(2) If r is an A-descent equivalence, then q is an A-descent pre-equivalence if and only if rq is

an A-descent pre-equivalence. O

It is also easy to show that A-descent (pre-)equivalences have the intended invariance prop-
erty:



Proposition 3. Let g : (E,p) — (X, @) be an A-descent pre-equivalence (A-descent equivalence)
in C/B. Then p is an A-descent (effective A-descent) morphism if and only if ¢ is an A-descent

(effective A-descent) morphism.

Proof. By Diagram (2), Desy(q)®¥ = ®P (up to natural isomorphism). If ¢ is an A-descent
equivalence, then Desy(q) is an equivalence of categories. Therefore, ¥ is an equivalence of
categories if and only if ®? is an equivalence of categories. Hence p is an effective A-descent
morphism if and only if ¢ is an effective A-descent morphism.

Suppose now that ¢ is an A-descent pre-equivalence. Then Desy(q) is full and faithful. If
¢ is A-descent pre-quivalence morphism, then ®” = Desp(¢)®% (up to isomorphism) is full and
faithful. Hence p is an A-descent morphism. On the other hand, if p is A-descent morphism,
then Desy (q)®%¥ = ®P (up to isomorphism) is full and faithful, and so is ®¥. |

5. A necessary and sufficient condition for absolute descent equivalences. In any
category, the absolutely effective descent morphisms are precisely the split epimorphisms [5]. A

characterization of the absolute descent equivalences is given by the following:

Theorem 1. Let q : (E,p) — (X, ) be a morphism in C/B. Then q is an absolute descent
equivalence if and only if there is any morphism s : (X, ) — (E,p) in C/B.

Proof. <: By hypothesis, we have

p=@q and ps = .
So there exist two internal functors

§: Eq(p) — Eq(p) and §: Eq(p) — Eq(e).

We claim that 5§ &= 1gqp) and g8 = lgg,. In order to prove this it suffices to construct
natural transformations between the respective pairs of functors since all natural transformations
between internal functors whose codomain is a groupoid are natural isomorphisms. To this end

we define a : 5§ — 1gq(p) by
a=<1g,sq>:F - FE xgFE in C.
It is easy to check that
T = 8¢, Mo = 1,

and

T3 < amy, (s X s)(g XB q) >= T3 < lpxzE,amy > .

Hence « is an internal natural transformation.



Similarly one shows that 8 : 1gq,) —: g5, given by 8 =< ¢s,1x >: X — X xp X, is an

)
internal natural transformation. Therefore, Desy (g) is an equivalence of categories.

=—>: We show more precisely:

(1) If Desa(q) is essentially surjective on objects for every C-indezed category A, then there is
a morphism s : X — E in C with psq = p;

(2) If, furthermore, Desp(q) is full and faithful for every A, then s of (1) yields a morphism
s: (X,¢) = (E,p) in C/B.

(1) Consider the C-indexed category A, of Theorem 3.5 [5]:

cop

CAT
A — C(A, E)
t t*

B — C(B, E)

where Aﬁ = C(A4, E) carries an equivalence relation given by
U~V S pu = pu,

making it a category (in fact, a groupoid), and where t* : C(B, E) — C(A4, E) is the composi-
tion functor with ¢. Since

bm = p7T2,7r>1k(1E) =Ty~ T2 = ﬂ-;(lE)a

the object 1p of AP has a descent structure ¢ : 73(1) — 7 (1g), where (7, 72) is the kernel
2 1

pair of p. Hence, by diagram (2) and the proof of Theorem 2.5 [5],

Ve(1g, &) = (iy)" (18, €) = ()" (1r),&,) = (18,¢') € Desp, (E,q).

But Desy, (¢) is essentially surjective, so there is (s, ) € Desy, (X, ¢) such that

Desy, (q)(s, 1) = (18,€),

and therefore
V¥Desa, (q)(s, ) = V¥(1g,¢) = (1g,£).

10



That is
Q1Y (s, ) = (1, &)

But @9 is just a lifting of ¢*,
g U? (s, pu) 2 5*WU¥ (s, u) =2 6* (1, ).

Hence
q*s ~1g in A{f ,
and therefore
psq = p.
(2) In order to prove that ps = ¢, again, we consider the C-indexed category B : C°°? — CAT
of Theorem 3.5 of [5] with B4 = C(A, B) considered a discrete category, for every A € C, and

with ¢* the composition functor with ¢, for every ¢ : A — B in C. It is easy to check that (ps,1)
and (p,1) are objects of Desg(X, ¢) and that

Desg(g)(ps, 1) = Desg(q)(¢,1) = (p, 1),

by the fact that psq = p. Since Desg(q) is full and faithful, (ps, 1) is isomorphic to (g, 1), which
yields

ps=¢.

From Theorem 1 one obtains:

Corollary 1. Letq: E — X and ¢ : X — B be two morphisms of C. Then q : (E, vq) — (X, ¢)
is an absolute descent equivalence if and only if there is a morphism s : X — E in C such that

pqs = ¢

Corollary 2. Let q : (E,p) — (X, ¢) be a morphism in C/B. Then q is an absolute descent

equivalence if either q is a split epimorphism in C or q is a split monomorphism in C/B.

Remark. Corollary 1 implies in particular that split epimorphisms are the absolutely effective
descent morphisms (see Thm. 3.5 of [5]). In fact, if p : E — B has a splitting s with ps =
1p, then we may apply Corollary 1 to p : (E,p) — (B,1p), so that with 1 also p is an
absolute effective descent morphisms (i.e., effective descent w.r.t. every C-indexed category A),

by Proposition 3.

11



6. Descent equivalences whose domain or codomain is effective descent. With the help
of Corollary 2, Proposition 3 can be refined, as follows. Given any morphism ¢ : (E,p) — (X, ¢)
in C/B, we form the pullback diagram

EXBX

B (3)

in which 7 is a split epimorphism. Hence 7 : (E xp X,pm1) — (E,p) is an absolute descent

equivalence, by Corollary 2.
Theorem 2. The following conditions are equivalent:

(i) p is an effective A-descent morphism and me : (E xXp X,pm1) — (X, ) is an A-descent

equivalence,

(ii) ¢ is an effective A-descent morphism, and q: (E,p) — (X, @) is an A-descent equivalence.

Proof. (i)=(ii): By Prop.1, p: (E,p) — (B, 1p) is an A-descent equivalence. Since 7 is an
A-descent equivalence, also pmy = @my : (E xpg X,pm) — (B, 1p) is an A-descent equivalence,
and so is ¢ : (X,¢) — (B,1p), by Prop.2 and the hypothesis on m9. Then, another application

of Propositions 1 and 2 gives (ii).

(i))==(i): By Prop.3, p is an effective A-descent morphism. As before then, pm; = @ms is an
A-descent equivalence, and so are g (by hypothesis), p, ¢, and then 79, by repeated application
of Propositions 1 and 2. m|

Remark. We note that in (i) it is enough to assume that Desy(mq) be full and faithful, rather
than an equivalence of categories. Indeed, since m; is an A-descent equivalence, also pmy = s
is an A-descent equivalence when p is an effective A-descent morphism, which implies Desy (79)

is essentially surjective on objects.

12



If A is the basic fibration, Theorem 2 may be simplified, as follows:

Corollary 3. For any morphism q : (E,p) — (X, ) in C/B, p is an effective descent morphism
if and only if ¢ is an effective descent morphism and q : (E,p) — (X, @) is a descent equivalence.

Proof. Using pullback-stability of effective descent morphisms (see [10]) and the composition-
cancellation rule of [9], for “only if” one can argue as in (i)==(ii) of Theorem 3. Likewise for
“if”. O
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