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FACTORIZATIONS, FIBRES AND CONNECTEDNESS

Walter Tholen

Tt is well known that the Galois correspondence given by

G@wr@) = {B| all maps A - B with A G are constant}
B L®)

]

{A| all maps A - B with B ¢ ® are constant}

yields a good basis for the study of notions of connectedness and disconnectedness in
topology or, more generally, in topological categories over Set (cf. Preuss f6,7,8,9],
Herrlich [3], Arhangel'skii and Wiegandt [1]); this concept is closely related to the
radical - semi-simple theory of rings and to the torsion - torsion free theory of

abelian categories.

Another approach to a general notion of connectedness was provided by Herrlich
[3] and Strecker [&4], [13] through the notion of a component subcategory of the cate-
gory Top of topological spaces; this concept was generalized in [5] for topological

categories over Set.

Considerable progress was made through the papers [11] by Salicrup and Vazquez
and [14] by Tiller. Both papers give, for abstract categories, definitions for
wfibre" and "compoment'; in [11], connectedness is treated via "connection subcate-
gories', and in [14] ""component subcategories' are used. Both concepts are more

general than that of a left constant subcategory defined by the above correspondence.

Parts of the results presented in this paper were obtained during the author's stay
at McGill University, Montreal,in March/April 1983. The hospitality of the Depart-
ment of Mathematics and the support of the Deutsche Forschungsgemeinschaft (grant

no. Th 317/1-1) are gratefully acknowledged. The work was completed while the author
was supported by a Minor Research Grant (no. 9-91391) of York University.
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The present paper may be considered as an extension of the two papers 117, [14}
but there are two major new aspects, one is technical and the other one is conceptual.
Technically we avoid giving absolute definitioms for notions like "constant morphism'
or "fibre" but let everything depend on a given class £ of morphisms which, in most
cases, is assumed to be part of an (€,M)~factorization system. The more important
difference, however, is our aim to use more constructible methods. The notions of a

constant morphism, of a fibre, of a connected object and of a totally disconmected

object as used in this paper depend all in a constructible way on a given natural
transformation. This idea is, with respect to connectedness, present in Borger's
thesis [2]; but his approach, however, is Set-based and not comparable with ours as

far as generality is concerned.

For natural transformations v o Iqm - C (with an endofunctor C of the cate-

gory’ ¥) which belong pointwise to ¢ , the assignments

v+~ {BlyB : B4 CB is an isomor phism}
v+ {AlyA 1 Ao CA s coustant}

will give us all €-reflective subcategories and all €-component subcategories of ¥,

For every . one can find an @-reflection v which induces the same £-reflective
subcategory and an £-connection § which induces the same £-component subcategory,
Right constant subcategories appear as those g-reflective subcategories which are

induced by an E£-connection, and the left constant subcategories are those €-compon-
ent subcategories which are induced by an g-reflection. This means that the Galois

correspondence mentioned first fits perfectly into our more general setting.

Those readers who get annoyed from our setting of fibres (see Section 3) which
seems quite complicated at the first glance, should think of the category Set x Set:
everybody would like a morphism (f,idﬂ) ¢ (X,8) - (Y,0) with X # @ to have fibres
(f—ly,G) - (X,8) for y ¢Y . But you do mot get this by just considering pullbacks

of morphisms from the terminal object (1,1) inte (Y,f) ~ since there aren't any!

1. Factorizations and localizations

A source in a category X is a family (X’fi)I of ¥-morphisms fi , LI,
with common domain X ; I might be a proper class or void; in the latter case the
source consists just of the object X . (e,mi)I is called a factorization (of
(X’fi)l) if e : X4 Y is a morphism and (Y,mi)I is a source in ¥ (with
fi =me, i€ I) . In particular, (e,Y) and (lx,e) are factorizations of the
object (= empty source)X and the morphism (= singleton source)e respectively. A
morphism p 1is orthogonal to a factorization (e,mi)I if for all g and hi with
hip =m eg , i¢I , there is a unique ¢t with tp = eg and m t o= hi > 1 eI we
write

PL (e’mi)z
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in this case and visualize the situation by

U 1 \
L7
t/
g P hi
d
I'd

X »Y Z
€ m, i

i

In the following, let £ be a class of morphisms in ¥ which contains all iso-
morphisms and which is closed under composition with isomorphisms. A locally ortho-

gonal E-factorization (loco &-fact, for short) is a factorization (e,m]._)1 such

that e ¢ € and pa (e,mi)I for all p ¢ & . This last relation is especially
fulfilled if pg (IY’mi)I for all p ¢ & ; then (e,rni)I is an orthogonal &=
factorization (ortho €-fact). The category ¥ 1is called E-cocomplete if

(a) for every X-morphism £ and every e ¢ € with common domain there is a
e [ le'
(b) for every source (X’ei)l of ¢-morphisms there is a multiple pushout

Y,
1
e. P.
1
d Z

with codiagonal d ¢ & .

pushout

SRS S

with e' ¢cé€ ,

The following theorem was proved in [15]:

THEOREM 1. (1) ¥ is E€-cocomplete if and omly if every source in ¥ has a locally

orthogonal E£-factorization.

(2) ¥ is E~cocomplete and € 1is closed under composition if and only if

every source in X has an oxrthogonal g-factorization.

(3) 1f (b) holds then € consists of epimorphisms only. 3

We can particularly consider (locally) orthogomal €-factorizations of empty
sources: an &-morphism e : X - Y with py (e,¥) for all pg¢ & is called an
g-localization of X ; it is uniquely determined by X (up to isomorphisms) accord-

ing to the property that every solid diagram
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has a unique dotted fill-in. Putting TX =Y and nN¥X = e we get an endofunctor

T of ¥ and a natural transformation n: Iqx - T provided every X has an £-
localization., The latter is certainly true if ¥ 1is E-cocomplete; then nX 1is the
codiagonal of the multiple pushout of all g¢-morphisms with domain X . If ¥ has
a terminal object 1 it is gasier to think of X as of the €-part of a loco £~

fact of X - 1 provided the latter exists.

In Set with ¢ = {surjective mappings] or in Top with {quotient mapsic € <
{surjective maps} > TX will just determine whether X 1is émpty or not:
_ {9 for X =¢,

1 for X #¢g.

In Set x Set one has 4 different types of images under T .

TX

It should be noted that even for concrete categories and for ¢ the class of
mor#hisms with underlying surjective morphisms it might be that g-localizations
exist without having €-cocompleteness, not even ortho €-facts of morphisms or a
terminal object. For instance, in the category of rings A with 1 which come
equipped with a fixed maximal ideal W@ » and of ring homomorphisms f : A .. B with
fan) c Mg » the projection p : CA’%Q) - (A/Wh,(o)) is easily seen to be an £-

localization,

2. Constant morphisms and subfibres

The following notions depend on the given class & . For every X , the exist-
ence of an €-localization N& : X = TX 1is assumed. A morphism ¢ : X w ¥ is call-
ed constant if there exists a d with ¢ = d . 7X . A morphism v : V. X is
called a subfibre of a source (X’fi)l if all fiv are constant. Denoting by &
the class of constant morphisms and by fib(x’fi)l the class of all subfibres of

(X,fi)I one has the following easy properties:

(0) TFor all X, Xeb .
(A) For all f and g, c €06 implies gef ¢ @ (if defined).
(B) For every loco &-fact (e,mi)I of (X,fi)I and all v : VX, fiv €6
for all i¢ I implies ev c 6 ;
in particular;: '
(B') For every ortho £~fact (e,mi)I and all u : U - codomain (e) > mu e <)
for all i ¢ I implies u¢ 6 .
If £ is closed under composition one also has:

(C) For every epimorphism e €&, feec® implies f g6 .
For the proof of (C) one uses the easily estiblished

LEMMA 1: If € is closed under composition then T(€) c Iso ¥ . B

Using the terminology of subfibres we can write the conclusion of (B) as
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fib(X,f.)I < fib(X,e) . In the following proposition, the converse implication of
1

(B) 1is investigated:

PROPOSITION 1. Let all finite sources have loco @-facts and consider the following

assertions:

(D) Every E-factorization (e,mi)I of a source (X,fi)I with
fib(x,fi)I < fib(X,e) 1is a loco ge-fact,
(D') Whenever p = ge with p,e €& and fib(X,p) < fib(X,e) , then g is an

isomorphism.
(") For p: X =Y in £ and every f : X 4 Z with Ffib(X,p) © fib(X,f)

there is h with hp = £ .
Then (D) = (D') = (D") whereas (D") » (D) in case £ C Epi ¥ .

Proof: (D') = (D") was proved in [16], Lemma 5.1; the implications (D") = (D)
and (D) = (D') are easy. ]

Definition. € is called fibre determined if condition (D") holds,

Remarks. (1) If X has coequalizers and if they belong to € then for every
constant morphism c : X - Y one has cx = cy for all parallel x,y with codomain
X . Vice versa, if ¢ satisfies this property them c¢ 1is constant provided all &-
localizations are regular epimorphisms. The class ¢ of regular epimorphisms is
often fibre determined, for instance in the category Top of topological spaces; also
in the categories of groups, of rings, or of R-modules, but not in the category of
commutative semigroups: consider the additive homomorphism p :II..ZZ which sends
even numbers - 1 to 0 and odd ones to 1 ; and the additive homomorphism
f i WNaos= {O,I,e} which does the same except that f(1) = e ; here S is the
commutative semigroup which contains Z2 as a subsemigroup, and 0+ e = R
l+e=e+e=0, .

(2) Under the assumption of Proposition 1, one easily proves that an arbitrary
class 9 of morphisms which satisfies properties (0),(A), and (D") (in which &
has to be replaced by 7) wmust necessarily coincide with the class © of constant

morphisms (cf. [16] and [17}, Theorem 2),

3. Fibres

In this section, € is assumed to be closed under composition and to admit the
formation of all g-localizations which are assumed to be epimorphic, Then, every
subfibre v of a source (X,fi)I gives rise to commutative diagrams

L\
\ v

v v (L)
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with uniquely determined morphisms 'ﬁi,i ¢ 1 ., Note that NV = IV 1is an isomor-

phism by Lemma 1.

Definition. (1) A subfibre v ¢ fib(x’fi)l is a fibre of (X’fi)I if the dia-
grams (1) form a modified pullback in the sense that, given w : W - X and
h : W TV with fiw = 'Gih for all 1 ¢ I and Th an isomorphism, then there is
a2 unique g : W V with vg=w and W+ g=h. ‘

(2) The source (X’fi)I is said to have fibres if every subfibre w of
(X’fi)I factors through a fibre v of (X,fi)]: by a unique morphism g with Tg

an isomorphism.

In (2), mnecessarily v 1s, up to an isomorphism, uniquely determined by w .
This follows from Lemma 2 below which presents fibres in a different way: let
Fib(x’fi)l‘ be the category whose class of objects is fib(X,fi)I and whose mor-
phisms f : w - v are those ¥-morphismwith vf =w and Tf an isomorphism,
Like every other category Fib(X,fi)I is the disjoint union of its components con-
sidered as its subcategories; here two objects belong to the same component if they

can be connected by a finite string of arrows (with alternating directions) .

LEMMA 2, v is a fibre of (x’fi)l if and only if v 1is a terminal object in its
component in Fib(X,fi)I . O
For the following theorem only, let 7 be any class of morphisms such that

every morphism whose domain is of the form TX, X ¢ Ob¥ , belongs to ¥ .
THEOREM 2. If ¥ is m-completel then every non-empty source has fibres, and these

belong to M -

Proof: First we consider a subfibre w : W~ X of a single morphism f : X = ¥

which gives us W with fw =% - mw . Since W €  one has the-pullback
k

\
VJ
£
X Y

and a unique g with vg =w and kg = TW ; here the second equation is redundant

™w

()

=}

since W is monomorphic by the dual of Theorem 1(3). So we just have to show that
v is a fibre and that Tg is an isomorphism. The morphism ¥ : = ﬁ(nTW)-l Tk
satisfies the equation ¥ - VW = f£v , hence v ¢ fib(X,f) . Since T ¢ is a
monomorphism also Tk is ome; therefore, since Tk ¢ Tg = (W 1is an isomorphism
also Tg is one. Up to this isomorphism, diagram (1) coincides with the pullback

).

Lo . . .
This is the dual notion of g-cocomplete, i.e. pullbacks of grmorphisms along
arbitrary morphisms and multiple pullbacks of fp-morphisms exist and belong to M o
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Let nmow w be a subfibre of (x’fi)l , 1 #¢ . For each i ¢ I , one has
fibres ug Ui...x and morphisms 8 with uigi =y and Tgi isomorphisms.

Since Uu; € o for all i ¢ 1 one can form the multiple pullback

and get g with vg =¥ and kig =8 > iecl . The morphisms ‘\'ri o= 'ﬁi . Tki
satisfy vyt nw = fiv , hence Vv ¢ fib(x,fi)I and '173._ cm is a monomot phism.

since I # ® , from Tki - Tg = Tgi one obtains Tg to be an isomorphism. The

_rest is routine. |

Remarks. (1) 1f ¥ is &-cocomplete the natural choice for M is the class of all
morphisms m such that p . (1,m) for all p ¢ & which, in fact, contains all
morphisms TX - Y .

(2) Notice from the above proof: a fibre of 2 non-empty source is an inter-
section of fibres of its single morphisms.

3y 1f ¥ allows the formation of direct products of the form X x TW such
that the projection to 1IW belongs to & then the empty source X has fibres

(which are projections X X W - X) .

In Top with & = {quotient maps} , say, & complete set of fibres of £: XY
is given by the inclusions @ - X and f-ly ~X, ye¥ . Even if £ 1is surject-
ive @ — X has to be included since ¢ -~ X is a subfibre which has to be factored
through a fibre v : F X by amap h: ¢ - F with Th an isomorphism, so F = é.
The condition "Th iso'f guarantees the essentially unique choice of a fibre. (This
is the main difference between Tiller's notion (cf. [14]) and ours.,) In this context
one should also motice that in concrete categories which satisfy Theorem 2, even in
case of a surjective morphism £ : ¥ Y it might occur that ¢ - X is the only
fibre of £ , for instance in the category of G-sets (where G 1is a fixéd monoid
or group): if ¥ contains no element ¥ with Gy = Ey} , then there is even no

subfibre of f except # - X .

4, Y-connected and totally Y-disconnected objects

Definitions. A natural transformation « ! Id}f. - C (with an endofunctor C: ¥ - X)

is called an g-prereflection if X @ K- CX is an epimorphic &-morphism for all
objects X ; 1t is an &-reflection if, in addition, ~C : C - CC is a natural
equivalence (note that always ~C = CY) .oy is called an £-comnection if, for
every X ,

2_.. : . .
Borger [2‘1 defines prereflections slightly more generally.
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(1) fibres of the single morphism vX exist and, after a representative system
(ui : Fi - X)ieI of non-isomorphic fibres of X has been chosen,
(2) the diagrams

u,
F = X

vF vX (3

Cu,
CF., = X’
1

form a generalized pushout in the sense that, given g : X = Y
and hi s (IE‘i - Y with hi . YF;‘_ = guy i ¢ I , then there is a (unique)
t with ¢+ X =g (and t - Cuj_:hi) .
Fibres of v {(or, less precisely, just their domains) are called Y-guasi-comgonerﬁ
of X , and in case of an £-connection, y-components of X . Finally, we call X

y-connected if vX 1s constant, and totally y-disconnected, if yX is an isomor-
phism. Let C (@ resp.) denote the full subcategory of all y-connected (totally

y-disconnected resp.) objects. .
These phrases are motivated by the first three examples below and become more

plausible by the following facts.

PROPOSITION 2. Let v ! Id}C - € be an ¢E-prereflection.

(1) The following assertioms are equivalent:

(i) y 1is an g-reflection,

(ii) for all X , CX is totally y-discomnected,

(iii) QY is reflective with reflexion morphisms X .

(2) 1If & 1is fibre determined, for the following assertiocms onme has (ii) = (i):

(i} vy 4is an &-conmection,

(ii) for all X , y-quasi-components of X are y-connected.

(3) For all X, let yX have fibres but let only a small set of them be pair-
wise non-isomorphic. Then (2)(i) = (ii) holds if ¥ has coproducts and
if there exists a class of morphisms % in Y satisfying the following
properties:

(a) injections of coproducts belong to 7 ,

(b) the induced morphism u : J-—LIFi -~ X Dbelongs to M >
(c) for every p € ¢ and every mef, pu4 (I,m) ,
(d) pushouts of %-morphisms belong to % .

Proof: (1) Cf. [2] and [16], Prop. 4.2. (2) Given diagram (3) and g,h, with

i
hi . ‘YFi = gu; we just have to show fib(X,YX) < fib(X,g) . But every subfibre v

of X factors through one ug by a morphism s ; since YFj_ is comstant also
gy = hi . YFi « s is . (3) The generalized pushout (3) can be constructed as

follows:
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u,
F, 3 + X
\L[IFi/

YF, vX (&)

e
Cu

cF, L X
\uICFi /

Here v is the pushout of u along e = I I[YFi , 80 vegm by (b) and d).

Using (a) and (¢) we get pA (l,Cui) for all p¢ & and i ¢ L . Since
2. u, = Cui . YFi is constant, from property (B') of Section 2 omne derives that
YFi is constant for all 1 ¢ I . O
Examples. (1) In Top with £ = {quotient maps} , let v1X X CX be the map
which assigns to every point its component. yl-connectedness and totally yl-dis—
connectedness have the usual topological meaning. Yy is a reflection and a connec-
tion (the latter follows from Prop. 2 with 4 = {imjective maps}).

(2) Let YZX be the projection onto the space CZX of quasi-compoments of X
where the quasi-component of a point is the intersection of its open and closed

neighborhoods. Then CYZ ='GY1 » but {0-dimensional Tl-spaces} g ﬂyz g ﬂyl © Yo
is a reflection but not a commection (since QYZ—) quasi-components need not be
Qyzw) connected).

(3) Let y3X be the projection onto the space C3X of arc-components of X .
Then y3~connectedness is arcwise comnectedness; X 1is totally y3-disconnected iff
its arc-components are at most singletons. Y3 is a connection but not a reflection
(for the standard example X = {(x , sin i)!x >0l U ;(O,y)\-l <y <gl}, C3X is
the Sierpinski space).

(4) Connections need not arise from pértitions directly. For instance, let
Y4X : X {cl(x)!x € X} be the To-reflexion of X . CY4 is the subcategory of
indiscrete spaces., Somehow surprisingly, Yy is also a connection since the V4o
components of X are its maximal indiscrete subspaces and # . These give an equi-
valent description of Y4X , and they do form a partition. )

(5) 1If Top is now equipped with € = {surjective maps} then one may aiso con-

sider the reflection Y5 onto the indiscrete spaces. Then CY is the subcategory
5
of trivial spaces X (\XE < 1) . But even though Vs-quasi-components are always

trivial Vs is not a comnection; reason: €& is not fibre determined. This shows
that Prop. 2(2) is false without this assumption.
(6) In the categroy of R-modules (R an integral domain), let & be the class

of epimorphisms, and let YaM’M - C6M = M/Tor M be the projection. Then the Ve~
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¢onnected (totally y6~disconnected) objects are the torsion- (torsion free) modules.,
Ye is a reflection and a connection. - Similar examples occur if one considers
rings modulo various types of radicals.

7 In the category Grp of groups with £ the epimorphisms, let
y7G : G- CTG = G/[G,G] be the projection., Then totally \(S-di.5connected means
abelian whereas y_/wconnected means perfect, that is: G = [G,G] . vy is a reflec~

tion, but mot a comnection.

5. Characterization of the subcategories (1Y and EY

From now on, let ¥ be always €-cocomplete and let £ be closed under composi-
tion., The following definitions are due to Tiller [14] who also gives the relation-
ships to similar concepts previously used by Herrlich and Strecker for topological
categories over Set. But notice again, in our context all notions will depend on & .

A sink (ui’x)l is a family of morphisms ug with common co~domain X ; so0 it
is a source in ]{Op . (ui,X)I is called chained (w.r.t. &) if any morphism
g : X ~Y 1is constant whenever all gu; i ¢ I, are constant. A full and replete

subcategory G of ¥ 1is an £-component subcategory if for every chained sink

's belong to G .

<ui’x)1 one has X € 0b G whenever the domains of all Uy

The subcategories CY are easily seen to be €~component subcategories, Given
an arbitrary (G , ome constructs a smallest £-component subcategory containing
as follows: let rrGX : X = PG,X be the €-part of an ortho €-fact of the source of
all morphisms g with domain X such that gu is constant for all u : A~ X,

(63
. If (G 1is an £-component subcategory then also ™" : to get X ¢ Ob Q@

A¢cOb(G . Infact, m. is an g-prereflection (cf. [16], Prop. 5.2); and G < CY
for Y = ‘['TG
whenever yX 1is constant it suffices to show that the sink of all morphisms u

with domain in G and codomain X is chained; but every g with gu comnstant for
all u factors through X = ﬁGX » S0 g must be constant. This proves the first

part of

THEOREM 3. (1) The following assertions are equivalent for a full and replete sub-

category ( :
(1) G is an &-component subcategory,

(i) G¢=C for y=ry ,

(iii) ¢ =GY for some e-prereflection vy .

(2) The following assertions are equivalent for a full and replete subcategory

B
(1) ® 1is @&-reflective,
ii =8 for =
(iii) 8 =8 for some g-prereflection v .

Here, for every ¥X-object X , QBX : X - RﬁX denotes the €-part of an ortho £~
fact of the source of all morphisms with domain X and codomain in 8 . It is well
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known that o8 is an £-reflection since § for = Pg is the £-reflective hull
of B . Therefore one has (2) (i) = (ii) = (iii) whereas (iii) = (i) follows from
the easily justified fact that X ¢ OB‘JY whenever there is a source (X’mi)l with
the codomains of all mi's in ﬂ'Y and p 4 (lx’mi)l for all p¢é€ . 0
One can introduce a preordering for £-prereflectioms by writing vy <8 if there
is a matural transformation o with oy = & ; obviously v = & (as objects in the
comma category of matural transformations with domain Id}C) iff vg5 and 5 Y.
Notice that v g § implies C‘,Y ::(36 and ﬁa CQY . For T, and po as construct-

ed above one has

LEMMA 3, o ﬂmin{gtcccél and °a =max§5}ﬁcﬁ6} . O
We define
°E s = PG. and i : =1Ta with @ =CY 5 ¢
C: = and ¢ = with 8 =8
1}5 Y Pr Y

for every ¢-prereflection v . Then:

THEOREM 4. (1) v <Y <Y »
(2) Co =CcCe and $-=8 <8 ,
g @ 7
(4)

134

Y L U .
min{gjy ¢ 6 and § is an g-reflection} ,

<02

is an €-connection, if all morphisms »T{X have fibres; if, im

addition, & is fibre determined and if (i) » (ii) in Prop. 2(2)

holds true, then

~

;,. =max{s | § gy oand & is an g~commectiom} .

Proof: (1) and (2) from Lemma 3 and Theorem 3. (3) vy is an g-reflection, and for
any other g-reflection § : 1d}€ -« D with y g ome has DX ¢ ;&6(,‘: ﬂy by Prop. 2(1),
hence gX + yX = X with a unique morphism X : CX~DX. So vy<§ -

(4) Consider diagram (3) and any morphisms g,hi such that hi' :(Fi = guy for

all i¢ I . By construction of (with G = C ) it suffices to show that gv

m
G
is constant for every v : A -~ X with A ¢ OG . But since TFGX * v 1is constant

v factors through one of the fibres vy by a morphism t : A « Fi . Since ﬁG,Fi .t

is constant, also gv = hi . nGFi + t is.
Finally suppose § < vy with g-connected s=quasi-components., Since
c*’,z5 c c’Y = c; those are also ;,-connected. Hence § g_-:, follows if £ is fibre

determined. ]

Considering the examples of the previous section, we trivially have

vy = =3, . Since < from C =¢C one gets Y, =y, . We do not

Y17 Y1 Y1 Y1 5Y¥2 * Yo vy 2 1

know a good description of §3 . Although €& is not fibre determined in example

(5), there is a greatest £-connection 3(5 < vs o namely »:,5 =1 (which is in fact
o 3 . a

the least &-prereflection). \,7G is the projection G - G/6” where ¢ = naG( )

o+l
with G( ) = [G(a),G(a)] @ an ordinal number (see the remarks after Theorem 5
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below).

There is a matural transfinite construction of the reflexion ?X : X = TX @ let
\,lX . X -» CX be the morphism X , let Vorl'lx H cdﬂx be the morphism
cCX- X , and let X : X = CX= Lim C X be the canomical injection in
Yoo Yo A \ Sel @
case of a limit ordinal ) (the direct limit exists since ¥ is &-cocomplete). If
¥ admits only a small set of non-isomorphic £-morphisms with domain X then, for
some g , yCX : C X C .X must be an isomorphism, that is: C X ¢#8 , Hence

- o o otl o Y
VK= YQ{X .

A similar observation can be made with respect to the constructiom of
:(X . X o X : we shall "know'" :{X in all examples as soon as we know the f(-compon-
ents of X , but these can be (under mild conditions) obtained by a tramsfinite
construction by first forming the Y-quasi—components of X , then the y-quasi-com-
ponents of the y'-qua.si-components, and so on. The proof of the following theorem
will describe this im more detail. ‘

We denote by X* the (non-full) subcategory of ¥ which has the same objects
but just those morphisms £ : X - Y with Tf an isomorphism (where T comes from
the g-localizations 7K : X = TX) ; let C* be the full subcategory of X* with
OiC* = 0bC ., TFor the next theorem only, let us assume that fibres can be construct

Y Y
ed as in Theorem 2 with a class 9 which is closed under composition and for which

¥ 1is ypprwell powered; also, let T preserve colimits of chains of g-morphisms. Then:

THEOREM 5. For any g-prerefiection ~ , C* 1is a multi-m-coreflective subcategory

of ¥* (cf. Saliecrup [12]) for terminology).

Proof: We show that C* is even multicoreflective in ¥ ; so for every w : A » X
with A ¢ OBC we haveyto construct morphisms v : F o X and f : AF with
FeOWl , vi=w, and Tf an isomorphism, such that the following universal
propert; holds: whenever one has zg =w with g : A~ G ¢ 0bC and Tg isomor-
phic then there is a unique h : G = F with vh =z . Y

First of all, since A ¢ ObCV , w is a subfibre of X which must factor

through an essentially unique fibre vyt Fl N ¢ by a unique morphism f1 A F1
with Tfl an isomorphism. Inductively we may comstruct v : F - X and
o o
fa A~ ch with Tfoe an isomorphism: fo! must factor through an essentially
nique fibre : F - F F i : i
unique fi Vortl ol o of o by a unique foﬁ-l A - For*“l with Tfoﬂ'l
an isomorphism; since % is closed under composition, v p=v v belongs
atl o o+l
to % , So fp-completeness will allow us to form the inverse limit F)L= lim <}\F in
—a<)

case of a limit ordimal, If T preserves this limit we are sure that, for the in-

duced morphism f}\ T A F)\ , Tf)\ is an isomorphism. If ¥ is m-wellpowered this

construction will stop for some ¢ , that is : is an isomorphism. But

v

atl,a

since v is a fibre of F  the latter must be constant, hence F : = F ¢C .
otl,a a o

Given z and g as above, it is easily checked that the subfibre =z of ¥

must factor through the fibre v, of X , and then through Vo > and so on, which

1
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gives the desired factorization after a transfinite induction. 7

COROLLARY, C#* 1is closed under connected colimits in ¥* , in particular under

v
filtered colimits. [

The needed assumptions for Theorem 5 are satisfied in examples (1)} - (7) men~
tioned in Section 4. However, the transfinite construction is needed only if vy 1is
not an g-connection since, otherwise, the . -components serve as local coreflections
(cf. [17] Prop. 6 for the respective simplified version of Theorem 5). For = Yo

it is not the fact of multicoreflectivity that is interesting (since Cy =C ) but
2 Y1
the way the Vl-component K(x) of a point x ¢ X 1s constructed by Theorem 5: one

forms its YZ-quasivcomponent Ql(x) , then its Yz-quasi»component Q2(x) in the
subspace Ql(x) and so on; for some ordinal ¢, Qd(x) = K(x) .

Since the category of groups has a zero-object, Theorem 5 gives in case wy = Y7
that the full subcategory of perfect groups is monocoreflective, and the coreflector
is obtained by the transfinitely iterated formation of the commutator subgroup. By
the way, here C* =(C . However, Theorem 5 becomes false if C¥* and Y* are
replaced by C \eind }\(’ as can be already seen in case y = vy G é is the full
subcategory of connected spaces, @ included, which is not multico-reflective in
Top; it is if one removes the empty space, or if one just removes the inclusiomn

mappings @ - X # § which will give precisely the category C¥* .
Y

6. Relationships to left and right constant subcategories

For full subcategories (¢ and § of ¥ the full subcategories r(G) and
2@®) are defined by

Ob r@)

ob L®)

It follows easily that the right constant subcategory r(G) coincides with the sub-

{BIv Ac 0bC YV £ : A< B: f constant]
{Alty Bc0bB v £ : A~ B: fconstant} .

category § for y = Th(Cf' Section 5). On the other hand one obtains immediately

from the definitions and preoperty (B) of Section 2 that the left constant subcate-

gory £@®) 1is the subcategory C_ for . So by Theorems 4 and 5 we obtain

= g
immediately the known facts that right constant subcategories are g-reflective (but
not vice versa: AD'Y ) and that left constant subcategories are €-component subcate~

gories (but not vicé versa: C ) and under wild side conditions multicoreflective.
Y3
However, the more important consequence is stated by the following

THEOREM 6. (1) For a full and replete subcategory G , the following assertions

are equivalent:
(1) G =£x@) ,

£®) for some subcategory # ,

~
i
-
~
o
It

(iii) @ =C  for some g-reflection + .

y
2) or a full and replete subcategory f , the following assertions are equiv-
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alent, if ¥ has fibres of morphisms:

i) 8 =rz®)) ,
(i1) B = r(@) for some subcategory G,
(iii) 8 = AQY for some €-copnection v .

Proof: Since 4 and r form a Galois correspondence, (i) « (ii) in (1) and (2)
are trivial. (ii) = (iii) follows in both cases from the remarks above. We prove
(iii) = (ii): (1) If G=C for vy =% then G =C.=4@) with 8 =8 by

~ ¢

Y Y Y
Theorem 4 (3). (2) If @ =;QY for 4 =y then § =8 =r(Q) with ¢ =CY . O
v

Remarks. (1) In Theorem 6 (2), the existence of fibres is needed only to conclude
that rrc is an g-connection. Calling any v = ﬂa for some Q an &-connection we
could have avoided this assumption.

(2) To conclude = ; for an E-connection y one does not need Theorem 4 (4);

this follows directly from the definitions without further assumptions.

COROLLARY, 1If . is an £-reflection and an £-connection then § =r( ) and
Y —— Y Y

C=JZ(19)-V I
Y Y

8. Global aspects

Let T be the ordered conglomerate of all E-prereflections module = , and
IPr (II?C) the subconglomerate of g-reflections (E-connections). The ordered con-
glomerate € of all full and replete subcategories of ¥ contains the subconglom-
erate d:r (U:c) of g-reflective (8-component) subcategories which contains the sub-
conglomerates R (L) of right (left) constant subcategories. Lemma 2 tells us
that we have adjoint functors
A—3 : CP o and v : P - @

which induce 1 - l-correspondences

[} r
——— e N e 1
c:P E——=® ad P, &E——¢_;
A ¥

here Ay 8 ,F:YO-CY’Q::ﬁHpa, ‘Y:GHTFG.
The assignments (G r(@) and B + L@) vield the adjuction
op
e : Q0" €

which induces a 1 ~ l-correspondence

. .
R? ——— ¢
T

Since 4@B) = (3'Y for o = o8 and r@) = ;96 for 5 = g this third adjuction is

the composite of the two others, that is:
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is commutative for both, the solid and the dotted arrows.
p(B) =R%P and r(R) =L
by Theorem 6.

Moreover,

¢°P

as the multiple pushout X of all morphisms yix

the e-fact of (X,y,X), one has g = inf{y.|i € I} .
i1 Yi m

7 and 1 belong to . ﬁ]?l?c .

ture with {y and n ; ¥

gxmx is iso} 1is the bottom element.

Automatically,

T carries the structure of a complete lattice: « = sup{yi‘i ¢ I} 1is obtained
(for every object X); for
Idl-ﬂ - T 1is the top and

Id}C - Id}( the bottom element. Since TP, is reflective in IP(y + Yy being the
reflector) P is a complete lattice as well and closed under inf's (but not under
sup's) in P . Similarly: T _ is coreflective in IP(y » ¥ being the coreflector),

hence a complete lattice and closed under sup's (but not under inf's) in P .

and l]:c are both reflective in € which carries a complete lattice struec-
is the top and the full subcategory with object class

Also R and L are both reflective in € .
So all four subcategories are complete lattices, but only the inf's are formed like
¥ eRnL,
bottom element of € belongs to R NI .

but it is not difficult to show that also the
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From adjointness one derives immediately some rules for the behaviour of the
functors § , p , ¥ , T , £, with respect to the formation of inf's and sup’s in

the various lattices involved.

8. Appendix: the center of a group

The center Z(G) of a group G 1is known not to be a functorial construction
since a homomorphism f : G - H need not map Z(G) into Z(H) . However, 2 is a
functor if we restrict ourselves to the category Epi Grp of groups and surjective
homomorphisms. This is still a good category for our purposes since it is &-co-
complete with € the class of all morphisms in Epi Grp. A morphism f : G- H is
constant if and only if H = 1 ; only in that case there are subfibres of £ , and
then, of course, every u : K. G 1is a subfibre of f and lG is the fibre
through which all these subfibres factor. So every morphism (even every non-empty
source) has fibres in the sense of the definition in Section 3. However, ¢ is
obviously not fibre determined., Nevertheless it turns out to be interesting to con-
sider the g-prereflection

vG I G- CG = G/Z(G) .
The reflective subcategory § consists of the groups without center (Z2(G) =1) ,
and the component subcategory (C  contains exactly the abelian groups (which are,
of course, also reflective in Epi Grp). v 1is neither a reflection since CG need
not be without center (consider the quaternion group) nor a conmnection: a represen=-
tative system of y-quasi-components has exactly one element (if and only if G is
abelian) or it is empty; in the latter case the pushout condition of the definition
in Section 4 reduces to saying that every g : G - H factors through vG which is,
of course, not true. However, all existing y-quasi-components are y-connected which
shows once again the relevance of the condition '€ is fibre determined' in Prop. 2
2.

The reflection § with @V = QV can be formed as outlined before Theorem 5.

This construction gives exactly the: quotient series
Ga GCm C2Ca .. = CG
which comes from the transfinitely continued ascending central series
1< 2, (6) = 2(6) < 2,(6) < +vnrnc 2 (6) = Z(6)
of the group G where o is the smallest ordinal such that ZQ(G) = Za+1(G) . (By
definition, Z +%(G) is the inverse image of Z(CB(G)) under the projection
G- G/ZB(G} = C°(G) .) The left constant subcategory (. consists of the groups
G with Z(G) = G ; it contains all nilpotent groups (those for which the above 4
is finite), in particular all abelian groups.

The connections ; and % belong to a general type of prereflecti ons which are

both connections and reflections, so in particular we have : = ; and % = % .

Those prereflections are induced by arbitrary nonempty full subcategories ( which
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are closed under the formation of quotient structures. Then a prereflection & can
be defined by
G-1 if G ¢ OW3
a lG : G » G otherwise.
) is a connection and reflection, and

()
¢ =g and 8,2 =(0'
b %

where (G' 1is the full subcategory of all objects which are not in (G or trivial,
In particular, (G is left constant and G' is right constant.

Going back to the definition of ; it is easy to see that ; = GG with (nec- —
essarily) G = GY the subcategory of abelian groups and % = § with G =Cuc . In

2N
N,

the lattice I we got

<o

The reflection of the abelian groups is not comparable with any of those.
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