Left-determined model categories and universal
homotopy theories

J. Rosicky*and W. Tholen!

Abstract

We say that a model category is left-determined if the weak equiva-
lences are generated (in a sense specified below) by the cofibrations. While
the model category of simplicial sets is not left-determined, we show that
its non-oriented variant, the category of symmetric simplicial sets (in the
sense of Lawvere and Grandis) carries a natural left-determined model cat-
egory structure. This is used to give another and, as we believe simpler,
proof of a recent result of D. Dugger about universal homotopy theories.

1 Introduction

Recall that a model category IC is a complete and cocomplete category K equipped
with three classes of morphisms C, W and F, called cofibrations, weak equiva-
lences and fibrations, such that

(1) (C,FNnW) and (CNW,F) are weak factorizations systems and

(2) W is closed under retracts (in the category K~ of morphisms of ) and
has the 2-out-of-3 property

(see [Q], [H], [Ho] or [AHRT?2]). Model categories were introduced by D. Quillen
to provide a foundation of homotopy theory. Here a weak factorization system
is a pair (£,R) of morphisms such that every morphism has a factorization as
an L-morphism followed by an R-morphism, and R = L", £ = "R where L"
("R) consists of all morphisms having the right (left) lifting property w.r.t. £
(R, respectively). The morphism [ has a left lifting property with respect to a
morphism r (or r has a right lifting property w.r.t. 1) if in every commutative
square
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there exists a diagonal d : B — C.

A model category is determined by any two of the three classes above. Clearly,
C and W determine F because F = (C N W), and from C and F one obtains
the morphisms of W as composites g - f with f € "F and g € C”. In this paper
we are interested in the model categories whose model structure is determined
by its cofibrations only, and we therefore call them left-determined. For example,
the model category SComp of simplicial complexes is left-determined while the
model category Simp of simplicial sets is not left-determined.

Simp is, of course, the presheaf category Set 2™ where A is the category of
non-zero finite ordinals and order-preserving maps. F.W. Lawvere [L] and M.
Grandis [G] introduced symmetric simplicial sets as functors F°? — Set where
F is the category of non-zero finite cardinals (= finite sets) and arbitrary maps.
We will show that the category SSimp = Set ¥*" of symmetric simplicial sets is
a left-determined model category. Moreover, the model categories SSimp and
Simp are Quillen equivalent, i.e., they have equivalent homotopy categories.

D. Dugger [D] has recently shown that, for a small category X, Simp™” is
a universal model category over X. In particular, Simp is a universal model
category over the (one-morphism) category 1. We will give another proof of his
result, by showing that also SSimp™™ serves as a universal model category over
X. Since SSimp is left-determined, our proof is simpler.

The first author would like to acknowledge his gratitude to Tibor Beke for
introducing him to homotopy theory. Both authors acknowledge stimulating
conversations with him regarding the subject of this paper.

After having completed this work we learned that the concept of a left-
determined model category was independently developed by J. H. Smith [S] who
used the term minimal model category instead. He also observed that the usual
model structure on simplicial sets fails to be left-determined.

2 Left-determined model categories

Definition 2.1. A model category K is left-determined if VY is the smallest class
of morphisms satisfying the following conditions:

(i) T Cw,
(ii) W is closed under retracts and satisfies the 2-out-of-3 property,
(iii) CNW is stable under pushout and closed under transfinite composition.

We will denote the smallest class of morphisms satisfying (i)-(iii) by We. It
has the property that W, C W for each model category K having C as the class
of cofibrations. Left-determined model categories are those for which W = We.
Recall that C™ denotes the class of morphisms having the right lifting property
w.r.t. C. Of course, C” = FNW is the class of trivial fibrations.
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In general, given C, the first principal problem is whether C and W, yield
a model category. The next theorem gives an affirmative answer under an ad-
ditional set-theoretic hypothesis, the Vopénka’s Principle. (Subsequently J. H.
Smith informed us that he has been able to prove the theorem even absolutely,
i.e. without any additional set-theoretic hypothesis.) Recall that Vopénka’s Prin-
ciple is a set-theoretic axiom implying the existence of very large cardinals (see
[AR]). We denote by cof(Z) the smallest class of morphisms containing Z, closed
under retracts in comma-categories A\ and satisfying (iii). The smallest class
containing Z and satisfying (iii) is denoted by cell(Z) (see [AHRT1]).

Theorem 2.2. Let Z be a (small) set of morphisms in a locally presentable
category K. Under Vopénka’s principle, C = cof(Z) and W = W yield a model
category structure on IC.

Proof. According to the theorem of J. H. Smith (see [B] 1.7), it suffices to show
that W satisfies the solution set condition at Z. It means that for every f € 7
there is a subset Xy of W, such that every morphism f — g, g € W, factorizes
through some h € Xy. Since f\W is a full subcategory of f\K and f\K is
locally presentable (see [AR]| 1.57), f\W, has a small dense subcategory X
provided that we asssume Vopénka’s principle (see [AR] 6.6). Without any loss
of generality, we may assume that X'y contains the initial object of f\W¢ provided
that it exists. A morphism f — g in f\Wg is either initial in f\W¢ and thus
belongs to Xy, or it factorizes through some morphism f — h from Xj. Hence
Xy, f € 1 provide a solution set condition at 7. O

A model category is called cofibrantly generated if C = cof(Z) and CNW =
cof (J) for sets Z and J. Following J. H. Smith, a model category K is called com-
binatorial if it is cofibrantly generated and the category K is locally presentable.
The model categories from Theorem 2.2 are combinatorial.

Left-determined model categories are, in some sense, related to left Bousfield
localizations. Recall that, having model categories IC and L, a left Quillen functor
H : K — L is aleft adjoint functor preserving cofibrations and trivial cofibrations
(i.e., elements of CNW). Every left Quillen functor preserves weak equivalences
between cofibrant objects (see [Ho|). An object A of a model category K is
cofibrant if 0 — A is a cofibration.

A model category K is called functorial if both weak factorization systems
(C, FNW) and (CNW, F) are functorial. This means that, for a weak factoriza-
tion system (£, R), there is a functor F': K~ — K and natural transformations
A:dom — F and g : F' — cod such that f = pf- As is an (£, R)-factorization of
a morphism f : A — B; of course, dom(f) = A and cod(f) = B. This definition
of a functorial weak factorization system is given in [RT]| where its relation to
functoriality in the sense of Hovey [Ho| is explained. Each combinatorial model
category is functorial. In a functorial model category K we have a cofibrant
replacement functor @ : I — K where

0— Q(A) X A
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is a functorial weak factorization in (C, F N W). Then ¢q : Q — Idx is a natural
transformation.

Let I be a model category and Z a class of morphism of IC. A left Bousfield
localization of KK w.r.t. Z is a model category structure K\ Z on the category K
such that

(a) K\ Z has the same cofibrations as K,

(b) weak equivalences of C\Z contain both the weak equivalences of K and
the morphisms of Z and

(¢) each left Quillen functor H : K — L such that H - @ sends Z-morphisms
to weak equivalences is a left Quillen functor K\Z — L

(see [H] 3.3.1). J. H. Smith proved that if I is a left proper combinatorial model
category and Z a set of morphisms, then a left Bousfield localization K\ Z exists
(see [S]). (The model category is called left proper if every pushout of a weak
equivalence along a cofibrations is a weak equivalence.) As a consequence, we
get the following result

Theorem 2.3. Let KC be a left proper, combinatorial model category and Z a
class of morphisms of IC. Under Vopénka’s principle, a left Bousfield localization
K\Z exists.

Proof. We can express Z as a union of an increasing chain of (small) subsets Z;
indexed by ordinals. Let W; denote the class of weak equivalences in the model
category K\ Z; (which exists by the result of J. Smith). Then we have W, C W,
for i < j; this follows from Idx : K — K\ Z; being a left Quillen functor sending
Z; morphisms to weak equivalences. Hence @ = Idx-Q : K\Z; — K\ Z; is a left
Quillen functor. Let f: A — B be a weak equivalence from WW; and consider

QA—2 . B

TA B

A B

f

Since 4, rg € C", we have ra, rg, Qf € W;. Hence f € W,. Put W, =

U W;. Then W, is closed under retracts and satisfies the 2-out-of-3 property.
1€ Ord
Analogously as in Theorem 2.2, Vopénka’s principle guarantees that IC,C and

W, form a model category K\ Z.

Let H : K — L be a left Quillen functor such that H - @) sends Z-morphisms
to weak equivalences. Since H : K\Z — L is a left Quillen functor for each 1,
H : K\Z; — Lis aleft Quillen functor. Hence I\ Z is a left Bousfield localization
of L w.rt. Z. O
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Using [AR] as well, C. Casacuberta, D. Sceveneles and J. H. Smith [CSS]
proved a related result saying that cohomological localizations of simplicial sets
exist under Vopénka’s Principle.

Remark 2.4. In analogy with the definition of a left-determined model category,
we define Wy, where X is a class of morphisms in a model category K, as the
smallest class of morphisms satisfying

(i) WUX C Wy,
(ii) Wk is closed under retracts and satisfies the 2-out-of-3 property,
(iii) C N Wy is stable under pushout and closed under transfinite composition.

Under Vopénka’s principle, IC, C and Wy is a model category structure for each
combinatorial model category K. This model category structure is evidently
K\X, provided that K\X exists (because Wy is contained in the class of weak
equivalences of IC\X).

Let IC be a cofibrantly generated model category and X a small category.
Then there is a cofibrantly generated model category structure on the functor
category K™ (see [H] 14.2.1); this structure is called the Bousfield-Kan struc-
ture. To recall it we denote by

evy : K¥' S K
the evaluation functor given by evx(A) = A(X) and by
FX : IC — ICXOP

its left adjoint given by

Xop(X,Y)

If Z (J) is the set of generating (trivial) cofibrations in I then the Bousfield-

Kan model structure has Z = |J Fx(Z) as generating cofibrations and J =
X eob(X)
U Fx(J) as generating trivial cofibrations. Then
X €ob(X)

(a) ¢: A — Bis a weak equivalence in K¥* iff ox : A(X) — B(X) is a weak
equivalence in K for each X in X,

p: A — D 1s a fibration 1n ur px : — 18 a fibration 1n
b A — B is a fibration in ™ iff A(X B(X) is a fibration in
for each X in X.

Consequently, trivial fibrations are also morphisms in %" which are pointwise
trivial fibrations in /.
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Proposition 2.5. Let K be a cofibrantly generated, left-determined model cate-
gory and X a small category. Then K*™ is a left-determined model category.

Proof. Let Z(J) be the set of (trivial) cofibrations in K, respectively, and let W
the set of weak equivalences in K. We have W,z € W. Let w € W. Then

w = f-g where f € 7" and g € cof(J). We have f € W, ;7. To prove that
9 € Weopz), that is w € W7, it suffices to show that J C Weot(z)- But this
follows from J € Weet(z) and the fact that Fx preserve colimits. O

3 Symmetric simplicial sets

A trivial example of a left-determined model category is the category Set of sets,
with C the class of all monomorphisms, and with W the class of the morphisms
between non-empty sets and the identity morphism on (). To give a non-trivial
example we recall that a simplicial complex is a set X equipped with a set X’ of
non-empty finite subsets of X such that

(a) {z} € X for each z € X,
(b)) Ace X, 0 #BC A= BeX.

Elements A € X with |A| = n + 1 are called (non-degenerated) n-simplices.
For n = 0,1 and 2 we speak about vertices, edges and triangles, respectively.
If |A| < 2 for each A € X then (X,X) is called a (non-oriented) graph (with
loops). Morphisms of complexes (X, X) — (Y,)) are maps h : X — Y with
h(X) C Y. We denote the category of simplicial complexes by SComp. We
will show that C = Mono yields a left-determined model category structure on
SComp. But the disadvantage of simplicial complexes is that each simplex is
uniquely determined by its vertices, which makes colimits in SComp bad. It led
S. Eilenberg and B. Zilber [EZ] to introduce complete semisimplicial complexes,
which later were renamed as simplicial sets, and which are oriented. Surprisingly,
non-oriented simplicial sets were introduced only recently by F.W. Lawvere [L]
and M. Grandis [G]; they are called symmetric simplicial sets. Their position
to simplicial complexes is the same as the position of multigraphs to graphs in
graph theory (one admits multiple edges).

Definition 3.1. Let F denote the category of non-zero finite cardinals (and all
maps). A symmetric simplicial set is by definition a functor F® — Set. The
category Set ¥" of symmetric simplicial sets will be denoted by SSimp.

We will recall the basic properties of symmetric simplicial sets (see [G]). We
have the Yoneda embedding

Y :F — SSimp.
Its values A,,_1; = Y (n) are in fact simplicial complexes, which yields the functor

F — SComp.
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The Yoneda embedding Y extends along this functor to the full embedding
G : SComp — SSimp

sending a simplicial complex (X, X) to the functor A : F°® — Set given by
A(n) = {S € X||S| < n—1}. In what follows we will identify a simplicial
complex (X, X') with its image under G. Hence SComp will be considered as a
full subcategory of SSimp.

We have the functor U : SSimp — Set given by precomposition with 1 —
F° (sending the object of 1 to 1). We can view U(A) as the set of vertices of
a symmetric simplicial set A and the whole A as the set U(A) equipped with
n-simplices corresponding to morphisms A, — A. We will use the notation
A = (UA, A) where A is the set of simplices of A. For instance, A,, has all
non-empty subsets of {0,1,...,n} as simplices. But note that the functor U is
not faithful.

The embedding A — F induces the faithful functor

H : SSimp — Simp.

It has a left adjoint
L : Simp — SSimp

sending each simplicial set to its symmetrization. There is also a right adjoint
R : Simp — SSimp.

Let 0A,, be the boundary of A, for n > 0, i.e., U(0A,,) = n+1, and simplices
of 0A,, are all non-empty subsets of n+1 distinct from n+1. Let i,, : 0A,, — A,
n > 0, be the embeddings. Let Z = {i,|n > 0} where

i() 0 — AO .
In what follows, the class of all monomorphisms of SSimp is denoted by Mono.
Lemma 3.2. cof(Z) = Mono.

The proof is the same as for simplicial sets.

Given 0 < k < n, the k-horn AF is the simplicial complex whose simplices
are all subsets ) # S G {0,1,...,n} distinct from {0,....k — Lk +1,...,n}.
Let J be the set of inclusions

Gn AV — A, n>0.
Lemma 3.3. j, € Wirono N Mono for each n > 0.

Proof. Evidently, each morphism s, : A, — Ay, n > 0 belongs to Mono".
Therefore, by 2.1 (i) and (ii), each morphism u : Ay — A, belongs to Whono
and, consequently to Whirono N Mono. Hence j1 € Whirono N Mono.
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Assume that ji, ..., 7, € Wirono N Mono. Consider the pushout

A, + Ay —2 A,

idAn +u(1) 9n

A, + Ay

I

where u?(0) = 0 and p,, is induced by ida, and u : Ay — A, (again u%(0) = 0).
Since ida, +u? € Wireno N Mono, we have g, € Wisono N Mono (by 2.1 (iii)).
P, is the simplicial complex given by attaching an edge at the vertex 0. By
successive use of ja, ..., j,. we fill horns to simplices. This is done via pushouts,
starting with

A,

P/

where h sends one edge of AY to the attached edge and the other edge to an edge
of A,. Doing this for all edges of A, containing 0, we start to fill by using js,
etc. At the end we obtain A?,; and a morphism

. 9n / 0
Qn-An—>Pn—>Pn—>"'—>An+1

which belongs to Wirono N Mono. Since, in the diagram

A, i A
Ag

we have s, € Whirono, We get t, € Whirono. Since, in the diagram

0
n+1

0 jn+1
An—i—l An—i—l

Ao

we have tna Sn+1 S WMonoa we get jn—i—l S WMono- Hence jn—l—l S Wl\iono N
Mono. ]

Theorem 3.4. SSimp is a left-determined model category with C = Mono and
F=J"
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Proof. (Mono, Mono®) is a weak factorization system (see [B] or [AHRTZ2]);
analogously for (cof(J), J"). To prove the result it suffices to show that

Whtono N Mono = cof (J)
(cf. [B]). Following Lemma 3.3, we have
cof (T) € Whatono N Mono .

The opposite inclusion will follow from properties of the adjunction L 4 H
between symmetric simplicial sets and simplicial sets.
Since L preserves monomorphisms, H preserves trivial fibrations, i.e.,

H(Mono”) CW,

where VW denotes the class of weak equivalences of simplicial sets. Since H
preserves monomorphisms as well, we have

H(Whiono N Mono) €W N Mono™ = cof (J™)

where Mono* denotes the monomorphisms in Simp and J* is the generating set
of horns in simplicial sets (cf. [Ho|). Since L(J*) = J, we have L(cof(J™*)) C
cof (). Consequently,

LHWhiono N Mono) C cof(T) .

The functor H sends a symmetric simplicial set A = (UA, A) to the simplicial
set H A having as (oriented) simplices all possible orientations of simplices from
A. The functor L then produces from each orientation a non-oriented simplex
in LHA. Hence LH multiplies each non-degenerated n-simplex in A n!-times.
By sending each simplex in A to its standard orientation, we get a natural
transformation o : Id — LH which splits the adjunction counit ¢ : LH — Id.
Hence each morphism f in SSimp is a retract of LH(f). Consequently,

Whtono N Mono C cof ().
O
Remark 3.5. Both L and H are left Quillen functors. Moreover, L 4 H is a

Quillen equivalence. Following [Ho| 1.3.13, this amounts to showing that

X ™LX X B(LX),

is a weak equivalence for each simplicial set X (where 7 is the adjunction unit
and rpy : LX — (LX)y is a fibrant replacement) and that

ey : LHY =Y

is a weak equivalence for each fibrant symmetric simplicial set Y. But nx is
a trivial cofibration because it is given by completing horns to simplices, and
Hrpx is a trivial cofibration too, because H is a left Quillen functor. That ey is
a trivial fibration follows from its description given in the proof above.

As a consequence we obtain that Simp and SSimp have equivalent homotopy
categories.
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Remark 3.6. The model category Simp is not left-determined. To prove this
we consider the class X of morphisms f : A — B such that one of the following
possibilities occur (U* denotes the underlying functor Simp — Set ):

(a) there are vertices by € U*B, by € U*B — (U*f)(U*A), an edge e in B from
b1 to by but no edge in B from by to by;

(b) there are vertices a;, ag € U*A and an edge e in A from a; to ay such that
there is no edge in A from as to a; but there is an edge in B from U*(f)(az)

to U(f)(ax);

(¢) there are vertices a;, ap € U*A and an edge e in B from U*(f)(a;) to
U*(f)(az) but there is no edge in B from U*(f)(a2) to U*(f)(a1) and no
edge in A from a; to as.

Since (the oriented) horn j} : A} — A; belongs to X, it suffices to show that
X N Whatonor = 0. But X N Mono® = () and no element of X can arise by
operations 2.1 (ii) and (iii) from morphisms not belonging to X

Remark 3.7. SComp is a left-determined model category with C = Mono and
F = J". In fact, both i,, n > 0 and j,, n > 0 are morphisms of simplicial
complexes. Hence the result follows from Theorem 3.4.

Corollary 3.8. For each small category X the functor category SSimp” is a
left-determined model category (with the Bousfield-Kan model category structure).

The proof follows from Theorem 3.4 and Proposition 2.5.

4 Universal model categories

We will show that SSimp™™ is a universal model category over X in the sense
of D. Dugger [D] for each small category X. In particular, SSimp is a universal
model category over the one-morphism category. We will denote by

Y*: X — SSimp™*”

the composition

X 2%, et ¥ 22, (Set ¥™")F*

where Dy is a left adjoint to the underlying functor
Ux : (Set *™)F" — Set ™™
given by evaluation at 1, i.e., Uy = ev;. Of course, we use the identifications

(Set F")¥™ = Get (FxV o (St ¥ )F”
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Objects of SSimp™™ may be called symmetric simplicial presheaves; then Dy (A)
is the discrete symmetric simplicial presheaf over A. We also have the Yoneda
embedding

Y :F x X — SSimp™”

and we will use the notation

An,X = Y(TL + l,X)
forn >0 and X € X. It is easy to see that
An,X = FX(An)

where F : SSimp — SSimp™" is a left adjoint to the evaluation functor evy.
We will also denote
0A, x = Fx(0A,).

Theorem 4.1. Let K be a functorial model category, X a small category and
H : X — K a functor such that all objects HX, X € X are cofibrant. Then
there is a left Quillen functor H* : SSimp™*” — K such that H* - Y* = H.

Proof. Let F,, be the full subcategory of F consisting of cardinals 0 < k£ <n+ 1.
We get the induced inclusions

SSimp*” C SSimp™*”*

where SSimp,, = Set o (SSimpr“/Op — SSimp™*™ is given by SSimp, —
SSimp which is induced by the functor F,, — F AN SSimp). In particular,
SSimp; 2 Set*™ is the category of discrete symmetric simplicial presheaves.
Since K is cocomplete and Set *™ is a free cocompletion of X (see [AR] 1.45),
H extends to a colimit preserving functor

H; : SSimpy — K

such that HJY = H.
Assume that we have the functor

H? : SSimp; "~ — K

extending H ;. Since 0A, 11 x, Ao x belong to SSimp;'fop for X € X, we can
define H;; . (A,41,x) by the functorial (cofibration, trivial fibration) factorization

(0 11,x) —2 HE (D x) —% HE (D x)

of the morphism H}(Fx(pn)) : H(0An41,x) — H (Ao x) where p,11: 0,11 —
Ag. To get an extension H,_ , of H}, below we will define

(a) Hyyy(f) for f=Y(f1,f2) : Dps1x — Appry Where fi:n+2—n+2is
a bijection,
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(b) Hy () for t =Y (t1,t2) : Ay x — Apy1,y where m <n

and

(c) H:,y for u =Y (ui,us) : Apy1x — Apy where m < n.

(a) f1 induces the isomorphisms f; : A1 — Apyr, Ofp 0 0041 — 004
and f; induces a natural transformation ¢y, : Fx — Fy. Hence f induces the
homomorphism 0f : 0A, 11 x — 0Ani1y. We define H; ,(f) by the functorial
filling

H;(aAn+1,X) X H:H-l(An—i-l,X) sl H;;(AO,X)
|
|
|
HZ(0f) | Hpy () Hy((0f5)n0)
|
|
v
H (0A41y) sy Ho(Bny) — 5 H; (Aoy)

(b) Since t factorizes through 7,11y

t in+1,y
t:Apx — 001y —— Dpqry

we put H (t) = coqr,y - Hi(t).

(c) To define H; ,(u) for each u, it suffices to do this for the retraction u® of
Ay11,x to one of its face A, x. In this case, we take H; (u’) given by the lifting

property

H:L(ﬁAnH,X) SR H:L+1(An+1,X)

-
e
re
7~
re
H(uipny1,x) P - o Tn41,X
- Hr*1+1(“)
-
7

7
A

H: (A x)

n

Hy(Aox)

H} (sp,x)

where s, x = Y(s,idx) and s : n+ 1 — 1.

To prove that H; , is a functor, it suffices to consider the following cases:
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(1) In
;(Am,X )

Ha () ()

Hy(0Ani1y) St He (Apgry) —2F Hy(Aoy)

n

H(0An41,2) Hy\ (Anyi,z) Hy(Ao,z)

Cn+1,Z Tn+1,Z n

we have (ft)' = 0f -t' and thus H;,(f) - H; (1) = H: . (f1).
(2) In

H (A x)
Hy(t) Hip\ (1)
H(0Ans1y) —— s (Bnsny)
H(u®int1,y) Trt1,y
H:L(An,Y) H;;(AO,Y>

Hy (sn,y)

we have u’ -t = u® - i1y -t and thus H; ;(u®) - Hy (t) = Hi (u® - 1).
We have defined H ., on the image of the Yoneda embedding

Y, :F, x X — Set Fx7 =~ g8imp*”

Since this is a free cocompletion of F,, x X', we obtain a colimit preserving functor
H; ., :SSimp;” — K extending H.

We have constructed an increasing chain of colimit preserving functors H :
SSimpff * S K forn=0,1,..., which yields a colimit preserving functor

H* : SSimp™*” — K

with the restriction H* on SSimp;*" . Moreover, H* is a left adjoint functor (see
(a) in the proof of 1.45 in [AR]). In particular, H*Y* = H;Y* = H. It remains to
be proved that H* preserves cofibrations and trivial cofibrations. Since, A, 41 x
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is a colimit of 9, x, m < n, by (b) of the construction we get that H*(i,4+1.x) =
Cn+1,x. Hence H* preserves cofibrations (using Lemma 3.2 and the fact that
H* preserves colimits). Since s,1.x = s,.x - u’, by (c) of the construction we
get that H*(sp41,x) = Tny1.x. Hence H*(sp41,x) is a weak equivalence in K for
n > 0and X € X. Since s, x - [ = 8,y for each morphism f: A, x — Ay,
H*(f) is a weak equivalence in K as well. In particular, H*Fx (j1) : H*Fx(A}) =
H*Aogx — H*A; x is a weak equivalence. Since it is also a cofibration, it is a
trivial cofibration. Assume that H*Fx(ji), ..., H*Fx(j,) are trivial cofibrations
in KC. In the notation of Lemma 3.3, we get that H*Fx(g,) is a trivial cofibration
in K because u? = j;. Since by assumption H*Fx (1), ..., H*Fx(j,) are trivial
cofibrations, H*Fx(g,) is a trivial cofibration too. Therefore H* Fx(t,) is a weak
equivalence in K and thus H*Fx(jn+1) is a weak equivalence too. Since it is a
cofibration, it is a trivial cofibration. O

Remark 4.2. Let K be a functorial model category, X a small category and
H : X — K an arbitrary functor. Then there is a left Quillen functor H* :
SSimp™” — K and a natural transformation v : H*Y* — H which is a point-
wise trivial fibration in /C.

In fact, let Hy : X — K be the composition @ - H where @ : K — K
is the (functorial) cofibrant replacement functor and v = ¢H : Hy — H the
corresponding natural transformation. Then 7 is a pointwise trivial fibration in
KC (because ¢ : Q — Idg is). If we start the construction of the functor H* with
Hy (i.e., H - Y* = H,), we get the result.

Corollary 4.3. Let K be a functorial model category and K an object in K.
Then there is a left Quillen functor H* : SSimp — K and a trivial fibration
v H (Ag) — K.

This is a special case of Theorem 4.1 (for X a one-morphism category).

Remark 4.4. Again if K is cofibrant then H*(Ay) = K.
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