
INJECTIVITY VERSUS EXPONENTIABILITY

WALTER THOLEN§

To my friend Jirka

Abstract. At the morphism level, exponentiability implies the existence of certain
injective hulls. We prove a converse statement, thus showing an intimate link between
the concepts given by the title.

1. Introduction

Injectivity and projectivity of objects are important concepts which category theory
inherited from homological and commutative algebra. Their treatment in many standard
books on general categories (like [ML]) is nevertheless quite brief ([Bo] being a notable
exception), probably because the must-know facts like closure under (co)products and
retracts yield little more than a series of easy exercises. However, the theme plays a
central role in categorical model theory and receives excellent attention in Jǐŕı Adámek’s
work, notably in his monograph [AR] with Rosický, for example in their characterization
theorem for accessible categories with products, as the small-injectivity classes of locally
presentable categories.

That injectivity and projectivity of morphisms (considered as objects of the sliced
categories over their codomains and domains, respectively) are hidden features of the
left- and right-lifting properties as used to define Quillen model structures does not seem
to have been spelled out clearly until fairly recently (see [H], [AHRT1]), and there has not
been a lot of work which exploits this aspect intensively. Exceptions are two existence
theorems for weak factorization systems, one based on a Quillen-type “Generalized Small
Object Argument” as given in [AHRT2], and the other one based on a general existence
criterion for injective hulls given by Banaschewski [Ba] for general algebras and presented
in a general categorical context in [T1].

In [T2] we began our investigation of injective hulls of morphisms, with injectivity to
be understood relative to a class H of exponentiable monomorphisms, and proved an
existence criterion, a refined version of which was given in [T3], Theorem 3.5. There
remained, however, an unsatisfactory aspect, as follows. When factoring a morphism
f : A ! B as f = q · k with k 2 H and q 2 P , where (H,P) is a weak factorization
system, one may regard q as an H-injective object over B or k as a P-projective object
under A. In [T3] we considered two distinct refinements of this situation, requiring q
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to be (the object part of) an H-injective hull of f , or k to be the P-projective cover
of f . This led us to the notions of left-essential and right-essential weak factorization
system, respectively, but for which we could not give any diÆerentiating examples. Also
from a theoretical point of view it was disappointing to see the self-dual notion of weak
factorization system split up into two no longer self-dual subnotions.

In this paper we begin by revisiting the general notion of injective hull (or projective
cover) and observe that the undesirable eÆects just described are easily circumvented
when we follow the lead of [R] (see Remark 3.4 of [R]) and, avoiding the standard notion
of H-essential morphism, resort to a more traditional notion of H-injective hull. As
a consequence we are able to give a further refinement of the existence theorem first
presented in [T2, T3]. The spirit of this theorem (see 5.1 below) remains: exponen-
tiability implies injectivity. The main point of this paper, however, is to prove that
the converse slogan is also valid (see 4.1 below). This observation came as a surprise
to us, since exponentiability seemed to be a rather strong and/or foreign property in
the context of injectivity. Nevertheless, here we prove that weak exponentiability is a
necessary condition for the existence of certain essential weak factorizations. Moreover,
this injectivity-implies-exponentiability result actually appears to be “cleaner” than its
counterpart, which is why we present it first.

At the end of this paper we discuss the two results in more specialized contexts,
considering first extensive categories and then the Abelian category of k-vector spaces.

2. H-injective hulls

Let H be a class of morphisms in a category C containing all isomorphisms and being
closed under composition with them. Recall that an object A is H-injective if the hom-
map C(k, A) : C(Y, A) ! C(X, A) is surjective for all k : X ! Y in H. An H-injective
hull of an object X in C is a morphism h : X ! A in H with A H-injective, such that
th = h for an endomorphism t of A is possible only if t is an automorphism. Instead of
the last condition, one often requires h to be H-essential, so that fh 2 H always implies
f 2 H. This makes no diÆerence, provided that H contains all split monomorphisms of
C:

Proposition 2.1. Consider the following statements for h : X ! A in H with A H-
injective:

(i) h is an H-injective hull of X;
(ii) whenever fh 2 H, then f is a split monomorphism;
(iii) h is H-essential.

Then (i) , (ii) ( (iii), and all three statements are equivalent when SplitMono µ H.

Proof. (i)) (ii): When fh 2 H, since A is H-injective, h factors through fh, so gfh = h
for some g. By (i), the endomorphism gf is an isomorphism, so that f must be a split
monomorphism.

(ii) ) (i): If th = h, there is s with st = 1 by (ii). But then sh = h, so that s is also
a split monomorphism. Hence, both s and t must be isomorphisms.

(iii) ) (i): If th = h is H-essential, then t 2 H, and one obtains s with st = 1 since A
is H-injective. Now sh = h gives s 2 H, so that H-injectivity of A makes also s a split
monomorphism. Again, both s and t must be isomorphisms. §
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Remark 2.2. (1) H-injective hulls are uniquely determined, up to isomorphism: if
both h and k are H-injective hulls of X, then fh = k for an isomorphism f .

(2) If H-injective hulls exist and are given by extremal monomorphisms, they cannot
be chosen naturally, unless every object is H-injective; more precisely (see Theo-
rem 3.2 of [AHRT3]): if a natural transformation ¥ : 1! E with an endofunctor
E of C is pointwise an H-injective hull and a monomorphism, then it is also
an epimorphism and, hence, an isomorphism when every morphism in H is an
extremal monomorphism.

(3) If H is part of an orthogonal (E ,H)-factorization system for morphisms in C,
then it su±ces to have

E \ SplitMono µ H

in order for the statements (i) – (iii) of the Proposition to be equivalent. Indeed,
if h 2 H satisfies (ii) and fh 2 H, then also eh 2 H for an (E ,H)-factorization
f = k · e, and e 2 E \ SplitMono by hypothesis. Hence (iii), follows.

The class H defines, for every object B of C, the class HB = ß°1
B H of morphisms

in the sliced category C/B (with ßB : C/B ! C the domain functor). A morphism
q : Y ! B of C, considered as an object of C/B, is HB-injective precisely when it has
the right lifting property w.r.t. all morphisms h of H:

(1) · //

h
≤≤

·

q

≤≤

· //

@@¢
¢

¢
¢

·

any outer commutative rectangle with h 2 H admits a diagonal making both triangles
commutative; one writes q 2 H

§ in this case (see [AHRT1]). A factorization f = q · k
of a morphism f is called essential if qt = q and tk = k always implies that t is an
isomorphism. Hence, if k 2 H and q 2 H

§, this means that q is an HB-injective hull
of f in C/B. In what follows we will give necessary and su±cient conditions for certain
morphisms f with codomain B to admit an HB-injective hull.

3. Preliminaries on weakly exponentiable morphisms

Recall that, for a functor G : A ! X a morphism w : X ! GA in X with an object
A in A is called a weakly G-universal arrow for X if every morphism f : X ! GB
with B 2 obA factors as f = Gg · w, for some g : A ! B in A. We call the weakly
G-universal arrow essential if every t : A! A in A with Gt ·w = w is an isomorphism.
( Stable is used in [R] instead of essential, but stable seems to be too reminiscent of
pullback stable.) The dual notion is (essential) weakly G-couniversal arrow. Of course,
every (strict) G-(co)universal arrow (so that the factorization f = Gg · w is unique) is
essential.

For a morphism h : C ! B in a category C with pullbacks, we consider the functor
“pulling back along h”

h§ : C/B ! C/C

and its left adjoint h!, “composing with h”. Recall that h is an exponentiable morphism
in C (see [N]) when h§ has a right adjoint, e.g. when for every p : A ! C in C there
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is p̄ : D ! B and w : C £B D ! A in C such that w : h§(p̄) ! p is an h§-couniversal
arrow for p in C/C.

It is well known that for h exponentiable, every such w is an isomorphism precisely
when h is a monomorphism in C, because in the double adjunction

h! a h§ a h§

the right adjoint h§ is full and faithful if, and only if, the left adjoint h! is full and
faithful, and the latter properly holds precisely when h is a monomorphism (see [DT]).

Here is what we can prove when w is just weakly h§-couniversal:

Proposition 3.1. For a monomorphism h : C ! B of C every weakly h§-couniversal
arrow is a split epimorphism in C/C.

Proof. When h is a monomorphism,

A
p

//

1A

≤≤

C

h
≤≤

A
hp

// B

is a pullback diagram for all p. Hence, for a weakly h§-couniversal arrow w : h§(p̄) ! p
in C/C with p̄ : D ! B in C one obtains h̄ : A! D in C with p̄h̄ = hp that makes

h§(p̄)
w

// p

h§(hp)

v=h§(h̄)

OO

1

==zzzzzzzzz

commute (Here v is determined by h0v = h̄ and p0v = p with h0, p0 forming the pullback
of h, p.) Consequently, w is a split epimorphism in C/C. §

Without assuming the exponentiability of h in full, we can now still prove:

Proposition 3.2. For a monomorphism h of C, every h§-couniversal arrow is an iso-
morphism.

Proof. In the notation of the Proof of 3.1, we must show vw = 1. For the morphisms

hp0
vw

// hp0
h0

// p̄

in C/B one has

p0 = h§(hp0)
h§(vw)=vw

// p0 = h§(hp0)
h§(h0)=1

// p0 = h§(p̄)

in C/C. Hence,

w · h§(h0vw) = w · h§(h0) · h§(vw) = wvw = w = w · h§(h0),

and therefore h0vw = h0, by the couniversality of w. Since also p0vw = p0, vw = 1,
follows. §
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4. Injectivity implies weak exponentiability

Throughout this section we assume C to have pullbacks and H to be stable under
pullback and weakly left cancellable (so that hk 2 H, h 2 H implies k 2 H). Note that
the latter property is implied by the former when H is a class of monomorphisms; and
both properties hold for any H that is part of an orthogonal (E ,H)-factorization system.
Without any additional hypothesis on H one can prove:

Theorem 4.1. Let f = hp be a morphism with h : C ! B in H and p 2 H
§. If f allows

a factorization f = p̄h̄ with h̄ 2 H, p̄ 2 H
§, then there exists a weakly h§-couniversal

arrow w : h§(p̄) ! p, which is a split epimorphism in C/C, and even an isomorphism
when the factorization f = p̄h̄ is essential. In that case the weakly h§-couniversal arrow
is also essential.

Proof. One forms the pullback h0, p0 of h, p̄. The comparison morphism v making the
diagram

(2) C
h

√√

@@
@@

@@
@

A
v

//

p
??~~~~~~~

h̄
√√

@@
@@

@@
@ P

p0

OO

h0

≤≤

B

D
p̄

>>~~~~~~~

commutative must lie in H, by the weak left cancellability, since h̄ = h0v 2 H and
h0 2 H, by pullback stability. Now one obtains w rendering

A
1A

//

v
≤≤

A

p2H§
≤≤

P
p0

//

w
??~

~
~

~

C

commutative, and we claim that w : p0 = h§(p̄)! p is weakly h§-couniversal. Hence, for
q : E ! B in C and f : q0 = h§(q)! p in C/C one considers

(3) Q
h̄f

//

h00

≤≤

D

p̄2H§
≤≤

E
q

//

g
??ƒ

ƒ
ƒ

ƒ

B

where h00 is the pullback of h along q. Since p̄h̄f = hpf = hq0 = qh00, one obtains g with
gh00 = h̄f , qg = p̄. We must show that

(4) p̄ p0 = h§(p̄)
w

// p

q

g

OO¬
¬
¬

q0 = h§(q)

g0=h§(g)

OO

f

;;vvvvvvvvvv

commutes, where g0 is determined by h0g0 = gh00, p0g0 = q0. But

h0vf = h̄f = gh00 = h0g0 and p0vf = pf = q0 = p0g0.
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Hence, vf = g0, which implies f = wg0, as desired.
Let us now assume that the factorization f = p̄h̄ is essential. From p̄h̄w = hpw =

hp0 = p̄h0 one obtains t with p̄t = p̄, th0 = h̄w:

P
h̄w

//

h0

≤≤

D

p̄2H§
≤≤

D

t
>>~

~
~

~ p̄
// B

Then th̄ = th0v = h̄wv = h̄, so that essentiality of the factorization makes t an isomor-
phism. Now

th0vw = h̄wvw = h̄w = th0

gives h0vw = h0 which, in conjunction with p0vw = p0, proves vw = 1.
Finally, in order to show that the weakly h§-couniversal arrow w is essential, consider

any s : p̄ ! p̄ in C/B with ws0 = w, where s0 = h§(s) is determined by h0s0 = sh0

and p0s0 = p0. But since w is an isomorphism, s0 = 1P , hence h0 = sh0. Consequently,
sh̄ = sh0v = h0v = h̄, so that essentiality of the factorization f = p̄h̄ renders s an
isomorphism. §
Remark 4.2. If in Theorem 4.1 one has not just p̄ 2 H

§ but p̄ 2 H
? (= the class of mor-

phisms q such that for every outer commutative square (1) with h 2 H, there is a unique
diagonal making both triangles commute), so that in particular any morphism g mak-
ing diagram (3) commutative is uniquely determined, then the weakly h§-commutative
arrow w : h§(p̄) ! p is actually h§-couniversal. This holds because any morphism g
rendering (4) commutative will also make (3) commute: with g0 = h§(g) one has

h̄f = h̄wg0 = h0vwg0 = h0g0 = gh00,

since p̄ 2 H
? makes the factorization f = p̄h̄ essential, so that vw = 1 follows.

Corollary 4.3. Let (E ,H) be an orthogonal factorization system in a category with
pullbacks, such that E µ H

§ and every morphism f : A ! B has an HB-injective hull
in C/B. Then for all p : A ! C in E and h : C ! B in H there exists an essential
weakly h§-couniversal arrow for p which is an isomorphism.

5. Exponentiability implies injectivity

H continues to be a pullback-stable class of morphisms in a category C with pullbacks.

Theorem 5.1. For a morphism f = hp with h : C ! B in H and p 2 H
§, let w :

h§(p̄)! p be an h§-couniversal arrow for p in C/C with p̄ in C/B. Furthermore, assume
that h is a monomorphism, or that w is a split epimorphism in C/C and H·SplitMono µ
H. Then f has a factorization f = p̄h̄ with h̄ 2 H and p̄ 2 H

§, and this factorization
is essential when w is an isomorphism, in particular when h is a monomorphism.

Proof. Initially, we will just work with a weakly h§-couniversal arrow w for p in C/C
which is a split epimorphism in C/C, so that there is v making diagram (2) of 4.1
commutative, with h̄ := vh0. Of course, when w is (strictly) h§-couniversal and h a
monomorphism, w and v are isomorphisms by Prop. 3.2, and h̄ 2 H follows since H is
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stable. But one obtains h̄ 2 H also under the hypothesis H · SplitMono µ H. In order
to prove p̄ 2 H

§ one considers the commutative diagram

M
m

//

k
≤≤

D

p̄
≤≤

N n
// B

with k 2 H. Using just weak h§-couniversality we will show the existence of g : N ! D
with p̄g = n, but we will need (strict) h§-couniversality of w to obtain also gk = m.

The commutative diagram

S

k0

≤≤

m0
//

h00

~~}}
}}

}}
}}

P

p0

≤≤

h0

~~~~
~~

~~
~

M

k

≤≤

m
// D

p̄
≤≤

R
n0

//

h̃
~~}}

}}
}}

}}
C

h
~~~~

~~
~~

~

N n
// B

is obtained by pulling back along h, hence all but possibly the front and back faces are
pullback diagrams. Since pwm0 = p0m0 = n0k0, one obtains f making

S
wm0

//

k0

≤≤

A

p2H§
≤≤

R
n0

//

f
??~

~
~

~

C

commute, and then g : n! p̄ in C/B rendering

p̄ p0 = h§(p̄)
w

// p

n

g

OO¬

¬

¬

n0 = h§(n)

g0=h§(g)

OO

f

::vvvvvvvvvvv

commutative; here g0 : R! P is determined by p0g0 = n0, h0g0 = gh̃.
As a morphism in C/B g satisfies p̄g = n, and we are left with having to show gk = m.

But since

n n0 = h§(n̄)
f

// p

p̄m

k

OO

p0m0 = h§(p̄m)

k0=h§(k)

OO

wm0

99rrrrrrrrrrrr

commutes, from
wh§(gk) = wg0k0 = fk0 = wm0 = wh§(m)

with m : p̄m! p̄ in C/B one obtains gk = m when w is h§-couniversal.
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Finally, for the essentiality of the factorization f = p̄h̄, one considers s : D ! D with
p̄s = p̄ and sh̄ = h̄, hence sh0v = h0v, and sh0 = h0 when w is an isomorphism. For the
morphism s0 = h§(s) : h§(p) ! h§(p̄) with p0s0 = p0 = h§(p̄) and h0s0 = sh0 one then has
s0 = 1, and wh§(s) = w gives s = 1. §
Corollary 5.2. Let (E ,H) be an orthogonal factorization system in a category C with
pullbacks and E µ H

§. If every morphism in H is an exponentiable monomorphism in
C, then every morphism A! B in C has an HB-injective hull in C/B.

Corollary 5.3. In a category with pullbacks and (regular epi, mono)-factorizations,
assume that every regular epimorphism A ! B in C is injective in C/B. Then if
monomorphisms in C are exponentiable, every morphism A ! B in C has an injective
hull in C/B.

6. Examples

(1) In every category with binary coproducts one has a weak factorization system
(H, SplitEpi), with every coproduct injection lying in H. Moreover, if the category is
extensive (see [CLW]), then H consists precisely of the class of coproduct injections (see
[T3], Prop. 2.6 and Thm. 2.7). In this case H is stable under pullback, and also left
cancellable (not just weakly). In fact, if fk is a coproduct injection (with any morphism
f), k is also one, as the diagram

X

1X

≤≤

k
//

·y Z

f
≤≤

P
·xoo

≤≤

X
fk

// X + Y Yoo

shows. Consequently, by Theorem 4.1, for every coproduct injection h : C ! C + F
there is a weakly h§-couniversal arrow for every split epimorphism p : A ! C. But in
fact, in this context, a much stronger statement can be proved which, in turn, could be
used to reproduce Thm. 2.7 of [T3], as an application of Theorem 5.1:

Proposition 6.1. In an extensive category every coproduct injection is exponentiable.

Proof. For the coproduct injection h : C ! C+F and any morphism p : A! C consider
the diagram

A
h̄

//

p

≤≤

A + F

p̄=p+1
≤≤

F
k̄

oo

1
≤≤

C
h

// C + F F
k

oo

in which both rows are coproducts. Both rectangles are therefore pullback diagrams,
and we can show that 1 : h§(p̄) ! p is h§-couniversal for p, as follows. Given f : q0 =
h§(q)! p as in the proof of 3.1, one forms the pullback diagram

Q
h00

//

q0

≤≤

E

q

≤≤

R

q00

≤≤

k0
oo

C
h

// C + F F
k

oo
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and finds g : q ! p̄ in C/C + F with h§(g) = f , and g := f + g00 : E ª= Q + R! A + F .
In order to see that g : q ! p̄ is uniquely determined by h§(g) = f one needs to show
that such g satisfies the defining conditions of f + q00, namely gh00 = h̄f and gk0 = kq00,
only the second of which is not immediate. But this equation follows with the pullback
property:

R
gk0

vvmmmmmmmmmmmmmmm

q00
ƒƒƒ

ƒ
ƒ

ƒ

q00

®®≤≤
≤≤
≤≤
≤≤
≤≤
≤≤
≤≤
≤

A + F

p̄
≤≤

F
·x

k̄
oo

1
≤≤

C + F F
k

oo

§

There is a much shorter proof of Proposition 5.1, based on Schanuel’s defining property
of extensive category, as follows: The top arrow of

C/(C + F )
(h§,k§)

//

h§
%%

KKKKKKKKKK
C/C £ C/F

P
yyrrrrrrrrrr

C/C

is an equivalence of categories, and the projection P has a trivial right adjoint R, given
by R(p) = (p, 1F ). Hence, h§ has also a right adjoint. We nevertheless included the
longer proof since it shows the construction explicitly.

We remark in passing that, without the extensitivity assumption for C, while the
functor (h§, k§) has always a left adjoint, given by coproduct, when the coproduct injec-
tions j, k are exponentiable monomorphisms (h§, k§) has also a right adjoint. Indeed,
an (h§, k§)-couniversal arrow for (p, q) 2 ob(C/C £ C/F ) is obtained by forming the
pullback of p̄ and q̄ in C, where h§(p̄) = p, k§(q̄) = q represent couniversal arrows for p,
q, respectively.

(2) Just like in Set, (Mono, Epi) is also a weak factorization system in the category Veck

of k-vector spaces (for a field k), with Mono = {coproduct injections} and Epi = SplitEpi
(granting the Axiom of Choice). But unlike Set, the category Veck is not extensive.
In fact, the (coproduct) injection of the x-axis into R2 is not exponentiable, as one
easily sees by considering the y-axis and the line x = y. However, by Theorem 4.1, for
every monomorphism h : C ! B and every epimorphism p : A ! C, from an essential
(Mono, Epi)-factorization f = p̄h̄ of f = hp we will still obtain a weakly h§-couniversal
arrow for p.

The question remains how to obtain p̄, h̄, e.g., how to obtain the injective hull of f?
For that, take a subspace eB of B with B = im f © eB and consider the factorization

A© eB
p̄

""

FF
FF

FF
FF

F

A
f

//

h̄
<<yyyyyyyyy

B
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with h̄ = incl., p̄|A = f , p̄| eB = incl. We show that every endomorphism t of A© eB with
th̄ = h̄, p̄t = p̄ must be an isomorphism. By hypothesis then, t(a) = a for all a 2 A. For
b 2 eB we have p̄(t(b)) = p̄(b) = b, and writing t(b) = ea +eb with ea 2 A, eb 2 eB, we obtain

b = p̄(t(b)) = p̄(ea) + p̄(eb) = f(ea) +eb,

so that f(ea) = b°eb 2 im f \ eB = 0. Consequently, b = eb, hence t(b) = ea + b = t(ea) + b,
so that b is in the range of t. It follows that t is surjective, and t has also a trivial kernel.
For, if t(a + b) = 0 with any a 2 A, then 0 = p̄(t(a + b)) = f(a) + b, hence b = 0 and
then a = t(a) = 0.

What is the size and the structure of the group G = {t 2 Endk(A© eB) | th̄ = h̄, p̄t =
p̄}? Interestingly, the map

G! homk( eB, ker f), t 7! (b 7! t(b)° b).

is a group isomorphism. Hence G is isomorphic to the additive group of a k-vector space;
in particular, G is Abelian.

Of course, the above example may more generally be pursued in the context of R-
modules provided that the needed direct summands exist.
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