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Abstract. The characterization of stably closed maps of topological spaces as the closed maps

with compact fibres and the role of the Kuratowski-Mrówka’ Theorem in this characterization

are being explored in the general context of lax (T, V )-algebras, for a quantale V and a Set-

monad T with a lax extension to V -relations. The general results are being applied in standard

(topological and metric) and non-standard (labeled graphs) contexts.

1. Introduction

Bourbaki [2] emphasized the importance of proper maps of topological spaces, defined as

the stably closed continuous maps. Point-set topologists prefer to introduce them as the closed

continuous maps with compact fibres and to call them perfect ([8]), give or take Hausdorff

separation conditions which, however, we will disregard in this paper. The statement that

perfect maps are proper generalizes Kuratowski’s Theorem which asserts that X → 1 is proper

when X is compact. Mrówka [16] showed that compactness of X is not only sufficient but also

necessary for propriety of X → 1, which then gives that proper maps are perfect.

Extrapolating from the Manes-Barr presentation (see [1]) of topological spaces as the lax

relational algebras of the ultrafilter monad (induced by the underlying Set-functor of compact

Hausdorff spaces [15]), in this paper we consider the question of to which extent the equivalence

of the notions of proper and perfect may be transferable to the context of lax (T, V )-algebras, as

considered with slight variations in [3, 6, 17, 9] and other papers, where the quantale V replaces

the two-element chain (so that V -relations replace ordinary relations) and the Set-monad T
replaces the ultrafilter monad. In order not to lose the V -categorical intuition [13], we prefer

to call lax (T, V )-algebras and their lax homomorphisms (T, V )-categories and (T, V )-functors,

respectively. With no obvious candidate for a notion of closedness at hand in the general context,

we define proper (T, V )-functors as in [4, 11] equationally, as the strict homomorphisms amongst

lax, and call an object X compact when X → 1 is proper, with 1 denoting the terminal object.

The terminal structure on a singleton set will generally be distinct from its discrete structure,

which is being used when forming fibres. Keeping this distinction in mind, with the known and

easily-established pullback stability of proper morphisms one obtains that their fibres are proper

as maps, and then compact as objects whenever the terminal structure is discrete.

We prove two versions of the proper=perfect paradigm in the general context, using two

distinct approaches to a notion of “closed morphism”. The first one was already used in [11] in
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some key examples and relies on assigning to every (T, V )-category structure on X a V -category

structure on TX in a functorial manner, such that in the example V = 2 and T the ultrafilter

monad, closedness of a continuous map f : X → Y is equivalently described as propriety of

the monotone map Tf : TX → TY . This leads us to the general characterization of proper

(T, V )-functors as those f with proper fibres for which Tf is proper (Theorem 3.2), as presented

by the second author at CT2011. The second version uses a family of closure operators and

works well when V is constructively completely distributive. It requires us, however, to mimic

Mrówska’s result in the general context, which as in the topological role model relies on the

provision of suitable “test objects” (Theorem 5.2). With that at hand, proper (T, V )-functors

can be characterized entirely in terms of closure (Theorem 6.1) which, however, has in this

general context features not apparent at the level of the role model Top, and we illustrate them

by non-standard examples that leave the realm of categories considered in [11], like the categories

of metric and of topological spaces and their natural hybrid, the category of approach spaces

[14].

The authors are indebted to Dirk Hofmann who advised them about his proof of Lemma 7.1

in the cases that the quantale V is the two-element chain or the extended non-negative real half

line. The proof given here is an easy adaption of his argumentation to our more general context.

2. The setting

Throughout the paper V is a cartesian closed, unital, associative and commutative quantale.

Hence, V is a frame endowed with an associative and commutative binary operation ⊗ which,

like the binary meet ∧, preserves arbitrary joins in each variable; in addition, we assume that

the top element ⊤ serves as the ⊗-neutral element.

We consider a monad T = (T,m, e) of the category Set and, for simplicity, assume that T

is taut, so that T preserves inverse images (i.e., pullbacks of monomorphisms along arbitrary

maps). In particular then, T preserves monomorphisms, and for i : A ↪→ X and x ∈ TX we will

often write x ∈ TA when x ∈ Ti(TA).

Furthermore, we assume that T comes with a fixed lax extension T̂ to the category V -Rel

of V -relations, that is: to the category with objects sets and morphisms r : X−→' Y given by

functions r : X × Y → V whose composite with s : Y−→' Z is defined by

(s · r)(x, z) =
∨

y∈Y
r(x, y)⊗ s(y, z)

for all x ∈ X, z ∈ Z. Note that V -Rel has an involution r '→ r◦ : Y−→' X with r◦(y, x) = r(x, y),

and that every map f : X → Y may be considered a V -relation f◦ : X−→' Y with f◦(x, y) = ⊤
when f(x) = y, and f◦(x, y) = ⊥ (the bottom element) otherwise. Unless |V | = 1 there is no

danger in identifying f◦ with f ; its converse, f◦ : Y−→' X, serves as the right adjoint to f◦ in

the 2-category V -Rel, the 2-cells of which are given by pointwise order: r ≤ r′ if and only if

r(x, y) ≤ r′(x, y) for all x ∈ X, y ∈ Y .

We must clarify what we mean by lax extension: T̂ assigns to every V -relation r the V -relation

T̂ r : TX−→' TY subject to the axioms (A)-(F) below.



PROPER MAPS FOR LAX ALGEBRAS AND THE KURATOWSKI-MRÓWKA THEOREM 3

(A) Tf ≤ T̂ f , (Tf)◦ ≤ T̂ (f◦),

(B) r ≤ r′ ⇒ T̂ r ≤ T̂ r′,

(C) T̂ s · T̂ r ≤ T̂ (s · r),
(D) T̂ T̂ r ·m◦

X = m◦
Y · T̂ r,

(E) r · e◦X ≤ e◦Y · T̂ r,

for all r, r′ : X−→' Y , s : Y−→' Z and f : X → Y . (A)-(E) mean equivalently that T̂ : V -

Rel → V -Rel is a lax functor, m◦ : T̂ → T̂ T̂ a natural transformation, and e◦ : T̂ → 1 a lax

natural transformation, extending T laxly (in the sense of (A)). They imply in particular the

identities

T̂ (s · f) = T̂ s · Tf, T̂ (g◦ · r) = (Tg)◦ · T̂ r, T̂1X = T̂ (e◦X) ·m◦
X

(with g : Z → Y ), see [17, 18]. We require in addition:

(F) T̂ (h · r) = Th · T̂ r

(with h : Y → Z). We do not assume a priori that T̂ is flat, i.e., that T̂1X = 1TX , which forces

the inequalities (A) to become identities.

A (T, V )-category (X, a) is a set X with a V -relation a : TX−→' X with 1X ≤ a · eX and

a · T̂ a ≤ a ·mX . A (T, V )-functor f : (X, a) → (Y, b) is a map f : X → Y with f ·a ≤ b ·Tf . This
defines the (ordinary) category (T, V )-Cat. For T = I the identity monad (identically extended

to V -Rel), (T, V )-Cat is the category V -Cat, i.e. the category of (small) categories enriched

over the monoidal-closed category V .

The forgetful functor

(T, V )-Cat !! Set, (X, a) ✤ !! X, f ✤ !! f

is topological, hence (T, V )-Cat is complete and cocomplete. In particular, (1,⊤), with 1 = {∗}
and ⊤(w, ∗) = ⊤ for every w ∈ T1, is the terminal object, and the structure d on the pullback

of f : (X, a) → (Z, c) and g : (Y, b) → (Z, c)

X ×Z Y
q

!!

p
""

Y

g
""

X
f

!! Z

is given by

d(w, (x, y)) = a(Tp(w), x) ∧ b(Tq(w), y),

for any w ∈ T (X ×Z Y ), (x, y) ∈ X ×Z Y . The left adjoint to the forgetful functor assigns to

each set X the discrete structure

1♯X = e◦X · T̂1X .

The monad T may be extended to become a monad of V -Cat which we again denote by

T = (T,m, e): for a V -category (X, a0), let T (X, a0) = (TX, T̂ a0). There is a comparison

functor

K : (V -Cat)T !! (T, V )-Cat
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which commutes with the underlying-set functors; it sends (X, a0 : X−→' X,α : TX → X) to

(X, a0 · α : TX−→' X) (see [19]). It is less trivial and requires the full extent of hypothesis (D)

to show that K has a left adjoint, which sends a (T, V )-category (X, a) to (TX, â,mX) and a

(T, V )-functor f to Tf , where

â := T̂ a ·m◦
X

(see [10]). We will make use of the composite of this left adjoint with the forgetful functor

(V -Cat)T → V -Cat:

(T, V )-Cat !! V -Cat, (X, a) ✤ !! (TX, â), f ✤ !! Tf.

Examples 2.1. 1. For V = 2 = {false ≤ true}, with ⊗ = &, an (I, 2)-category (X, a) is a set X

equipped with a pre-order, that is a relation ≤ on X with

x ≤ x, (x ≤ y & y ≤ z) ⇒ x ≤ z,

for all x, y, z ∈ X (no anti-symmetry assumed), while (I, 2)-functors are exactly monotone

maps. We write Ord for (I, 2)-Cat=2-Cat.

If V = [0,∞] is the real half-line, ordered by the relation ≥, and ⊗ = + (with v+∞ = ∞ for

every v ∈ [0,∞]), then an (I, [0,∞])-category (X, a) is a set X equipped with a (generalized)

metric a, that is a map a : X ×X → [0,∞] such that

0 ≥ a(x, x), a(x, y) + a(y, z) ≥ a(x, z),

for all x, y, z ∈ X, and (I, [0,∞])-functors are non-expansive maps ([13]). We write Met for

(I, [0,∞])-Cat = [0,∞]-Cat.

2. Let V = 2 and P = (P,m, e) be the power-set monad in Set, extended to Rel by

A(P̂ r)B ⇔ ∀x ∈ A ∃y ∈ B : x r y,

for r : X−→' Y , A ⊆ X and B ⊆ Y . (Note that P̂ is a non-flat extension of P .) Then, as

shown in [17], (P, 2)-Cat is isomorphic to Ord. In particular, every ordered set (X,≤) defines

a (P, 2)-category (X,≼) via

A ≼ y :⇔ ∀x ∈ A (x ≤ y),

and vice-versa.

For every (X, a) ∈ (P, 2)-Cat, â : PX−→' PX is defined by

A âB ⇔ ∃A ∈ PX : mX(A) = A & A (P̂ a)B

⇔ ∃A ∈ PX :
⋃

A = A & ∀A′ ∈ A ∃y ∈ B : A′ ≼ y

⇔ ∀x ∈ A ∃y ∈ B : x ≤ y.

3. Let V = 2 and F = (F,m, e) be the filter monad on Set, extended to Rel by putting

x (F̂ r) y :⇔ ∀B ∈ y ∃A ∈ x ∀x ∈ A ∃y ∈ Y : x r y,

for a relation r : X−→' Y , x ∈ FX, y ∈ FY . As shown in [17], (F, 2)-Cat is isomorphic to

Top.



PROPER MAPS FOR LAX ALGEBRAS AND THE KURATOWSKI-MRÓWKA THEOREM 5

4. When restricted to ultrafilters, F̂ gives the lax extension Û of the ultrafilter Set-monad

U = (U,m, e) to Rel which may be described by:

x (Ûr) y ⇔ ∀A ∈ x, B ∈ y ∃x ∈ A, y ∈ B : x r y,

for a relation r : X−→' Y and x ∈ UX, y ∈ UY . As shown by Barr [1], the category (U, 2)-Cat

is isomorphic to the category Top of topological spaces and continuous maps (see [3, 6] for

details).

If (X, a) is an (U, 2)-category, then the ordered set (UX, â) has the following structure:

x â y ⇔ ∀A ⊆ X A closed (A ∈ y ⇒ A ∈ x)

⇔ ∀A ⊆ X A open (A ∈ x ⇒ A ∈ y),

for all x, y ∈ UX.

In fact, for any V , U has a flat extension to V -Rel given by:

(Ûr)(x, y) :=
∧

A∈x, B∈y

∨

x∈A, y∈B
r(x, y),

for a relation r : X−→' Y , x ∈ UX, y ∈ UY .

When V = [0,∞] is the real half-line, it was shown in [3] that (U, [0,∞])-Cat is isomorphic

to the category App of approach spaces and non-expansive maps [14]. The structure â, for a

given approach space (X, a), will be studied in Section 7.

5. Consider now the free-monoid monad L = (L,m, e) on Set, (flatly) extended to Rel by

putting

⟨x1, · · · , xn⟩ (L̂r) ⟨y1, · · · , ym⟩ ⇔ n = m & xi r yi, for all i = 1, · · · , n,

for r : X−→' Y , ⟨x1, · · · , xn⟩ ∈ LX, ⟨y1, · · · , ym⟩ ∈ LY . Then an (L, 2)-category (X, a) is a

multi-ordered set, that is, the relation a : LX−→' X is such that

⟨x⟩ a x, ⟨⟨x11, · · · , x1n1
⟩, · · · , ⟨xl1, · · · , xlnl

⟩⟩ (L̂a) ⟨y1, · · · , ym⟩ a z ⇒ ⟨x11, · · · , xlnl
⟩ a z.

6. For a monoid (H,µ, η), we consider the Set-monad H = (H × −,m, e), with mX = µ × 1X

and eX = ⟨η, 1X⟩. H has a flat extension to Rel given by

(α, x) (Ĥr) (β, y) ⇔ α = β & x r y,

for any r : X−→' Y , (α, x) ∈ H × X and (β, y) ∈ H × Y . Writing x
α !! y instead of

(α, x) a y for a relation a : H×X−→' X, an (H, 2)-category (X, a) can be seen as an H-labeled

graph such that

x
η

!! x , x
α !! y

β
!! z ⇒ x

α·β
!! z ,

for all x, y, z ∈ X and α,β ∈ H. An (H, 2)-functor f : (X, a) → (Y, b) is a map f : X → Y

satisfying the condition:

x
α !! y ⇒ f(x)

α !! f(y) .

For each H-labeled graph (X, a), the order â induced on H ×X by a is given by:

(α, x) â (β, y) ⇔ ∃γ ∈ H (α = β · γ & x
γ

!! y ).
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3. Proper (T, V )-functors

A (T, V )-functor f : (X, a) → (Y, b) is proper if f ·a = b ·Tf . In order to be able to talk about

fibres of f , we should first clarify that very term. For each y ∈ Y , the assignment ∗ '→ y defines

a (T, V )-functor y : (1, 1♯) → (Y, b), where 1♯ = e◦1 · T̂11 is the discrete structure on 1 = {∗};
explicitly, for w ∈ T1,

1♯(w, ∗) = T̂11(w, e1(∗)).

By fibre of f on y we mean the pullback (f−1y, ã) → (1, 1♯) of f along the (T, V )-functor

y : (1, 1♯) → (Y, b). We note that (f−1y, ã) → (X, a) is a monomorphism, but in general not

regular, i.e., ã does not need to be the restriction of a : TX ×X → V to T (f−1y)× f−1y:

ã(x, x) = a(x, x) ∧ 1♯(T !(x), ∗) (where ! : f−1y → 1)

= a(x, x) ∧ T̂1X(T !(x), e1(∗)),

for every x ∈ T (f−1y) and x ∈ f−1y.

Proper (T, V )-functors have proper fibres, since:

Proposition 3.1 (See [4]). Proper maps are stable under pullback in (T, V )-Cat.

Proof. Consider the pullback diagram of Section 2, with f proper. Then

b · Tq = (b ∧ b) · Tq
≤ ((g◦ · c · Tg) ∧ b) · Tq
= (g◦ · c · Tg · Tq) ∧ b · Tq
= (g◦ · c · Tf · Tp) ∧ b · Tq (f proper)

= (q · p◦ · a · Tp) ∧ (b · Tq)
= q · ((p◦ · a · Tp) ∧ (q◦ · b · Tq)) (V cartesian closed)

= q · d.

!

We can now prove a first characterization theorem.

Theorem 3.2. A (T, V )-functor f : (X, a) → (Y, b) is proper if, and only if, all of its fibres are

proper, and the V -functor Tf : (TX, â) → (TY, b̂) is proper.

Proof. If f is proper, from b · Tf = f · a one obtains

b̂ · Tf = T̂ b ·m◦
Y · Tf = T̂ b · T̂ T̂ f ·m◦

X (D)

≤ T̂ (b · T̂ f) ·m◦
X (C)

≤ T̂ (b · Tf) ·m◦
X (∗)

= T̂ (f · a) ·m◦
X

= Tf · T̂ a ·m◦
X = Tf · â; (F)

here (*) comes about since

b · T̂ f = b · T̂1X · Tf = b · T̂ (e◦X) ·m◦
X · Tf ≤ b · T̂ b ·m◦

X · Tf
≤ b ·mX ·m◦

X · Tf ≤ b · Tf.
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Conversely, assume all fibres of f to be proper in (T, V )-Cat and Tf to be proper in V -Cat.

Since

b = b · e◦TY ·m◦
Y ≤ e◦Y · T̂ b ·m◦

Y = e◦Y · b̂,

for all x ∈ TX, y ∈ Y one obtains:

b · Tf(x, y) = b(Tf(x), y)

≤ b̂(Tf(x), eY (y))

=
∨

z∈(Tf)−1(eY (y))

â(x, z) (Tf proper)

=
∨

z∈(Tf)−1(eY (y))

(T̂ a ·m◦
X)(x, z)

=
∨

z∈(Tf)−1(eY (y))

∨

X∈m−1
X x

T̂ a(X, z)⊗⊤

Since tautness of T guarantees that the following diagram is a pullback,

T (f−1y)
T ! !!

""

T1

Ty
""

TX
Tf

!! TY

every z ∈ (Tf)−1(eY (y)) = (Tf)−1(Ty(e1(∗))) satisfies z ∈ T (f−1y) and T !(z) = e1(∗). Using

propriety of (f−1y, ã) → (1, 1♯) one gets:

∨

z∈(Tf)−1(eY (y))

∨

X∈m−1
X x

T̂ a(X, z)⊗⊤ ≤
∨

z∈(T !)−1(e1(∗))

∨

X∈m−1
X x

T̂ a(X, z)⊗
∨

x∈f−1y

ã(z, x)

≤
∨

z∈(T !)−1(e1(∗))

∨

X∈m−1
X x

∨

x∈f−1y

T̂ a(X, z)⊗ a(z, x)

≤
∨

X∈m−1
X x

∨

x∈f−1y

a(mX(X), x)

≤
∨

x∈f−1y

a(x, x)

= (f · a)(x, y).

Hence, f is proper. !

Next we show that propriety of fibres trivializes whenever the lax natural transformation

e◦ : T̂ → 1 is strict.

Proposition 3.3. If e◦ : T̂ → 1 is a natural transformation, then any (T, V )-functor has proper

fibres.
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Proof. For a (T, V )-functor f : (X, a) → (Y, b) and y ∈ Y , we must show that the diagram

T (f−1y)
T ! !!

❴ã
""

T1

❴
1♯

""
f−1y

! !! 1

commutes, and for that it suffices to consider x ∈ T (f−1y) with 1♯(T !(x), ∗) = T̂1(T !(x), e1(∗)) >
⊥ and show ã(x, ∗) = ⊤. From the commutativity of the diagram

T (f−1y)
T ! !!

❴e◦

""

T1 ✤̂T1 !!

❴e◦1
""

T1

❴ e◦1
""

f−1y
! !! 1

1 !! 1

we first obtain

⊥ < e◦1 · T̂1 · T !(x, ∗) = e◦1 · T !(x, ∗) = ! · e◦(x, ∗) =
∨

x∈f−1y

e◦(x, x) = ⊤,

and then

! · ã(x, ∗) ≥ ! · e◦(x, x) = ⊤.

!

Corollary 3.4. If e◦ : T̂ → 1 is a natural transformation, then a (T, V )-functor f : (X, a) →
(Y, b) is proper if, and only if, the V -functor Tf is proper.

Remark 3.5. This Corollary shows that, in Examples 2.1.4 and 2.1.5, propriety of (T, V )-

functors can be characterized at the V -categorical level. However our main example, the ultra-

filter monad, shows that the hypothesis that e◦ be a natural transformation is essential for the

validity of the Corollary.

The notion of proper morphism leads to a natural notion of compactness: a (T, V )-category

(X, a) is compact whenever !X : (X, a) → (1,⊤) is proper. When T1 ∼= 1, so that the generator

(1, 1♯) coincides with the terminal object (1,⊤), (X, a) is compact if, and only if, the only fibre

of !X : (X, a) → (1,⊤) is proper. In general we can prove:

Proposition 3.6. If (X, a) is a compact (T, V )-category, then the fibre of the (T, V )-functor

!X : (X, a) → (1,⊤) is proper. Furthermore, when the two structures 1♯ and ⊤ on 1 coincide (in

particular, when T1 ∼= 1), the converse is true.

Proof. Let (X, a) be compact and t : (X, ã) → (1, 1♯) be the fibre of !X along ∗ ∈ 1. Then, for

any x ∈ TX, since V is a frame,

t · ã(x, x) =
∨

x∈X
ã(x, x) =

∨

x∈X
(a(x, x) ∧ 1♯(T !(x), ∗)) = ⊤ ∧ 1♯(T !(x, ∗)) = 1♯(Tt(x), ∗),

so that t is proper. !
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Corollary 3.7. If ⊤ is the discrete structure on 1, then the following conditions are equivalent,

for a (T, V )-functor f :

(i) f is proper;

(ii) Tf is proper and f has compact fibres.

Corollary 3.8. If ⊤ is the discrete structure on 1 and e◦ a natural transformation, then every

(T, V )-category is compact.

We point out that, when the lax extension T̂ is flat, ⊤ = 1♯ if and only if T1 ∼= 1, since flatness

of T̂ gives 1♯(x, ∗) = e◦1(x, ∗) = ⊤ only if x = e1(∗).

We will be able to demonstrate easily that Corollary 3.7 generalizes the characterization of

the proper maps in Top as the closed maps with compact fibres once we have interpreted the

condition that “Tf be proper” to mean equivalently that “f be closed”. To this end, the next

section introduces a suitable notion of closedness.

4. Closed (T, V )-functors

Recall that an ordered set X is constructively completely distributive (ccd) if there are adjunc-

tions

⇓ ⊣
∨

⊣ ↓: X −→ DownX

where DownX is the lattice of down-closed sets in X, ordered by inclusion. Writing x ≪ a

instead of x ∈ ⇓ a, one then has

x ≪ a ⇔ ∀A ⊆ X (a ≤
∨

A ⇒ ∃y ∈ A : x ≤ y),

and a =
∨
{x ∈ X |x ≪ a}.

Throughout the remainder of the paper, we assume V to be ccd. Fixing v ∈ V , for a (T, V )-

category (X, a) and A ⊆ X we let

A(v) := {x ∈ X |
∨

x∈TA

a(x, x) ≥ v}.

For a (T, V )-functor f : (X, a) → (Y, b) one then has
⋂

u≪v

f(A(u)) ⊆ f(A)(v).

Indeed, if y ∈ f(A(u)) for every u ≪ v in V , so that we can write y = f(x) for some x ∈ A(u),

we obtain

u ≤
∨

x∈TA

a(x, x) ≤
∨

x∈TA

b(Tf(x), y)

and, with Tf(TA) = T (f(A)) (Choice granted), v ≤
∨

y∈T (f(A))

b(y, y). We call f : (X, a) → (Y, b)

closed if
⋂

u≪v

f(A(u)) = f(A)(v)

for all v ∈ V , A ⊆ X.
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Proposition 4.1. Every proper (T, V )-functor is closed, and the converse statement holds in

V -Cat (i.e., when T = I).

Proof. Let f : (X, a) → (Y, b) in (T, V )-Cat be proper, and y ∈ f(A)(v) for v ∈ V , so that

v ≤
∨

y∈T (f(A))

b(y, y) =
∨

x∈TA

b(Tf(x), y) ≤
∨

x∈TA

∨

x∈f−1y

a(x, x).

For every u ≪ v one then obtains x ∈ TA, x ∈ f−1y with u ≤ a(x, x), and y ∈
⋂

u≪v

f(A(u))

follows.

Let now T = I and f be closed. For all x ∈ X, y ∈ Y , with v := b(f(x), y) and A := {x}, from

y ∈ f(A)(v) ⊆
⋂

u≪v

f(A(u))

one obtains for every u ≪ v some z ∈ f−1y with a(x, z) ≥ u. Consequently,

v = b(f(x), y) ≤
∨

z∈f−1y

a(x, z),

as desired. !

Corollary 4.2. For every (T, V )-functor f : (X, a) → (Y, b), the V -functor Tf : (TX, â) →
(TY, b̂) is proper if and only if it is closed.

5. The Kuratowski-Mrówka Theorem

In order to be able to characterize compactness of a (T, V )-category (X, a) by the condition

(KM) the projection X × Z → Z along any (T, V )-category (Z, c) is closed,

one needs to provide suitable test objects (Z, c) that can be used in the sufficiency proof of the

condition. Hence, using a particular instance of a construction given in [5], for every set X and

x ∈ TX we consider the set

Z := X ∪ {ω} (for some ω ̸∈ X)

and the V -relation c : TZ−→' Z with

c(z, z) =

⎧
⎨

⎩
⊤ if z = eZ(z) or (z = x and z = ω),

⊥ else,

for all z ∈ TZ, z ∈ Z, assuming TX ⊆ TZ (and TTX ⊆ TTZ) without loss of generality. In

order to determine when c will provide Z with the structure of a (T, V )-category, we highlight

two convenient properties of the V -relation c:

1. With i denoting the inclusion map X ↪→ Z, c satisfies i◦ · c = e◦X · (Ti)◦. Consequently, when
T̂ is flat, (T i)◦ · T̂ c = (TeX)◦ · (TT i)◦, in particular

(1) T̂ c(Z, z) > ⊥ ⇒ Z = TeX(z)

for all Z ∈ TTZ, z ∈ TX.
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2. The V -relation c has finite fibres, that is:

c◦(z) = {z ∈ TZ | c(z, z) > ⊥}

is finite for all z ∈ Z. Consequently, if the lax natural transformation e◦ : T̂ → 1 is finitely

strict, so that

TX ✤̂Tr !!

❴e◦X
""

TY

❴ e◦Y
""

X ✤r !! Y

commutes strictly whenever r has finite fibres, then e◦Z · T̂ c = c · e◦TZ , in particular

(2) T̂ c(Z, eZ(z)) > ⊥ ⇒ ∃w ∈ TZ (Z = eTZ(w) & c(w, z) = ⊤)

for all Z ∈ TTZ, z ∈ Z.

Proposition 5.1. If T̂ is flat and e◦ finitely strict, then (Z, c) is a (T, V )-category.

Proof. It suffices to show

T̂ c(Z, z)⊗ c(z, z) > ⊥ ⇒ c(mZ(Z), z) = ⊤

for all Z ∈ TTZ, z ∈ TZ, z ∈ Z. The premiss implies T̂ c(Z, z) > ⊥ and c(z, z) = ⊤. If z ∈ TX,

one obtains Z = TeX(z) = TeZ(z) from (1) and therefore c(mZ(Z), z) = c(z, z) = ⊤. If z ̸∈ TX,

since c(z, z) = ⊤, we must have z = ω and z = eZ(ω), and (2) gives w ∈ TZ with Z = eTZ(w),

and we may conclude again c(mZ(Z), z) = c(w, z) = ⊤. !

Theorem 5.2. Let T̂ be flat and e◦ : T̂ → 1 be finitely strict. Then a (T, V )-category (X, a) is

compact if, and only if, (KM) holds.

Proof. As a pullback of X → 1, the second projection q : X ×Z → Z is proper for every (T, V )-

category (Z, c) when (X, a) is compact, and therefore closed. Conversely, let (X, a) be such that

(KM) holds. We must now show
∨

x∈X
a(x, x) = ⊤,

for every x ∈ TX. For Z = X ∪ {ω} and c as defined above, one considers the set ∆X =

{(x, x) |x ∈ X} ⊆ X × Z. Since q(∆X) = X ⊆ Z, from c(x,ω) = ⊤ with x ∈ TX one obtains

ω ∈ q(∆X)(⊤), hence

ω ∈
⋂

u≪⊤
q(∆(u)

X )

by hypothesis. Consequently, for all u ≪ ⊤ one can find x ∈ X with (x,ω) ∈ ∆(u)
X , that is (using

the product structure of X × Z):
∨

w∈T∆X

a(Tp(w), x) ∧ c(Tq(w),ω) ≥ u,

with p : X ×Z → X the first projection. For any w ∈ T∆X one has Tq(w) ∈ TX, so that when

(without loss of generality) u > ⊥, we must have c(Tq(w),ω) = ⊤ with Tq(w) = x, and then
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also Tp(w) = x. Hence, for all ⊥ < u ≪ ⊤ we have found an x ∈ X with a(x, x) ≥ u, which

implies

∨

x∈X
a(x, x) = ⊤,

as desired. !

6. Characterization of propriety via closure

We now have all the ingredients that allow for a characterization of propriety of a (T, V )-

functor f : (X, a) → (Y, b) in terms of closure, making essential use of the V -functor Tf :

(TX, â) → (TY, b̂) again. V continues to be constructively completely distributive.

Theorem 6.1. Let T1 ∼= 1, T̂ be flat and e◦ be finitely strict. Then the following conditions are

equivalent for a (T, V )-functor f :

(i) f is proper;

(ii) every pullback of f is closed, and Tf is closed;

(iii) all fibres of f are compact, and Tf is closed.

Proof. (i) ⇒ (ii): From Theorem 3.2 and Propositions 3.1 and 4.1. (ii) ⇒ (iii): From Theorem

5.2. (iii) ⇒ (i): From Corollary 3.7. !

Remark 6.2. (1) Without the hypothesis T1 ∼= 1, stably-closed maps need not be proper (see

7.2), and proper maps may have non-compact fibres (see 7.6).

(2) In Theorem 6.1 we do not know whether the condition that Tf be closed may be removed

from (ii) or be replaced in (iii) by the condition that f be closed.

7. Examples

7.1. V -categories. (See [11].) By Corollary 3.8 every V -category is compact, and by Corollary

4.2 closed V -functors are proper. In case V = 2, for a monotone map f : (X,≤) → (Y,≤),

f proper ⇔ ∀x ∈ X ↑Y f(x) ⊆ f(↑X x)

⇔ ∀A ⊆ X ↑Y f(A) ⊆ f(↑X A),

with ↑X A = {x′ ∈ X | ∃x ∈ A : x ≤ x′}.
When V = [0,∞], for a non-expansive map f : (X, a) → (Y, b),

f proper ⇔ ∀x ∈ X, y ∈ Y b(f(x), y) = inf{a(x, x′) |x′ ∈ X, f(x′) = y}

⇔ ∀A ⊆ X, y ∈ Y b(f(A), y) = inf{a(A, x′) |x′ ∈ X, f(x′) = y},

with a(A, x′) = inf
x∈A

a(x, x′).
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7.2. Ordered sets as (P, 2)-categories. (See [11].) Consider the lax extension P̂ of the power-

set monad introduced in Example 2.1.2. Then a monotone map f : (X,≼) → (Y,≼) is proper

if, and only if, for all A ⊆ X,

(3) ↑↑Y f(A) ⊆ f(↑↑XA),

where ↑↑XA = {x ∈ X |A ≼ x}. Taking A = ∅ in (3) one sees immediately that proper maps

are surjective, while putting A = {x} shows that they are (I, 2)-proper. Here closedness of f is

equivalent to surjectivity since, for any A ⊆ X, A(⊤) = X. So, stably-closed (P, 2)-functors need
not be proper. Note, however, that neither of the hypotheses of Theorem 6.1 is satisfied here.

7.3. Topological spaces as (F, 2)-categories. If F̂ is the lax (non-flat) extension of F con-

sidered in Example 2.1.3, an (F, 2)-functor is proper if, and only if, it is closed (in the ordinary

topological sense) and every fibre has a largest element with respect to the underlying order of

X (that is, x ≤ x′ when eX(x) → x′): see [11]. In particular, proper (F, 2)-functors must be

surjective stably-closed maps.

7.4. Topological and approach spaces as (U, V )-categories. For an (U, V )-category (X, a)

and x, y ∈ UX one has, by definition,

â(x, y) =
∨

X∈m−1
X x

Ûa(X, y) =
∨

X∈m−1
X x

∧

A∈X, B∈y

∨

z∈A, y∈B
a(z, y).

Using the hypothesis that V is ccd, we first show that â(x, y) can be written more conveniently,

provided that V also satisfies the property

v ≤ w ∨ z ⇒ v ≤ w or v ≤ z. (∗)

Lemma 7.1. Under hypothesis (*), â(x, y) =
∨

{u ∈ V | ∀A ∈ x : A(u) ∈ y}.

Proof. For “≤”, consider any X ∈ UUX with mX(X) = x. It suffices to show that every

u ≪
∧

A∈X, B∈y

∨

z∈A, y∈B
a(z, y) has the property that A(u) ∈ y for all A ∈ x. But if for A ∈ x we

assume A(u) ̸∈ y, so that B := X \A(u) ∈ y, considering

A := A♯ = {z ∈ UX : A ∈ z} ∈ X (since A ∈ x)

we would conclude

u ≪
∨

z∈A, y∈B
a(z, y)

and therefore A(u) ∩B ̸= ∅, a contradiction.

For “≥”, consider v ≪
∨

{u ∈ V | ∀A ∈ x : A(u) ∈ y} in V . For all A ∈ x, B ∈ y, the

ultrafilter y contains A(v) ∩B ̸= ∅, so that v ≤
∨

z∈A♯

a(z, y) for some y ∈ B, and

v ≤
∧

B∈y

∨

z∈A♯, y∈B

a(z, y)

follows for every A ∈ x. Now,

F = {A ⊆ UX |A♯ ⊆ A for some A ∈ x}
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is a filter on UX, and

J := {B ⊆ UX | v ̸≤
∧

B∈y

∨

z∈B, y∈B
a(z, y)}

is an ideal on UX that is disjoint from F. (Closure of J under binary union needs (*).) There

is therefore an ultrafilter X ⊇ F on UX with X ∩ J = ∅. By definition of F one has x = mX(X),

and by definition of J

v ≤
∧

A∈X, B∈y

∨

z∈A, y∈B
a(z, y) ≤ â(x, y)

follows. !

Proposition 7.2. Under hypothesis (*), for an (U, V )-functor f : (X, a) → (Y, b) one has:

f closed ⇔ Uf closed.

Proof. As a V -functor, Uf is closed if, and only if, it is proper. We must show that propriety of

Uf is equivalent to closedness of f . First let f be closed. For x ∈ UX, y ∈ UY , we must show

b̂(Uf(x), y) ≤
∨

z∈(Uf)−1y

â(x, z), and for that, by Lemma 7.1, it suffices to show that, whenever

u ≪ v in V with B(v) ∈ y for all B ∈ Uf(x), one has some z ∈ UX with Uf(z) = y and

A(u) ∈ z for all A ∈ x. But since f is closed, for every A ∈ x one has f(A)(v) ⊆ f(A(u)) ∈ y.

Therefore, any ultrafilter z on X containing the filterbase {A(u) |A ∈ x} disjoint from the ideal

{C ⊆ X | f(C) ̸∈ y} will be as required.

Conversely, let Uf be proper and y ∈ f(A)(v) with A ⊆ X, v ∈ V . For every u ≪ v we must

show y ∈ f(A(u)). Since every ultrafilter y on Y containing f(A) is the image of an ultrafilter x

on X containing A, one has:

u ≪ v ≤
∨

y∈Uf(A)

b(y, y)

=
∨

y∈Uf(A)

b̂(y, eY (y))

=
∨

x∈UA

b̂(Uf(x), eY (y))

=
∨

x∈UA

∨

x′∈(Uf)−1(eY (y))

â(x, x′)

=
∨

x∈UA

∨

x′∈(Uf)−1(eY (y))

∨
{w ∈ V | ∀B ∈ x : B(w) ∈ x′}.

Hence there exist x ∈ UA, x′ ∈ (Uf)−1(eY (y)) and w ≥ u such that B(w) ∈ x′ whenever B ∈ x.

In particular, A(u) ∈ x′, and so f(A(u)) ∈ Uf(x′) = eY (y), that is y ∈ f(A(u)). !

Since U1 = 1, Û is flat and e◦ is finitely strict (although not strict in general), Theorem 6.1

gives:

Corollary 7.3. Under hypothesis (*), for an (U, V )-functor f : (X, a) → (Y, b) the following

conditions are equivalent:

(i) f is proper;
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(ii) f is stably closed;

(iii) f is closed with compact fibres.

In case V = 2 this Theorem recovers the classical results for Top, while in case V = [0,∞] it

recovers the results obtained in [7].

7.5. Multi-ordered sets as (L, 2)-categories. The extension L̂ of the free-monoid monad

given in Example 2.1.5 is flat, with L1 ̸∼= 1, and e◦ a strict natural transformation. Hence,

by Corollary 3.4, an (L, 2)-functor f : (X, a) → (Y, b) is proper whenever Lf is closed. As in

Corollary 7.2, closedness of f does not imply propriety. In fact, an (L, 2)-functor f : (X, a) →
(Y, b) is:

(1) proper if, and only if, whenever ⟨f(x1), · · · , f(xn)⟩ b y, there exists x ∈ f−1y such that

⟨x1, · · · , xn⟩ a x;
(2) closed if, and only if, whenever ⟨f(x1), · · · , f(xn)⟩ b y, there exist a sublist ⟨x′1, · · · , x′m⟩

of ⟨f(x1), · · · , f(xn)⟩ and x ∈ f−1y such that ⟨x′1, · · · , x′m⟩ a x.

7.6. Labeled graphs as (H, 2)-categories. For the flat extension Ĥ of H = (H ×−,m, e) (H

a monoid) of Example 2.1.6, we have:

(1) Since e◦ is a natural transformation, every (H, 2)-functor f : (X, a) → (Y, b) has proper

fibres; hence,

f proper ⇔ Hf proper ⇔ Hf closed.

(2) Although propriety of fibres is trivial, compactness is not: for (X, a) an H-labeled graph,

(X, a) compact ⇔ ∀α ∈ H, x ∈ X ∃x′ ∈ X x
α !! x′ .

(3) Closed (H, 2)-functors need not be proper: for an (H, 2)-functor f : (X, a) → (Y, b),

f proper ⇔ ∀α ∈ H, x ∈ X, y ∈ Y f(x)
α !! y ⇒ ∃x′ ∈ f−1y : x

α !! x′ ,

f closed ⇔ ∀α ∈ H, x ∈ X, y ∈ Y f(x)
α !! y ⇒ ∃x′ ∈ f−1y ∃β ∈ H : x

β
!! x′ .
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