
LAX DISTRIBUTIVE LAWS FOR TOPOLOGY, II

HONGLIANG LAI, LILI SHEN AND WALTER THOLEN

Abstract. For a small quantaloid Q we consider four fundamental 2-monads T on
Q-Cat, given by the presheaf 2-monad P and the copresheaf 2-monad P†, as well as
their two composite 2-monads, and establish that they all laxly distribute over P. These
four 2-monads therefore admit lax extensions to the category Q-Dist of Q-categories
and their distributors. We characterize the corresponding (T,Q)-categories in each of
the four cases, leading us to both known and novel categorical structures.

1. Introduction

The syntax used in Monoidal Topology [6] is given by a quantale V, a Set-monad T and,
most importantly, by a lax extension of T to the 2-category V-Rel of sets and V-valued
relations, or, equivalently, by a lax distributive law of T over the discrete V-presheaf
monad PV, the Kleisli category of which is exactly V-Rel. Once equipped with such
a lax extension or lax distributive law, the monad T may then be naturally extended
to become a 2-monad on the 2-category V-Cat. This lax monad extension from Set
to V-Cat facilitates the study of greatly enriched structures. For example, for V the
two-element chain and T the ultrafilter monad, while the Eilenberg-Moore category over
Set is CompHaus, over V-Cat one obtains ordered compact Hausdor↵ spaces, and
when V is Lawvere’s [12] extended half-line [0,1], metric compact Hausdor↵ spaces; see
[14, 29, 6]. Moreover, the functorial interaction between the Eilenberg-Moore category
(V-Cat)T and the category (T,V)-Cat of (T,V)-categories is a pivotal step for a serious
study of representability, a powerful property which, in the basic example of the two-chain
and the ultrafilter monad, entails core-compactness, or exponentiability, of topological
spaces; see [3] and [6, Section III.5].

While this mechanism for generating a 2-monad on V-Cat from a Set-monad provides
an indispensable tool in monoidal topology, the question arises whether it is possible to
make a given 2-monad T on V-Cat the starting point of a satisfactory theory, preferably
even in the more general context of a small quantaloid Q, (i.e., a Sup-enriched category),
rather than just a quantale V (i.e., a Sup-enriched monoid), a context that has been
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propagated in this paper’s predecessor [30]. Such theory should, as a first step, entail
the study of lax extensions of T to the 2-category Q-Dist of Q-categories and their
distributors (or (bi)modules), rather than just to Q-Rel, or, equivalently, the study of
lax distributive laws of T over the non-discrete presheaf monad PQ, rather than over its
discrete counterpart. The fact that the non-discrete presheaf monad is, other than its
discrete version, lax idempotent (i.e., of Kock-Zöberlein type [32, 10]), serves as a first
indicator that this approach should in fact lead to a categorically more satisfactory theory.

This paper makes the case for an a�rmative answer to the question raised, even in
the extended context of a given small quantaloid Q. It is centred around four naturally
arising monads T on Q-Cat which do not come about via the mechanism described above,
but should nevertheless be of considerable general interest. They all distribute laxly over
P = PQ and, hence, are laxly extendable to Q-Dist, and we give a detailed description of
the respective lax algebras, or (T,Q)-categories, arising. These monads are

• the presheaf 2-monad P itself (Section 4);

• the copresheaf 2-monad P† (Section 5);

• the double presheaf 2-monad PP† (Section 6);

• the double copresheaf 2-monad P†P (Section 7).

In each of the four cases, the establishment of the needed lax distributive law over P and
the characterization of the corresponding lax algebras, or, equivalently, (T,Q)-categories,
takes considerable “technical” e↵ort, especially in the absence of any noticeable formal
resemblance between the four cases. However, the lax algebras pertaining to both, P
and P†P, are identified as Q-closure spaces, as considered in [21, 23]. Most challenging
has been the identification of the lax algebras pertaining to PP†, which we describe as
Q-interior spaces, a structure considered here for the first time. Also the lax algebras
pertaining to P† are of a novel flavour; they are monoid objects in Q-Dist. Given that
their discrete cousins, i.e., the monoid objects in Q-Rel, are Q-categories, they surely
deserve further study.

We believe that we have given su�ciently many details in order to make the proofs
verifiable for the reader, also since all needed basic tools are comprehensively listed in
Section 2. In contrast to Sections 4�7, the introduction of lax distributive laws of a 2-
monad over the non-discrete presheaf monad and of their lax algebras (as given in Section
3), as well as the proof of the fact that they correspond bijectively to lax extensions of T
to Q-Dist, with lax algebras corresponding to (T,Q)-categories (as given in Section 8),
are straightforward extensions of their “discrete” treatment in [30] and should therefore
constitute a relatively easy read. We have nevertheless given complete proofs, so that
prior reading of [30] is not required for the purpose of understanding this paper.
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2. Quantaloid-enriched categories and their distributors

A quantaloid [18] is a category enriched in the monoidal-closed category Sup [9] of com-
plete lattices and sup-preserving maps. Explicitly, a quantaloid Q is a 2-category with its
2-cells given by an order “�”, such that each hom-set Q(r, s) is a complete lattice and the
composition of morphisms from either side preserves arbitrary suprema. Hence, Q has
“internal homs”, denoted by. and& , as the right adjoints of the composition functors:

� � u a � . u : Q(r, t) //Q(s, t) and v � � a v & � : Q(r, t) //Q(r, s);

explicitly,
u � v & w () v � u � w () v � w . u

for all morphisms u : r // s, v : s // t, w : r // t in Q.
Throughout this paper, we let Q be a small quantaloid. From Q one forms a new

(large) quantaloid Q-Rel of Q-relations with the following data: its objects are those
of Set/Q0 (with Q0 := obQ), i.e., sets X equipped with an array (or type) map |-| :
X // Q0, and a morphism ' : X //7 Y in Q-Rel is a map that assigns to every pair
x 2 X, y 2 Y a morphism '(x, y) : |x| // |y| in Q; its composite with  : Y //7 Z is
defined by

( � ')(x, z) =
_

y2Y

 (y, z) � '(x, y),

and 1�X : X //7 X with

1�X(x, y) =

(
1|x| if x = y,

? else

serves as the identity morphism on X. As Q-relations are equipped with the pointwise
order inherited from Q, internal homs in Q-Rel are computed pointwise as

(✓ . ')(y, z) =
^

x2X

✓(x, z). '(x, y) and ( & ✓)(x, y) =
^

z2Z

 (y, z)& ✓(x, z)

for all ' : X //7 Y ,  : Y //7 Z, ✓ : X //7 Z.
A (small) Q-category is precisely an (internal) monad in the 2-category Q-Rel; or

equivalently, a monoid in the monoidal-closed category (Q-Rel(X,X), �), for some X
over Q0. Explicitly, a Q-category consists of an object X in Set/Q0 and a Q-relation
a : X //7 X (its “hom”), such that 1�X � a and a � a � a. For every Q-category (X, a),
the underlying (pre)order on X is given by

x 6 x0 () |x| = |x0| and 1|x| � a(x, x0),

and we write x ⇠= x0 if x 6 x0 and x0 6 x.
A map f : (X, a) // (Y, b) between Q-categories is a Q-functor (resp. fully faithful Q-

functor) if it lives in Set/Q0 and satisfies a(x, x0) � b(fx, fx0) (resp. a(x, x0) = b(fx, fx0))
for all x, x0 2 X. With the pointwise order of Q-functors inherited from Y , i.e.,

f 6 g : (X, a) // (Y, b) () 8x 2 X : fx 6 gx () 8x 2 X : 1|x| � b(fx, gx),
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Q-categories and Q-functors are organized into a 2-category Q-Cat.
The one-object quantaloids are the (unital) quantales (see [17]); equivalently, a quan-

tale is a complete lattice V with a monoid structure whose binary operation ⌦ preserves
suprema in each variable. The ⌦-neutral element is generally denoted by k; so k = 1⇤ if
we denote by ⇤ the only object of the monoid V, considered as a category.

2.1. Example.

(1) The initial quantale is the two-element chain 2 = {? < >}, with ⌦ = ^, k = >,
and 2-Cat is the category Ord of preordered sets and monotone maps.

(2) The extended real line [0,1], ordered by the natural �, is a quantale with ⌦ = +,
naturally extended to 1 (see [12]). We write Met = [0,1]-Cat for the resulting
category of (generalized) metric spaces and non-expansive maps.

(3) Every frame may be considered as a quantale. In fact, these are precisely the com-
mutative quantales in which every element is idempotent. For example, ([0,1],�)
may be considered as a quantale [0,1]max with ↵ ⌦ � = max{↵, �}. The resulting
category [0,1]max-Cat is the category UMet of (generalized) ultrametric spaces
(see [19]).

(4) From a small site (C,F) one can construct a small quantaloid R := R(C,F) (see
[31]), defined by the following data:

• objects: the objects of C;
• morphisms: for objects u, v in C, an arrow from u to v is a closed subfunctor
↵ ✓ û⇥ v̂ with respect to the coverage F in [Cop,Set], where û and v̂ are the
representable presheaves C(�, u) and C(�, v), respectively;

• composition: � •↵ = � � ↵, with � denoting the composition of relations in the
topos [Cop,Set] and (�) the closure with respect to the coverage F .

It is shown in [4, 5] that Cauchy complete R-categories are equivalent to internal
ordered objects in the category Sh(C,F) of sheaves on the site (C,F).

Recall that a quantale V is called divisible (see [7]) if for all u � v in V, there are
w,w0 2 V such that u = v ⌦w = w0 ⌦ v, or equivalently, u = v ⌦ (v & u) = (u. v)⌦ v.
A divisible quantale V, since k � > guarantees the existence of some w 2 V with > =
k⌦> = w ⌦>⌦> = w ⌦> = k, must be integral, i.e., k = >.

Every quantaloid Q gives rise to the quantaloid DQ of “diagonals of Q” (see [26]),
which has an easy description when the quantaloid is a divisible quantale V (see [8, 15]):
the objects of the quantaloid DV are the elements of V, and a morphism d from u to v is
an element in V with d � u ^ v, we write d : u  v in this case. The composition of d
with e : v  w in DV is defined by e � d = e⌦ (v & d) = (e. v)⌦ d in V. The order of
the hom-sets of DV is inherited from V.
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Given a DV-category (X, a), since in the quantaloid DV one has 1|x| = |x| = a(x, x),
the conditions on the DV-category structure a, given by a map X ⇥ X // V, may be
reformulated as

a(x, y) � a(x, x) ^ a(y, y) and a(y, z)⌦ (a(y, y)& a(x, y)) � a(x, z),

for all x, y, z 2 X.
There are lax homomorphisms, called forward and backward globalization functors (see

[15, 28]),

� : DV // V, (d : u v) 7! d. u,

� : DV // V, (d : u v) 7! v & d,

which induce two functors from DV-Cat to V-Cat.
When one considers V as a V-category (V, h) with h(u, v) = v . u, there is a full

reflective embedding
E� : DV-Cat // V-Cat/V.

Indeed, given a DV-category (X, a), the V-relation d, defined with the forward globaliza-
tion functor by

8x, y 2 X : d(x, y) = a(x, y). a(x, x),

makesX a V-category over V, via the V-functor t : (X, d) //(V, h) with tx = a(x, x) for all
x 2 X. Conversely, for a V-category (X, d) equipped with a V-functor t : (X, d) // (V, h),
define

8x, y 2 X : a(x, y) = d(x, y)⌦ tx.

To see that (X, a) is indeed a DV-category with array map t : X // V, let us first note
that, since t : (X, d) // (V, h) is a V-functor, d(x, y) � ty . tx, so that d(x, y)⌦ tx � ty
and then a(x, y) = d(x, y) ⌦ tx � tx ^ ty follows, for all x, y 2 X. Secondly, for all
x, y, z 2 X,

a(y, z) � a(x, y) = d(y, z)⌦ ty ⌦ (ty & (d(x, y)⌦ tx))

= d(y, z)⌦ d(x, y)⌦ tx � d(x, z)⌦ tx = a(x, z).

Thus, (X, a) is a DV-category, as desired.
Let V? be the V-category with underlying set V and V-category structure

h?(u, v) = v & u.

Of course, when V is commutative, V? is the dual of V. One obtains another full reflective
embedding

E� : DV-Cat // V-Cat/V?,

as follows. Given a DV-category (X, a), the V-relation d, defined by the backward global-
ization functor,

8x, y 2 X, d(x, y) = a(y, y)& a(x, y),

makes X a V-category over V?, via the V-functor t : (X, d) // (V, h?) with ty = a(y, y)
for all y 2 X.
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2.2. Example. A D[0,1]-category (X, a) is exactly a (generalized) partial metric space
(see [13, 2, 8, 15]). The category structure a is a map a : X ⇥ X // [0,1] that must
satisfy

(1) max{a(x, x), a(y, y)}  a(x, y) for all x, y 2 X,

(2) a(x, z)  a(x, y)� a(y, y) + a(y, z) for all x, y, z 2 X.

A D[0,1]-functor f : (X, a) // (Y, b) is a map f : X // Y such that

(3) b(fx, fy)  a(x, y) for all x, y 2 X,

(4) b(fx, fx) = a(x, x) for all x 2 X.

We write ParMet for the category of partial metric spaces. For V = [0,1], both

E� : ParMet //Met/[0,1] and E� : ParMet //Met/[0,1]?

give isomorphisms of categories.

A Q-relation ' : X //7 Y becomes a Q-distributor ' : (X, a) //� (Y, b) if it is com-
patible with the Q-categorical structures a and b; that is,

b � ' � a � '.

Q-categories and Q-distributors constitute a quantaloid Q-Dist that contains Q-Rel as
a full subquantaloid, in which the composition and internal homs are calculated in the
same way as those of Q-relations; the identity Q-distributor on (X, a) is given by its hom
a : (X, a) //� (X, a).

Each Q-functor f : (X, a) // (Y, b) induces an adjunction f⇤ a f ⇤ in Q-Dist, given
by

f⇤ : (X, a) //� (Y, b), f⇤(x, y) = b(fx, y) and
f ⇤ : (Y, b) //� (X, a), f ⇤(y, x) = b(y, fx),

(2.i)

and called the graph and cograph of f , respectively. Obviously, a = (1X)⇤ = 1⇤X for any
Q-category (X, a); hence, a = 1⇤X will be our standard notation for identity morphisms
in Q-Dist.

2.3. Lemma. [20, 23] Let f : X // Y be a Q-functor.

(1) f is fully faithful if, and only if, f ⇤ � f⇤ = 1⇤X .

(2) If f is essentially surjective, in the sense that, for any y 2 Y , there exists x 2 X
with y ⇠= fx, then f⇤ � f ⇤ = 1⇤Y .

For an object s in Q, and with {s} denoting the singleton Q-category, the only object
of which has array s and hom 1s, Q-distributors of the form � : X //� {s} are called
presheaves on X and constitute a Q-category PX, with 1⇤PX(�, �

0) = �0 . �. Dually, the
copresheaf Q-category P†X consists of Q-distributors ⌧ : {s} //� X with 1⇤P†X(⌧, ⌧

0) =
⌧ 0 & ⌧ .
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2.4. Remark. For any Q-category X, it follows from the definition that the underlying
order on P†X is the reverse local order in Q-Dist, i.e.,

⌧ 6 ⌧ 0 in P†X () ⌧ 0 � ⌧ in Q-Dist.

That is why we use a di↵erent symbol “6” for the underlying order of Q-categories and
the 2-cells in Q-Cat, while the 2-cells in Q and Q-Dist are denoted by “�”.

A Q-category X is complete if the Yoneda embedding

yX : X // PX, x 7! 1⇤X(�, x)

has a left adjoint supX : PX //X in Q-Cat; that is,

1⇤X(supX�,�) = 1⇤PX(�, yX�) = 1⇤X . �

for all � 2 PX. It is well known that X is a complete Q-category if, and only if,
Xop := (X, (1⇤X)

op) with (1⇤X)
op(x, x0) = 1⇤X(x

0, x) is a complete Qop-category (see [24]),
where the completeness of Xop may be translated as the co-Yoneda embedding

y†X : X // P†X, x 7! 1⇤X(x,�)

admitting a right adjoint infX : P†X //X in Q-Cat.

2.5. Lemma. [23, 24] Let X be a Q-category.

(1) (Yoneda Lemma) For all � 2 PX, ⌧ 2 P†X,

� = (yX)⇤(�, �) = 1⇤PX(yX�, �) and ⌧ = (y†X)
⇤(⌧,�) = 1⇤P†X(⌧, y

†
X�).

In particular, both yX : X // PX and y†X : X // P†X are fully faithful.

(2) supX ·yX ⇠= 1X , infX ·y†X ⇠= 1X .

(3) Both PX and P†X are separated1 and complete, with

supPX� = � � (yX)⇤ and infP†X⌧ = (y†X)
⇤ � ⌧,

for all � 2 PPX, ⌧ 2 P†P†X.

Each Q-distributor ' : X //� Y induces Kan adjunctions [23] in Q-Cat given by

PY PX
'�

//

PXPY
'�

oo

?

'�⌧ = ⌧ � ', '�� = � . '
and

P†Y P†X
'�

//

P†XP†Y
'�

oo

?

'�⌧ = '& ⌧, '�� = ' � �.
(2.ii)

1A Q-category X is separated if x ⇠= x0 implies x = x0 for all x, x0 2 X.
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Moreover, all the assignments in (2.i) and (2.ii) are 2-functorial, and one has two pairs of
adjoint 2-functors [4] described by

X Y
'
//�

Y PX
 �'
//

 �' y = '(�, y) Q-Cat (Q-Dist)op,
(�)⇤

//

(Q-Dist)op,Q-Cat
P

oo

?

('� : PY // PX) �
oo (' : X //� Y )

X Y
'
//�

X P†Y
�!'
//

�!' x = '(x,�) Q-Cat (Q-Dist)co,
(�)⇤

//

(Q-Dist)co,Q-Cat
P†

oo

?

('� : P†X // P†Y ) �
oo (' : X //� Y )

(2.iii)

where “co” refers to the dualization of 2-cells. The unit y and the counit " of the adjunction
(�)⇤ a P are respectively given by the Yoneda embeddings and their graphs:

"X := (yX)⇤ : X //� PX.

The presheaf 2-monad P = (P, s, y) on Q-Cat induced by (�)⇤ a P sends each Q-functor
f : X // Y to

f! := (f ⇤)� : PX // PY,

which admits a right adjoint f ! := (f ⇤)� = (f⇤)� : PY // PX in Q-Cat; the monad
multiplication s is given by

sX = "�X = supPX = y!X : PPX // PX, (2.iv)

where supPX = y!X is an immediate consequence of Lemma 2.5. Similarly, the unit y†

is given by the co-Yoneda embeddings, and "† := (y†⇤)
⇤ is the counit of the adjunction

(�)⇤ a P†. The induced copresheaf 2-monad P† = (P†, s†, y†) on Q-Cat sends f to

f¡ := (f⇤)
� : P†X // P†Y,

which admits a left adjoint f ¡ := (f ⇤)� = (f⇤)� : P†Y // P†X in Q-Cat, and the monad
multiplication is given by

s†X = ("†X)
� = infP†X = (y†X)

¡ : P†P†X // P†X. (2.v)

2.6. Lemma. Let f : X // Y be a Q-functor.

(1) f is fully faithful () f ! · f! = 1PX () f ¡ · f¡ = 1P†X () f! : PX // PY is
fully faithful () f¡ : P†X // P†Y is fully faithful.

(2) If f is essentially surjective, then f! ·f ! = 1PY , f¡ ·f ¡ = 1P†Y and both f! : PX //PY ,
f¡ : P†X // P†Y are surjective.

Proof. Straightforward, with Lemma 2.3 and the definitions of f!, f !, f¡, f ¡.
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2.7. Lemma. [16, 24] For all Q-functors f : X // Y and g : Y //X,

f a g () f⇤ = g⇤ () f ! = g! () f¡ = g¡

() f! a g! () f ! a g! () f¡ a g¡ () f ¡ a g¡.

2.8. Lemma. For all Q-functors f, g : X // Y and Q-distributors ', : X //� Y ,

(1) f 6 g () f⇤ ⌫ g⇤ () f ⇤ � g⇤ () f! 6 g! () f¡ 6 g¡ () f ! > g! ()
f ¡ > g¡.

(2) ' �  () '� 6  � () '� >  � ()  �' 6 � () �!' > �! .

2.9. Lemma. [21, 24] Let f : X // Y be a Q-functor between complete Q-categories.
Then

supY · f! 6 f · supX and f · infX 6 infY · f¡.

Furthermore, f is a left (resp. right) adjoint in Q-Cat if, and only if, supY ·f! = f · supX

(resp. f · infX = infY ·f¡).
The above lemma shows that left (resp. right) adjoint Q-functors between complete

Q-categories are exactly sup-preserving (resp. inf-preserving) Q-functors. Thus we de-
note the 2-subcategory of Q-Cat consisting of separated complete Q-categories and sup-
preserving (resp. inf-preserving) Q-functors by Q-Sup (resp. Q-Inf).

2.10. Lemma. The following identities hold for all Q-distributors ' : X //� Y .

(1) yX =
 �
1⇤X , y†X =

�!
1⇤X .

(2) 1PX =
 ���
(yX)⇤, 1P†X =

���!
(y†X)

⇤.

(3)  �' = '� · yY , �!' = '� · y†X .

(4) ' = �' ⇤ � (yX)⇤ = (y†Y )
⇤ � �!' ⇤.

(5) (yY )⇤ � ' = '�⇤ � (yX)⇤, ' � (y†X)⇤ = (y†Y )
⇤ � ('�)⇤.

Proof. (1), (3) are trivial, and (2), (4) are immediate consequences of the Yoneda lemma.
For (5), note that the 2-functor

P : (Q-Dist)op //Q-Cat, (' : X //� Y ) 7! ('� : PY // PX)

is faithful, and

((yY )⇤ � ')� = '� · y!Y = '� · supPY = supPX · ('�)! = y!X · '�⇤� = ('�⇤ � (yX)⇤)�

follows by applying Lemma 2.9 to the left adjoint Q-functor '� : PY // PX. The other
identity can be verified analogously.
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2.11. Lemma. The following identities hold for all Q-functors f : X // Y .

(1) f¡! = f ¡!, f!¡ = f !¡, (f!)! = (f !)!, (f¡)¡ = (f ¡)¡.

(2)
 �
f⇤ = f ! · yY ,

�!
f⇤ = y†Y · f = f¡ · y†X .

(3)
�!
f ⇤ = f ¡ · y†Y ,

 �
f ⇤ = yY · f = f! · yX .

(4) (yX)⇤ � f ⇤ = (f!)⇤ � (yY )⇤, f! · y!X = y!Y · f!!, (yX)¡ · f ¡ = (f!)¡ · (yY )¡.

(5) f⇤ � (y†X)⇤ = (y†Y )
⇤ � (f¡)⇤, f¡ · (y†X)¡ = (y†Y )

¡ · f¡¡, (y†X)! · f ! = (f¡)! · (y†Y )!.

Proof. For (1), f¡! = f ¡! since (f ¡)! a f ¡! and (f ¡)! a f¡!, and the other identities can be
checked similarly. The non-trivial identities in (2) and (3) follow respectively from the
naturality of y† and y, while (4) and (5) are immediate consequences of Lemma 2.10(5).

2.12. Lemma. The following identities hold for all Q-distributors ' : X //� Y ,  :
Y //� Z and Q-functors f whenever the operations make sense:

(1)
 ���
 � ' = '� ·

 �
 = y!X · �' ! ·

 �
 ,

 ���
 � f ⇤ = f! ·

 �
 ,

 ���
f ⇤ � ' = �' · f .

(2)
���!
 � ' =  � ·�!' = (y†Z)

¡ ·
�!
 ¡ ·�!' ,

���!
 � f⇤ =

�!
 · f ,

���!
f⇤ � ' = f¡ ·�!' .

Proof. Straightforward calculations with the help of Lemmas 2.10 and 2.11.

2.13. Lemma. For Q-functors f, g : PX // Y (resp. f, g : P†X // Y ), if f (resp. g) is
a left (resp. right) adjoint in Q-Cat, then

fyX 6 gyX (resp. fy†X 6 gy†X) () f 6 g.

Proof. For the non-trivial direction, suppose that f a h : Y // PX, then fyX 6 gyX
implies yX 6 hgyX . Consequently, the Yoneda lemma and the Q-functoriality of hg :
PX // PX imply

� = (yX)⇤(�, �) = 1⇤PX(yX�, �) � 1⇤PX(hgyX�, hg�) � 1⇤PX(yX�, hg�) = hg�

and thus � 6 hg�, hence f� 6 g� for all � 2 PX.

As one already has the isomorphisms of ordered hom-sets

Q-Dist(X, Y ) ⇠= Q-Cat(Y,PX) ⇠= (Q-Cat)co(X,P†Y )

'
s !  �' s ! �!'

from the adjunctions (2.iii), more isomorphisms can be formed in Q-Sup and Q-Inf :
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2.14. Lemma. [23] For all Q-categories X, Y , one has the natural isomorphisms of or-
dered hom-sets

Q-Dist(X, Y ) ⇠= (Q-Sup)co(PX,P†Y ) ⇠= Q-Inf(P†Y,PX)
⇠= Q-Sup(PY,PX) ⇠= (Q-Inf)co(PX,PY ).

Proof.EachQ-distributor ' : X //� Y induces the Isbell adjunction '" a '# : P†Y //PX
[23] with

'"� = '. � and '#⌧ = ⌧ & '

for all � 2 PX, ⌧ 2 P†Y . It is straightforward to check that

Q-Dist(X, Y ) ⇠= (Q-Sup)co(PX,P†Y ) ⇠= Q-Inf(P†Y,PX)

'
s ! '"

s ! '#

⇠= Q-Sup(PY,PX) ⇠= (Q-Inf)co(PX,PY )
s ! '�

s ! '�

gives the required isomorphisms. The readers may refer to [23, Theorems 4.4 & 5.7] for
details.

3. The non-discrete version of lax distributive laws and their lax algebras

In this section we establish the non-discrete version of the lax distributive laws considered
in [30]. For a 2-monad T = (T,m, e) on Q-Cat, a lax distributive law � : TP // PT is
given by a family

{�X : TPX // PTX}X2ob(Q-Cat)

of Q-functors satisfying the following inequalities for all Q-functors f : X // Y :

(a)

PTX PTY
(Tf)!

//

TPX

PTX

�X
✏✏

TPX TPY
T (f!)

// TPY

PTY

�Y
✏✏

6 (Tf)! · �X 6 �Y · T (f!) (lax naturality of �);

(b)
TPX PTX

�X

//

TX

TPX

T yX

��

TX

PTX

yTX

��

> yTX 6 �X · T yX (lax P-unit law);

(c)

TPX PTX
�X

//

TPPX

TPX

T sX
✏✏

TPPX PPTXPPTX

PTX

sTX

✏✏

TPPX PTPX
�PX

// PTPX PPTX
(�X)!

//

> sTX · (�X)! · �PX 6 �X · T sX (lax P-mult. law);
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(d)
TPX PTX

�X

//

PX

TPX

ePX

��

PX

PTX

(eX)!

��

> (eX)! 6 �X · ePX (lax T-unit law);

(e)

TPX PTX
�X

//

TTPX

TPX

mPX
✏✏

TTPX PTTXPTTX

PTX

(mX)!
✏✏

TTPX TPTX
T�X

// TPTX PTTX
�TX

//

> (mX)!·�TX ·T�X 6 �X ·mPX (lax T-mult. law).

Each of these laws is said to hold strictly (at f or X) if the respective inequality sign
may be replaced by an equality sign; for a strict distributive law, all lax laws must hold
strictly everywhere. For simplicity, in what follows, we refer to a lax distributive law
� : TP // TP just as a distributive law, which indirectly emphasizes the fact that the
ambient 2-cell structure is given by order; we also say that T distributes over P by � in
this case, adding strictly when � is strict.

3.1. Remark. Recall that in the discrete case (see [30]), a distributive law � of a monad
T = (T,m, e) on Set/Q0 over the discrete presheaf monad P on Set/Q0 is usually required
to be monotone, i.e.,

f 6 g =) �X · Tf 6 �X · Tg
for all Q-functors f, g : Y // PX. As for the non-discrete case, T = (T,m, e) becomes a
2-monad on the 2-category Q-Cat and, hence, the monotonicity of a distributive law of
T over the 2-monad P on Q-Cat is automatically satisfied through the 2-functoriality of
T .

3.2. Definition. For a distributive law � : TP // PT , a lax �-algebra (X, p) over Q is
a Q-category X with a Q-functor p : TX // PX satisfying

(f)

TX PXp
//

X

TX

eX

��

X

PX

yX

��

> yX 6 p · eX (lax unit law);

(g)

TX PXp
//

TTX

TX

mX

✏✏

TTX PPXPPX

PX

sX
✏✏

TTX TPX
Tp
// TPX PTX

�X
// PTX PPX

p!
//

> sX · p! · �X · Tp 6 p ·mX (lax mult. law).

A lax �-homomorphism f : (X, p) //(Y, q) of lax �-algebras is a Q-functor f : X //Y
which satisfies

(h)

PX PY
f!

//

TX

PX

p
✏✏

TX TY
Tf

// TY

PY

q
✏✏

6 f! · p 6 q · Tf (lax homomorphism law).
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The resulting 2-category is denoted by (�,Q)-Alg, with the local order inherited from
Q-Cat.

3.3. Proposition. (�,Q)-Alg is topological over Q-Cat and, hence, totally complete
and totally cocomplete.

Proof. For any family of �-algebras (Yj, qj) and Q-functors fj : X // Yj (j 2 J),

p :=
^

j2J

(fj)
! · qj · Tfj

gives the initial structure on X with respect to the forgetful functor (�,Q)-Alg //Q-Cat,
and thus establishes the topologicity of (�,Q)-Alg over Q-Cat (see [1]). The total com-
pleteness and total cocompleteness of (�,Q)-Alg then follow from that of Q-Cat (see [22,
Theorem 2.7]).

4. The distributive law of the presheaf 2-monad

The presheaf 2-monad P on Q-Cat is lax idempotent, or of Kock-Zöberlein type [25], in
the sense that

(yX)! 6 yPX

for all Q-categories X. This fact makes it possible to establish the distributivity of P over
itself:

4.1. Theorem. The presheaf 2-monad P distributes over itself by � with

�X = yPX · y!X = yPX · supPX : PPX // PPX.

Proof. We show that � satisfies the laws (a), (b), (c) and (e) strictly and (d) laxly.

(a) f!! ·�X = �Y ·f!! for any Q-functor f : X //Y . The commutativity of the upper square
and the lower square of the diagram

PX PY
f!

//

PPX

PX

supPX

✏✏

PPX PPY
f!!

// PPY

PY

supPY

✏✏

PPX PPY
f!!

//

PX

PPX

yPX

✏✏

PX PYPY

PPY

yPY

✏✏

PPX

PPX

�X

##

PPY

PPY

�Y

{{

respectively follow from Lemma 2.9 and the naturality of y.
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(b) yPX = �X · (yX)!. Since yX is fully faithful, one has y!X · (yX)! = 1PX and thus the
diagram

PPX PPX
�X

//

PX

PPX

(yX)!

⇥⇥

PX

PPX

yPX

⌧⌧

PPX PPX

PX

PPX

99

y!X

PX

PPX
yPX

%%

PX

PX

is commutative.

(c) sPX · (�X)! · �PX = �X · (sX)!. In the following diagram, the commutativity of the left
and the middle trapezoids both follow from the naturality of y, and the right triangle
commutes since yPX is fully faithful.

PPX PPX

PPPX

PPX

(sX)!=(y!X)!=((yX)!)!

✏✏

PPPX PPPXPPPX

PPX

sPX=y!PX

✏✏

PPPX PPX
y!PX

// PPX PPPXyPPX
// PPPX PPX

(y!X)!

// PPX PPPX
(yPX)!

//

PPX PX
y!X

// PX PPX
yPX

//

PPPX PPPX

�PX

((

PPPX PPPX

(�X)!

((

PPX PPX

�X

33

PPX

PX

y!X
$$

PPX

PPX

(d) (yX)! 6 �X · yPX . In the following diagram, supPX ·yPX = 1PX and P being lax idem-
potent guarantees (yX)! 6 yPX .

PPX PPX
�X

//

PX

PPX

yPX

⇥⇥

PX

PPX

(yX)!

⌧⌧

PPX PPX

PX

PPX

99

supPX

PX

PPX
yPX

%%

PX

PX >

(e) (sX)! · �PX · (�X)! = �X · sPX . The naturality of y ensure that the left and the right



LAX DISTRIBUTIVE LAWS FOR TOPOLOGY, II 15

trapezoids of the diagram

PPX PPX

PPPX

PPX

sPX=y!PX

✏✏

PPPX PPPXPPPX

PPX

(sX)!=(y!X)!

✏✏

PPPX PPX
(y!X)!=((yX)!)!

// PPX PPPX
(yPX)!

// PPPX PPX
y!PX

// PPX PPPXyPPX
//

PPX PX
y!X

// PX PPX
yPX

//

PPPX PPPX

(�X)!

((

PPPX PPPX

�PX

((

PPX PPX

�X

33

PPX

PX

y!X
$$

PPX

PX

y!X
zz

are commutative, and the commutativity of the middle triangle follows from the full
faithfulness of yPX .

A Q-closure space [21, 23] is a pair (X, c) that consists of a Q-category X and a
Q-closure operation c on PX; that is, a Q-functor c : PX // PX satisfying 1PX 6 c
and c · c = c. A continuous Q-functor f : (X, c) // (Y, d) between Q-closure spaces is a
Q-functor f : X // Y such that

f! · c 6 d · f! : PX // PY.

Q-closure spaces and continuous Q-functors constitute a 2-category Q-Cls with the
local order inherited from Q-Cat.

4.2. Theorem. (�,Q)-Alg ⇠= Q-Cls.

Proof. For any Q-category X, we show that a Q-functor c : PX // PX gives a lax
�-algebra structure on X if, and only if, (X, c) is a Q-closure space.

c satisfies (f) () 1PX 6 c: This is an immediate consequence of Lemma 2.13.
c satisfies (g) () c · c 6 c: Note that

c · c = supPX · yPX · c · supPX · yPX · c
= supPX · c! · yPX · supPX · c! · yPX (y is natural)

= supPX · c! · �X · c! · yPX ,

and thus

c · c 6 c () supPX · c! · �X · c! · yPX 6 c

() supPX · c! · �X · c! 6 c · supPX , (supPX a yPX)

which is precisely the condition (g).
Therefore, the isomorphism between (�,Q)-Alg and Q-Cls follows since a continuous

Q-functor f : (X, c) // (Y, d) is exactly a Q-functor f : X // Y satisfying the condition
(h).
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5. The strict distributive law of the copresheaf 2-monad

5.1. Theorem. The copresheaf 2-monad P† distributes strictly over P by �† with

�†X = ((yX)¡)
! · yP†PX : P†PX // PP†X.

Proof. We show that �† satisfies the laws (a)-(e) strictly.

(a) f¡! · �†X = �†Y · f!¡ for any Q-functor f : X // Y . Indeed, both the upper square and
the lower square of the diagram

PP†PX PP†PY
f!¡!=(f!)¡!

//

P†PX

PP†PX

y
P†PX
✏✏

P†PX P†PY
f!¡

// P†PY

PP†PY

y
P†PY

✏✏

PP†X PP†Y
f¡!=f ¡!

//

PP†PX

PP†X

((yX)¡)!

✏✏

PP†PX PP†PYPP†PY

PP†Y

((yY )¡)!

✏✏

P†PX

PP†X

�†
X

##

P†PY

PP†Y

�†
Y

{{

are commutative, respectively by the naturality of y and Lemma 2.11(4).

(b) yP†X = �†X · (yX)¡. For this, note that both, the left square and the right triangle of
the diagram

P†PX PP†PX
y
P†PX

//

P†X

P†PX

(yX)¡

✏✏

P†X PP†X
y
P†X

// PP†X

PP†PX

(yX)¡!

✏✏

PP†PX PP†X
((yX)¡)!

//

PP†X

PP†PX

PP†X

PP†XP†PX PP†X

�†
X

33

are commutative, by the naturality of y and the full faithfulness of (yX)¡, respectively.

(c) sP†X · (�†X)! · �
†
PX = �†X · (sX)¡. In the following diagram, the naturality of y guarantees

the commutativity of the left square and the right triangle, and together with the full
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faithfulness of yP†PX it forces the commutativity of the middle square.

P†PX

P†PPX

P†PX

(sX)¡=(y!X)¡

✏✏

P†PPX PPP†XPPP†XPPP†X

PP†X

s
P†X=y!

P†X

��

P†PPX PP†PPXy
P†PPX

// PP†PPX PP†PX
((yPX)¡)!

// PP†PX PPP†PX
(y

P†PX)!
//

P†PX PP†PX
y
P†PX

//

PPP†PX PPP†X
(((yX)¡)!)!=((yX)¡!)!

//PPP†PX

PP†PX

y!
P†PX

✏✏

PP†PX PP†X
((yX)¡)!

//

P†PPX PP†PX

�†
PX

((

PP†PX PPP†X

(�†
X)!

))

P†PX PP†X

�†
X

44

PP†PX

PP†PXPP†PX

PP†X

((yX)¡)!

✏✏

PP†PPX

PP†PX

(y!X)¡!=y!¡!X=(yX)!¡)!

✏✏

(d) (y†X)! = �†X · y†PX . From y!X = supPX one sees that the upper triangle of the diagram

P†PX PP†X

PX

P†PX

y†PX

✏✏

PX PXPX

PP†X

(y†X)!

✏✏

PX

PPX

yPX
((

PX PXPX

PPX

66

y!X

P†PX PP†PX
y
P†PX

// PP†PX PP†X
((yX)¡)!

//

PPX

PP†PX

(y†PX)!
✏✏

P†PX PP†X

�†
X

44

is commutative, and the commutativity of the left and the right trapezoids follow
respectively from the naturality of y and Lemma 2.11(5).

(e) (s†X)! · �
†
P†X · (�†X)¡ = �†X · s†PX . This follows from the commutativity of the following
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diagram:

PP†P†PX PP†PP†PX
(y

P†PX)¡!
//

P†P†PX

PP†P†PX

y
P†P†PX

✏✏

P†P†PX P†PP†PX
(y

P†PX)¡
// P†PP†PX

PP†PP†PX

y
P†PP†PX

✏✏

PP†PP†PX PP†PP†X
(((yX)¡)!)¡!=((yX)¡)!¡!=((yX)¡!¡)!

//

P†PP†PX

PP†PP†PX

P†PP†PX P†PP†X
(((yX)¡)!)¡

// P†PP†X

PP†PP†X

y
P†PP†X

✏✏

PP†P†PX PP†P†X
((yX)¡¡)!

//

PP†PP†PX

PP†P†PX

((y
P†PX)¡)!

✏✏

PP†PP†PX PP†PP†XPP†PP†X

PP†P†X

((y
P†X)¡)!

✏✏

P†P†PX

P†PX

s†PX

zz

PP†P†PX

PP†P†PX

PP†P†PX

PP†PX

(s†PX)!

✏✏

P†PX

PP†PX

y
P†PX

��

PP†P†PX

PP†PX

(y†
P†PX

)!
ww

PP†PX

PP†X

((yX)¡)!

✏✏

PP†P†X

PP†X

(s†X)!=(y†
P†X

)!

uu

P†P†PX P†PP†X

(�†
X)¡

**

P†PP†X

PP†P†X

�†
P†X

~~

P†PX

PP†X

�†
X

$$

1�

2� 3�

4� 5�

6�

7�

Explicitly, the commutativity of 1�, 2�, 3�, 5� follow from the naturality of y, 4� follows
from the full faithfulness of (yP†PX)¡, 6� follows from Equation (2.v) and Lemma 2.7,
and 7� follows from the naturality of y†.

5.2. Remark. Stubbe described a strict distributive law of P over P† given by

PP†X
(yX)¡!

// PP†PX
sup

P†PX
// P†PX (5.i)

in [27]. In fact, the strict distributive law �†X : P†PX //PP†X defined in Theorem 5.1 is
precisely the right adjoint of (5.i) in Q-Cat.

Recall that a Q-category is a monad in Q-Rel. Similarly, a monad in Q-Dist gives
“a Q-category over a base Q-category”; that is, a Q-category X equipped with a Q-
distributor ↵ : X //� X, such that 1⇤X � ↵ and ↵ � ↵ � ↵. The latter two inequalities
actually force the Q-relation ↵ on X to be a Q-distributor, since with a = 1⇤X one has

a � (↵ � a) � a � (↵ � ↵) � a � ↵ � ↵ � ↵ � ↵.

Thus, a monad in Q-Dist is given by a set X over Q0 that comes equipped with two
Q-category structures, comparable by “�”. With morphisms to laxly preserve both struc-
tures we obtain the 2-category Mon(Q-Dist); hence, its morphisms f : (X,↵) // (Y, �)
are precisely Q-functors f : X // Y with

f! · �↵ 6
 �
� · f
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or, equivalently, ↵(x, x0) � �(fx, fx0) for all x, x0 2 X.
We also point out that the copresheaf 2-monad P† on Q-Cat is oplax idempotent, or

of dual Kock-Zöberlein type, in the sense that

y†P†X 6 (y†X)¡

for all Q-categories X. We shall use this fact to characterize (�†,Q)-algebras as monads
in Q-Dist:

5.3. Theorem. (�†,Q)-Alg ⇠= Mon(Q-Dist).

Proof. Step 1. We show that if (X, p) is a (�†,Q)-algebra, then

p = infPX · p¡ · (y†X)¡. (5.ii)

Indeed, the conditions (f) and (g) for the (�†,Q)-algebra (X, p) read as

(f) yX 6 p · y†X and

(g) y!X · p! · �†X · p¡ 6 p · (y†X)¡,

and consequently

p = infPX · y†PX · p
= infPX · p¡ · y†P†X (y† is natural)

6 infPX · p¡ · (y†X)¡ (P† is oplax idempotent)

= (y†X)
! · (y†X)! · infPX · p¡ · (y†X)¡ (y†X is fully faithful)

= (y†X)
! · �†X · y†PX · infPX · p¡ · (y†X)¡ (�† satisfies (d))

6 (y†X)
! · �†X · p¡ · (y†X)¡ (y†PX a infPX)

6 (y†X)
! · p! · p! · �†X · p¡ · (y†X)¡ (p! a p!)

6 y!X · p! · �†X · p¡ · (y†X)¡ (p satisfies (f))

6 p · (y†X)¡ · (y
†
X)¡ (p satisfies (g))

= p. (y†X is fully faithful)

Step 2. As an immediate consequence of (5.ii), p is a right adjoint in Q-Cat. For
any Q-category X, as one already has

Q-Dist(X,X) ⇠= Q-Inf(P†X,PX)

from Lemma 2.14, with the isomorphism given by

(↵ : X //� X) 7! (↵# : P†X // PX, ↵#⌧ = ⌧ & ↵),

in order for us to establish a bijection between monads on X (in Q-Dist) and (�†,Q)-
algebra structures on X, it su�ces to prove
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• 1⇤X � ↵ () ↵# satisfies (f), and

• ↵ � ↵ � ↵ () ↵# satisfies (g)

for all Q-distributors ↵ : X //� X.

First, 1⇤X � ↵ () ↵# satisfies (f). Since
 �
1⇤X = yX and, as one easily sees, �↵ = ↵# ·y†X ,

the equivalence 1⇤X � ↵ () yX 6 ↵# · y†X follows immediately.
Second, ↵ � ↵ � ↵ () ↵# satisfies (g), i.e.,

y!X · (↵#)! · �†X · (↵#)¡ 6 ↵# · (y†X)¡ = ↵# · infP†X .

Note that

 ���↵ � ↵ = y!X · �↵ ! · �↵ (Lemma 2.12(1))

= y!X · (↵#)! · (y†X)! · ↵# · y
†
X (↵# · y†X = �↵ )

= y!X · (↵#)! · �†X · y†PX · ↵# · y†X (�† satisfies (d))

= y!X · (↵#)! · �†X · (↵#)¡ · y†P†X · y†X , (y† is natural)

and hence

↵ � ↵ � ↵ ()  ���↵ � ↵ 6 �↵ = ↵# · y†X
() y!X · (↵#)! · �†X · (↵#)¡ · y†P†X · y†X 6 ↵# · y†X
() y!X · (↵#)! · �†X · (↵#)¡ · y†P†X 6 ↵# = ↵# · infP†X · y†P†X (Lemma 2.13)

() y!X · (↵#)! · �†X · (↵#)¡ 6 ↵# · infP†X , (Lemma 2.13)

as desired.
Step 3. f : (X,↵) // (Y, �) is a morphism in Mon(Q-Dist) if, and only if, f :

(X,↵#) // (Y, #) satisfies (h). Indeed,

f! · ↵# 6  # · f¡ () f! · ↵# · y†X 6  # · f¡ · y†X (Lemma 2.13)

() f! · ↵# · y†X 6  # · y†Y · f (y† is natural)

() f! · �↵ 6
 �
� · f,

which completes the proof.

6. The distributive law of the double presheaf 2-monad

Recall that the adjunctions (�)⇤ a P and (�)⇤ a P† displayed in (2.iii) give rise to the
isomorphisms

Q-Cat(Y,PX) ⇠= Q-Dist(X, Y ) ⇠= Q-Cat(X,P†Y ), (6.i)
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for all Q-categories X, Y . In fact, (6.i) induces another pair of adjoint 2-functors [27]

P†
c a Pc : Q-Cat // (Q-Cat)coop, (6.ii)

which map objects as P† and P do, but with P†
cf = f ¡ and Pcf = f ! for all Q-functor f .

The units and counits of this adjunction are respectively given by

yP†X · y†X = (y†X)! · yX : X // PP†X and y†PX · yX = (yX)¡ · y†X : X // P†PX

PX PP†X
(y†X)!

//

X

PX

yX

✏✏

X P†X
y†X

// P†X

PP†X

y
P†X
✏✏

P†X P†PX
(yX)¡

//

X

P†X

y†X
✏✏

X PX
yX

// PX

P†PX

y†PX
✏✏

for all Q-categories X. This adjunction induces the double presheaf 2-monad (PcP†
c, y, s)

on Q-Cat with the multiplication given by

sX = ((yP†X)¡ · y†P†X)
! = (y†PP†X · yP†X)

! = sP†X · (y†PP†X)
! : PP†PP†X // PP†X. (6.iii)

As Lemma 2.11(1) implies PcP†
c = PP†, the double presheaf 2-monad on Q-Cat may be

alternatively written as
PP† = (PP†, y, s).

6.1. Theorem. The double presheaf 2-monad PP† distributes over P by ⇤ with

⇤X = yPP†X · ((yX)¡)! : PP†PX // PPP†X.

Proof. First note that
⇤X = �P†X · (�†X)!. (6.iv)

Indeed, from the naturality of y one soon obtains the commutativity of the diagram

PP†PX PPP†PX
(y

P†PX)!
//PP†PX

PP†PX

PPP†PX

PP†PX

y!
P†PX
✏✏

PP†PX PP†X
((yX)¡)!

//

PPP†PX

PP†PX

PPP†PX PPP†X
(((yX)¡)!)!=((yX)¡!)!

// PPP†X

PP†X

y!
P†X
✏✏

PP†PX PP†XPP†PX

PPP†X

⇤X
**

PP†X

PPP†X

y
PP†X

✏✏

PP†PX PPP†X

(�†
X)!

**

PPP†X

PPP†X

�
P†X

��

for any Q-category X. Now we check the laws (a)-(e) for ⇤:
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(a)⇤Y · f!¡! = f¡!! ·⇤X for every Q-functor f : X // Y . This is a direct consequence of the
naturality of � and �†.

PPP†X PP†PY
f¡!!

//

PP†PX

PPP†X

(�†
X)!

✏✏

PP†PX PP†PY
f!¡!

// PP†PY

PP†PY

(�†
Y )!

✏✏

PPP†X PPP†Y
f¡!!

//

PPP†X

PPP†X

�
P†X

✏✏

PPP†X PP†PYPP†PY

PPP†Y

�
P†Y

✏✏

PP†PX

PPP†X

⇤X

!!

PP†PY

PPP†Y

⇤Y

}}

(a) for �†

(a) for �

(b) yPP†X = ⇤X · (yX)¡!. This is easy since � and �† both satisfy the P-unit law (b) strictly.

PP†PX PPP†X
⇤X

//

PP†X

PP†PX

(yX)¡!

��

PP†X

PPP†X

y
PP†X

✓✓

PP†PX PPP†X//

PPP†X

PP†PX

77(�†
X)!

PPP†X

PPP†X

�
P†X

''

PP†X

PPP†X

(y
P†X)!

✏✏

1�
2�

1�: (b) for �†

2�: (b) for �

(c) sPP†X · (⇤X)! ·⇤PX = ⇤X · (sX)¡!. This follows from the naturality of � and the fact that
� and �† both satisfy the P-multiplication law (c) strictly.

PP†PX PPP†X

PP†PPX

PP†PX

(sX)¡!

✏✏

PP†PPX PPPP†XPPPP†X

PPP†X

s
PP†X

✏✏

PP†PPX

PPP†PX
(�†

PX)! ((

PP†PPX PPP†PX
⇤PX

// PPP†PX

PPP†PX

66

�
P†PX

PPP†PX

PPPP†X
(�†

X)!! ((

PPP†PX PPPP†X
(⇤X)!

// PPPP†X

PPPP†X

66

(�
P†X)!

PPP†PX

PPPP†X
(�†

X)!! ((

PPP†PX PPPP†XPPPP†X

PPPP†X

66

�
PP†X

PPPP†X

PPP†X

(s
P†X)!
✏✏

PP†PX PPP†X
(�†

X)!
// PPP†X PPP†X

�
P†X

//PP†PX PPP†X

⇤X

22

(a) for �

(c) for �† (c) for �

(d) (yX)! 6 ⇤X · yPX . Since � satisfies the lax P-unit law (d) and �† strictly satisfies
the P†-unit law (d), one obtains the upper and the lower right-hand triangles of the
following diagram. Moreover, the naturality of y guarantees the commutativity of the
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lower-left square.

PP†PX PPP†X
(�†

X)!
//

P†PX

PP†PX

y
P†PX

✏✏

P†PX PP†X
�†
X

// PP†X

PPP†X

y
PP†X

✏✏

P†PX PP†X

PX

P†PX

y†PX

✏✏

PX

PP†X

(y†X)!

%%

PPP†X PPP†X
�
P†X

//

PP†X

PPP†X

PP†X

PPP†X

(y
P†X)!

%%

PP†PX PPP†X

⇤X

44

PX

PP†PX

yPX

⇢⇢

PX

PPP†X

(yX)!

⌫⌫

>

(e) (sX)!·⇤PP†X ·(⇤X)¡! = ⇤X ·sPX . We explain the commutativity of the following diagram:

PPP†PX PPPP†X
(�†

X)!!

//

PP†PP†PX

PPP†PX

(y†
PP†PX

)!

✏✏

PP†PP†PX PP†PPP†X
(�†

X)!¡!

// PP†PPP†X

PPPP†X

(y†
PPP†X

)!

✏✏

PPPP†X PPP†X
(y!

P†X
)!
// PPP†X PPPP†X

(y
PP†X)!

//

PP†PPP†X PP†PP†X
(y!

P†X
)¡!

//PP†PPP†X

PPPP†X

PP†PP†X PPP†PP†X
(y

P†PP†X)!
//PP†PP†X

PPP†X

(y†
PP†X

)!

✏✏

PPP†PP†X

PPPP†X

((y†
PP†X

)!)!

✏✏

PPPP†X PPPP†X
�
PP†X

//

PPP†PP†X

PPPP†X

PPP†PP†X PPP†PP†X
�
P†PP†X

// PPP†PP†X

PPPP†X

((y†
PP†X

)!)!

✏✏

PP†PX PPP†X
(�†

X)!
//

PPP†PX

PP†PX

s
P†PX

✏✏

PPP†PX PPPP†XPPPP†X

PPP†X

s
PP†X

✏✏

PPPP†X PPPP†X

(�
P†X)!

66

PPP†X PPP†X
�
P†X

//

PPPP†X

PPP†X

PPPP†X PPPP†XPPPP†X

PPP†X

(s
P†X)!

✏✏

PP†PPP†X PP†PP†XPP†PP†X PPP†PP†X

PP†PPP†X

PP†PPP†X

66

(�
P†X)¡!

PP†PPP†X

PP†PP†X

OO

(y
PP†X)¡!

PP†PPP†X

PPP†PP†X

(�†
PP†X

)!

!!

PP†PP†PX

PP†PPP†X(⇤X)¡!
// PP†PPP†X

PPP†PP†X

⇤
PP†X

""

PP†PX PPP†X

⇤X

22

PP†PP†PX

PP†PX

sPX

⌧⌧

PPP†PP†X

PPP†X

(sX)!

⇥⇥

1�

1�

2�

3� 4� 5�
6�

7� 8�

1�: The definition of �.

2�: �† satisfies the P-unit law (b) strictly.

3�: Note that �†X = ((yX)¡)! · yP†PX is a right adjoint in Q-Cat (with supP†PX ·(yX)¡! as
its left adjoint), thus so is (�†X)! by Lemma 2.7. Hence

(�†X)!! · (y
†
PP†PX)

! = (�†X)!! · (infPP†PX)! (Lemma 2.7)

= (infPPP†X)! · (�†X)!¡! (Lemma 2.9)

= (y†PPP†X)
! · (�†X)!¡!. (Lemma 2.7)
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4�: As y!P†X is a right adjoint in Q-Cat, similar to 3� one deduces

(y!P†X)! · (y
†
PPP†X)

! = (y!P†X)! · (infPPP†X)! (Lemma 2.7)

= (infPP†X)! · (y!P†X)¡! (Lemma 2.9)

= (y†PP†X)
! · (y!P†X)¡!. (Lemma 2.7)

5�: Since y†PP†X a infPP†X , y
†
PP†X is a left adjoint in Q-Cat. It follows that

(yPP†X)! · (y†PP†X)
! = sup!

PP†X · (y†PP†X)
! (Lemma 2.7)

= ((y†PP†X)!)
! · sup!

P†PP†X (Lemma 2.9)

= ((y†PP†X)
!)! · (yP†PP†X)!. (Lemma 2.11(1))

6�: From y†PP†X a infPP†X one has

((y†PP†X)
!)! · �P†PP†X = (infPP†X)!! · �P†PP†X (Lemma 2.7)

= �PP†X · (infPP†X)!! (� satisfies (a))

= �PP†X · ((y†PP†X)
!)!. (Lemma 2.7)

7�: Since (�†X)! a (�†X)
!, Lemma 2.9 implies

(�†X)! · sP†PX = (�†X)! · supPP†PX = supPPP†X · (�†X)!! = sPP†X · (�†X)!!.

8�: � satisfies the P-multiplication law (e) strictly.

A Q-interior space is a pair (X, c) consisting of a Q-category X and a Q-closure
operation c on P†X. A continuous Q-functor f : (X, c) // (Y, d) between Q-interior
spaces is a Q-functor f : X // Y such that

c · f ¡ 6 f ¡ · d : P†Y // P†X.

Q-interior spaces and continuous Q-functors constitute a 2-category Q-Int, with the
local order inherited from Q-Cat.

6.2. Remark. When Q is a commutative quantale, V, one has u . v = v & u for all
u, v 2 V. Considering a set X as a discrete V-category one can display PX and P†X as
having the same underlying set VX , and for all ', 2 VX one has

PX(', ) = P†X( ,'),

i.e., P†X is the dual of PX. Thus, for a closure operation c : P†X // P†X one has

1P†X 6 c () c 6 1PX ,

that is, c is an interior operation on PX (see [11]). Particularly, when V = 2, PX is just
the powerset of X, and a closure operation c on P†X is exactly an interior operation on
the powerset of X. So, an interior space (X, c) as defined here coincides with the usual
notion.
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6.3. Theorem. (⇤,Q)-Alg ⇠= Q-Int.

Proof. Step 1. We show that if (X, p) is a (⇤,Q)-algebra, then

p = (infPP†X · p¡ · y†PX · yX)! · yPP†X = (yX)
! · (y†PX)

! · p¡! · inf !PP†X · yPP†X . (6.v)

Indeed, from the definition of the 2-monad PP† one may translate the conditions (f) and
(g) for (X, p) respectively as

yX 6 p · (y†X)! · yX and y!X · p! · ⇤X · p¡! 6 p · supPP†X · (y†PP†X)
!.

Since from Lemma 2.13 one has

yX 6 p · (y†X)! · yX () 1PX 6 p · (y†X)!

and since ⇤X = yPP†X · ((yX)¡)! implies

y!X · p! · ⇤X · p¡! = y!X · p! · yPP†X · ((yX)¡)! · p¡!
= supPX · yPX · p · ((yX)¡)! · p¡! (y is natural)

= p · ((yX)¡)! · p¡!,

the conditions (f) and (g) may be simplified to read as

(f) 1PX 6 p · (y†X)! and

(g) p · ((yX)¡)! · p¡! 6 p · supPP†X · (y†PP†X)
!.

Therefore,

p = supPX · yPX · p
= (yX)

! · p! · yPP†X (y is natural)

= (yX)
! · p! · (infPP†X)! · inf !PP†X · yPP†X (infPP†X is surjective)

6 (yX)
! · (infPX)! · p¡! · inf !PP†X · yPP†X (Lemma 2.9)

= (yX)
! · (y†PX)

! · p¡! · inf !PP†X · yPP†X (y†PX a infPX)

= (y†X)
! · ((yX)¡)! · p¡! · inf !PP†X · yPP†X (y† is natural)

6 p · (y†X)! · (y
†
X)

! · ((yX)¡)! · p¡! · inf !PP†X · yPP†X (p satisfies (f))

6 p · ((yX)¡)! · p¡! · inf !PP†X · yPP†X ((y†X)! a (y†X)
!)

6 p · supPP†X · (y†PP†X)
! · inf !PP†X · yPP†X (p satisfies (g))

= p.

Step 2. As an immediate consequence of (6.v), p is a right adjoint in Q-Cat. For
every Q-category X, as one already has

Q-Dist(P†X,X) ⇠= (Q-Cat)co(P†X,P†X) ⇠= (Q-Inf)co(PP†X,PX)
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from Lemma 2.14, with the isomorphism given by

(' : P†X //� X) 7! (�!' : P†X // P†X) 7! ('� : PP†X // PX),

in order to establish a bijection between Q-closure operations on P†X and (⇤,Q)-algebra
structures on X, it su�ces to prove

• 1P†X 6 �!' () '� satisfies (f), and

• �!' ·�!' 6 �!' () '� satisfies (g)

for all Q-distributors ' : P†X //� X.
First, 1P†X 6 �!' () '� satisfies (f). Indeed,

���!
(y†X)

⇤ = 1P†X 6 �!' () '� 6 (y†X)
⇤� = (y†X)! (Lemma 2.8(2))

() 1PX 6 '� · (y†X)!. ('� a '�)

Second, �!' ·�!' 6 �!' () '� satisfies (g), i.e.,

'� · ((yX)¡)! · ('�)¡! 6 '� · supPP†X · (y†PP†X)
!.

Since

'� · ((yX)¡)! · ('�)¡! = '� · ((yX)¡)! · ('�)¡! (Lemma 2.11(1))

= '� · ((yX)¡)! · (('�)¡)! ('� a '�)
= '� · ( �' ¡)

!, (Lemma 2.10(3))

and since from (6.iii) one already knows

sX = supPP†X · (y†PP†X)
! = (y†P†X)

! · ((yP†X)¡)
!,

the condition (g) for '� may be alternatively expressed as

'� · ( �' ¡)
! 6 '� · (y†P†X)

! · ((yP†X)¡)
!.

Moreover, from Lemma 2.10(4) one has

'� = ( �' ⇤ � (yX)⇤)� = �' ¡ · (yP†X)¡, (6.vi)
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and, consequently,

�!' ·�!' 6 �!'
() '� · y†P†X · '� · y†P†X 6 '� · y†P†X (Lemma 2.10(3))

() '� · y†P†X · '� 6 '� (Lemma 2.13)

() '� · ('�)¡ · y†P†P†X 6 '� = '� · infP†P†X · y†P†P†X (y† is natural)

() '� · ('�)¡ 6 '� · infP†P†X = '� · (y†P†X)
¡ (Lemma 2.13)

() (' � ('�)⇤)� 6 (' � (y†P†X)
⇤)�

() (' � (y†P†X)
⇤)� 6 (' � ('�)⇤)� (Lemma 2.8(2))

() (y†P†X)! · '
� 6 ('�)! · '� = ((yP†X)¡)

! · �' ¡! · '� (Equation (6.vi))

() '� · ( �' ¡)
! 6 '� · (y†P†X)

! · ((yP†X)¡)
!

() ' satisfies (g);

here the penultimate equivalence is an immediate consequence of

(y†P†X)! · '
� a '� · (y†P†X)

! and  �' ¡! · '� a '� · ( �' ¡)
!.

Step 3. f : (X,�!' ) //(Y,
�!
 ) is a continuousQ-functor if, and only if, f : (X,'�) //(Y, �)

satisfies (h), i.e.,
f! · '� 6  � · f¡!.

Indeed,

�!' · f ¡ 6 f ¡ ·
�!
 

() '� · y†P†X · f ¡ 6 f ¡ ·  � · y†P†Y (Lemma 2.10(3))

() '� · (f ¡)¡ · y†P†Y 6 f ¡ ·  � · y†P†Y (y† is natural)

() '� · (f ¡)¡ 6 f ¡ ·  � (Lemma 2.13)

() '� · (f¡)¡ 6 f ¡ ·  � (Lemma 2.11(1))

() (' � (f¡)⇤)� 6 (f ⇤ �  )�

() (f ⇤ �  )� 6 (' � (f¡)⇤)� (Lemma 2.8(2))

()  � · f! 6 f¡! · '�

() f! · '� 6  � · f¡!; ('� a '� and  � a  �)

here Lemma 2.13 is applicable to the third equivalence because f ¡ = (f ⇤)�, as well as  �,
is a right adjoint in Q-Cat. This completes the proof.

7. The distributive law of the double copresheaf 2-monad

As the adjunction (6.ii) has its dual

Pcoop
c a (P†

c)
coop : Q-Cat // (Q-Cat)coop, (7.i)
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one naturally constructs the double copresheaf 2-monad

P†P = (P†P, y†, s†)

on Q-Cat, with the units given by

y†X = y†PX · yX = (yX)¡ · y†X : X // P†PX (7.ii)

and the multiplication by

s†X = (yP†PX · y†PX)
¡ = ((y†PX)! · yPX)

¡ = s†PX · y¡P†PX : P†PP†PX // P†PX. (7.iii)

7.1. Theorem. The double copresheaf 2-monad P†P distributes over P by ⇤† with

⇤†
X = y!¡!X · yP†PPX : P†PPX // PP†PX.

Proof. First note that
⇤†

X = �†PX · (�X)¡. (7.iv)

Indeed, with the naturality of y and the full faithfulness of (yPX)¡ one easily sees that the
diagram

PP†PPX PP†PX
y!¡!X=(y!X)¡!

// PP†PX PP†PPX
(yPX)¡!=y¡!PX

//

P†PPX P†PX
(y!X)¡

//P†PPX

PP†PPX

y
P†PPX

✏✏

P†PX P†PPX
(yPX)¡

//P†PX

PP†PX

y
P†PX

✏✏

P†PPX

PP†PPX

y
P†PPX

✏✏

PP†PX PP†PPXPP†PX

PP†PX

PP†PPX

PP†PX

((yPX)¡)!

✏✏

P†PPX

PP†PX

⇤†
X

''

PP†PX

P†PPXP†PPX P†PPX

(�X)¡

**

P†PPX

PP†PX

�†
PX

__

(7.v)

commutes for every Q-category X. Now we check the laws (a)-(e) for ⇤†:

(a)⇤†
Y · f!!¡ = f!¡! ·⇤†

X for every Q-functor f : X // Y . This is a direct consequence of the
naturality of � and �†.

P†PPX P†PPY
f!!¡

//

P†PPX

P†PPX

(�X)¡

✏✏

P†PPX P†PPY
f!!¡

// P†PPY

P†PPY

(�Y )¡

✏✏

PP†PX PP†PY
f!¡!

//

P†PPX

PP†PX

�†
PX

✏✏

P†PPX P†PPYP†PPY

PP†PY

�†
PY

✏✏

P†PPX

PP†PX

⇤†
X

!!

P†PPY

PP†PY

⇤†
Y

}}

(a) for �

(a) for �†
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(b) yP†PX = ⇤†
X · (yX)!¡. This is easy since � and �† both satisfy the P-unit law (b) strictly.

P†PPX PP†PX
⇤†
X

//

P†PX

P†PPX

(yX)!¡

��

P†PX

PP†PX

y
P†PX

✓✓

P†PPX PP†PX//

P†PPX

P†PPX

77

(�X)¡
P†PPX

PP†PX

�†
PX

''

P†PX

P†PPX

(yPX)¡

✏✏

1�
2�

1�: (b) for �

2�: (b) for �†

(c) sP†PX · (⇤†
X)! · ⇤

†
PX = ⇤†

X · (sX)!¡. This follows from the naturality of �† and the fact
that � and �† both satisfy the P-multiplication law (c) strictly.

P†PPX PP†PX

P†PPPX

P†PPX

(sX)!¡

✏✏

P†PPPX PPP†PXPPP†PX

PP†PX

s
P†PX

✏✏

P†PPPX

P†PPPX
(�PX)¡ ((

P†PPPX PP†PPX
⇤†
PX

// PP†PPX

P†PPPX

66

�†
PPX

PP†PPX

PP†PPX
(�X)¡! ((

PP†PPX PPP†PX
(⇤†

X)!
// PPP†PX

PP†PPX

66

(�†
PX)!

P†PPPX

P†PPPX
(�X)!¡ ((

P†PPPX PP†PPXPP†PPX

P†PPPX

66

�†
PPX

P†PPPX

P†PPX

(sPX)¡
✏✏

P†PPX P†PPX
(�X)¡

// P†PPX PP†PX
�†
PX

//P†PPX PP†PX

⇤†
X

22

(a) for �†

(c) for � (c) for �†

(d) (y†X)! 6 ⇤†
X · y†PX . Since � satisfies the lax P-unit law (d) and �† strictly satisfies

the P†-unit law (d), one obtains the commutativity of the two lower triangles of the
following diagram. Moreover, the naturality of y† guarantees the commutativity of the
middle rhombus.

P†PPX P†PPX
(�X)¡

//

P†PX

P†PPX

(yPX)¡

||

P†PX

P†PPX

(yX)!¡

""

P†PPX PP†PX
�†
PX

//

PPX

P†PPX

y†PPX

||

PPX

PP†PX

(y†PX)!

""

P†PX PPX

PX

P†PX

y†PX

||

PX

PPX

(yX)!

""

P†PPX PP†PX

⇤†
X

33

PX

P†PPX

y†PX

��

PX

PP†PX

(y†X)!

⌘⌘

>
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(e) (s†X)! · ⇤
†
P†PX · (⇤†

X)!¡ = ⇤†
X · s†P†PX . We explain the commutativity of the following

diagram:

P†PP†PPX P†PP†PPXP†PP†PPX P†PPP†PX

P†PPP†PX

P†PP†PPX

44

(⇤†
X)!¡

P†PPP†PX

P†PP†PPX

OO

(�†
PX)!¡

P†PPP†PX

P†PPP†PX

(�
P†PX)¡

''

P†PP†PPX P†PP†PPX
(�X)¡!¡

//P†PP†PPX

P†PP†PX

(y!X)¡!¡
''

P†PP†PPX P†PPP†PX
(⇤PX)¡

//P†PP†PPX

P†PP†PX

OO

(yPX)¡!¡

P†PPP†PX

P†PP†PX

77

(y
PP†PX)¡

P†PP†PX

P†P†PX

y¡
P†PX
✏✏

P†P†PPX P†P†PPX
(�X)¡¡

// P†P†PPX P†PP†PX
(�†

PX)¡

//

P†P†PX

P†P†PPX

77

(y!X)¡¡

P†P†PX

P†P†PPX

(yPX)¡¡

✏✏

P†P†PX

P†PP†PX

(y
P†PX)¡

''

P†P†PPX P†PP†PX

P†PP†PPX

P†P†PPX

y¡
P†PPX

✏✏

P†PP†PPX P†PPP†PXP†PPP†PX

P†PP†PX

((y
P†PX)!)¡

✏✏

P†PP†PX PP†P†PX
�†
P†PX

//

P†PPP†PX

P†PP†PX

P†PPP†PX PP†PP†PX
�†
PP†PX

// PP†PP†PX

PP†P†PX

(y¡
P†PX

)!

✏✏

P†PPX P†PPX
(�X)¡

//

P†P†PPX

P†PPX

s†PPX
✏✏

P†P†PPX P†P†PPXP†P†PPX

P†PPX

s†PPX
✏✏

P†PPX PP†PX
�†
PX

//

P†P†PPX

P†PPX

P†P†PPX PP†P†PXPP†P†PX

PP†PX

(s†PX)!

✏✏

P†PPP†PX

PP†PP†PX

⇤†
P†PX

&&

P†PPX PP†PX

⇤†
X

22

P†PP†PPX

P†PPX

s†
P†PX

⇢⇢

P†PP†PPX PP†PP†PXPP†PP†PX

PP†PX

(s†X)!

⌅⌅

1�

2� 3�

4� 5�

2�

6�

7�

8� 9�

1�: Equation (6.iv).

2�: The definition of �.

3�:⇤ satisfies the P-unit law (b) strictly.

4�: Since y!X = supPX a yPX , (y!X)¡ is a left adjoint in Q-Cat, by Lemma 2.7. Thus

(y!X)¡¡ · y
¡
P†PPX = (y!X)¡¡ · (supP†PPX)¡ (Lemma 2.7)

= (supP†PX)¡ · (y!X)¡!¡ (Lemma 2.9)

= y¡P†PX · (y!X)¡!¡. (Lemma 2.7)

5�: Follows from an application of Lemma 2.11(4) to yP†PX : P†PX // PP†PX.

6�: From supP†PX a yP†PX one has

(y¡P†PX)! · �
†
PP†PX = (supP†PX)¡! · �

†
PP†PX (Lemma 2.7)

= �†P†PX · (supP†PX)!¡ (�† satisfies (a))

= �†P†PX · ((yP†PX)!)
¡. (Lemma 2.7)

7�: �† satisfies the P-unit law (b) strictly.
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8�: Since �¡X a (�X)¡, Lemma 2.9 implies

(�X)¡ · s†PPX = (�X)¡ · infP†PPX = infP†PPX · (�X)¡¡ = s†PPX · (�X)¡¡.

9�: �† satisfies the P†-multiplication law (e) strictly.

7.2. Theorem. (⇤†,Q)-Alg ⇠= Q-Cls.

Proof. Step 1. We show that if (X, p) is a (⇤†,Q)-algebra, then

p = infPX · p¡ · (y†PX)¡. (7.vi)

Indeed, with (7.ii) and (7.iii) one may translate the conditions (f) and (g) respectively as

yX 6 p · y†PX · yX and supPX · p! · ⇤†
X · p!¡ 6 p · (y†PX)

¡ · y¡P†PX .

To simplify the above conditions, first note that Lemma 2.13 implies

yX 6 p · y†PX · yX () 1PX 6 p · y†PX .

Second, from ⇤†
X = yP†PX · (y!X)¡ = yP†PX · (supPX)¡ (see the commutative diagram (7.v))

one has

supPX · p! · ⇤†
X · p!¡ = supPX · p! · yP†PX · (supPX)¡ · p!¡

= supPX · yPX · p · (supPX)¡ · p!¡ (y is natural)

= p · (supPX)¡ · p!¡

and, moreover,

p · (supPX)¡ · p!¡ 6 p · (y†PX)
¡ · y¡P†PX

() p · (supPX)¡ · p!¡ · (yP†PX)¡ 6 p · (y†PX)
¡ (y¡P†PX a (yP†PX)¡)

() p · (supPX)¡ · (yPX)¡ · p¡ 6 p · (y†PX)
¡ (y is natural)

() p · p¡ 6 p · (y†PX)
¡.

Therefore, (X, p) is a (⇤†,Q)-algebra if, and only if,

(f) 1PX 6 p · y†PX and

(g) p · p¡ 6 p · (y†PX)¡.
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It follows that

p = infPX · y†PX · p
= infPX · p¡ · y†P†PX (y† is natural)

6 infPX · p¡ · (y†PX)¡ (P† is oplax idempotent)

6 p · y†PX · infPX · p¡ · (y†PX)¡ (p satisfies (f))

6 p · p¡ · (y†PX)¡ (y†PX a infPX)

6 p · (y†PX)
¡ · (y†PX)¡ (p satisfies (g))

= p. (y†PX is fully faithful)

Step 2. As an immediate consequence of (7.vi), p is a right adjoint in Q-Cat. For
every Q-category X, as one already has

Q-Dist(X,PX) ⇠= Q-Cat(PX,PX) ⇠= Q-Inf(P†PX,PX)

from Lemma 2.14 with the isomorphism given by

(' : X //� PX) 7! ( �' : PX // PX) 7! ('# : P†PX // PX),

in order to establish a bijection between Q-closure operations on PX and (⇤†,Q)-algebra
structures on X, it su�ces to prove

• 1PX 6 �' () '# satisfies (f), and

•  �' · �' 6 �' () '# satisfies (g)

for all Q-distributors ' : X //� PX.
First, the equivalence (1PX 6 �' () '# satisfies (f)) is trivial since  �' = '# · y†PX .
Second,  �' · �' 6 �' () '# satisfies (g). Indeed,

 �' · �' 6 �' () '# · y†PX · '# · y†PX 6 '# · y†PX ( �' = '# · y†PX)
() '# · y†PX · '# 6 '# (Lemma 2.13)

() '# · ('#)¡ · y†P†PX 6 '# = '# · infP†PX · y†P†PX (y† is natural)

() '# · ('#)¡ 6 '# · infP†PX = '# · (y†PX)
¡ (Lemma 2.13)

() '# satisfies (g).

Step 3. f : (X, �' ) //(Y,
 �
 ) is a continuousQ-functor if, and only if, f : (X,'#) //(Y, #)

satisfies (h). Indeed,

f! · �' 6
 �
 · f! () f! · '# · y†PX 6  # · y†PY · f!

() f! · '# · y†PX 6  # · f!¡ · y†PX (y† is natural)

() f! · '# 6  # · f!¡, (Lemma 2.13)

which completes the proof.
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8. Distributive laws of T over P versus lax extensions of T to Q-Dist

In this section, for an arbitrary 2-monad T on Q-Cat, we outline the bijective correspon-
dence between distributive laws of T over P and so-called lax extensions of T to Q-Dist.
The techniques adopted here generalize their discrete counterparts as given in [30].

Given a 2-functor T : Q-Cat // Q-Cat, a lax extension of T to Q-Dist is a lax
functor

T̂ : Q-Dist //Q-Dist

that coincides with T on objects and satisfies the extension condition (3) below. Explicitly,
T̂ is given by a family

(T̂' : TX //� TY )'2Q-Dist(X,Y ), X,Y 2ob(Q-Cat) (8.i)

of Q-distributors such that

(1) ' � '0 =) T̂' � T̂'0,

(2) T̂ � T̂' � T̂ ( � '),

(3) (Tf)⇤ � T̂ (f⇤), (Tf)⇤ � T̂ (f ⇤),

for all Q-distributors ','0 : X //� Y ,  : Y //� Z and Q-functors f : X // Y .
It is useful to present the following equivalent conditions of (3), which can be proved

analogously to their discrete versions in [30], by straightforward calculation:

8.1. Lemma. Given a family (8.i) of Q-distributors satisfying (1) and (2), the following
conditions are equivalent when quantified over the variables occurring in them (f : X //Y ,
' : Z //� Y ,  : Y //� Z):

(i) 1⇤TX � T̂ (1⇤X), T̂ (f ⇤ � ') = (Tf)⇤ � T̂'.

(ii) 1⇤TX � T̂ (1⇤X), T̂ ( � f⇤) = T̂ � (Tf)⇤.

(iii) (Tf)⇤ � T̂ (f⇤), (Tf)⇤ � T̂ (f ⇤) ( i.e., T̂ satisfies (3)).

8.2. Proposition. Lax extensions of a 2-functor T : Q-Cat //Q-Cat to Q-Dist cor-
respond bijectively to lax natural transformations TP // PT satisfying the lax P-unit law
the lax P-multiplication law.

Proof. Step 1. For each � : TP // PT satisfying (a), (b) and (c), �(�) := T̂ = (T̂')'

with
 �
T̂' := �X · T �' is a lax extension of T to Q-Dist.

�(�) = T̂ : Q-Dist(X, Y ) // Q-Dist(TX, TY )

( �' : Y // PX) 7!
TY

TPX
T �'

��

TY PTX
 �
T̂'

// PTX

TPX

??

�X
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Indeed, (1) follows immediately from the 2-functoriality of T . For (2), just note that

 �����
T̂ � T̂' = y!TX · (

 �
T̂')! ·

 �
T̂ (Lemma 2.12(1))

= y!TX · (�X)! · (T �' )! · �Y · T
 �
 

6 y!TX · (�X)! · �PX · T ( �' !) · T
 �
 (� satisfies (a))

6 �X · T y!X · T ( �' !) · T
 �
 (� satisfies (c))

= �X · T (
 ���
 � ') (Lemma 2.12(1))

=
 �����
T̂ ( � ').

For (3), it su�ces to check Lemma 8.1(i). Since � satisfies (b), it follows easily that

 ��
1⇤TX = yTX 6 �X · T yX = �X · T

 �
1⇤X =

 ���
T̂ (1⇤X).

For the second identity, Lemma 2.12(1) implies

 ������
T̂ (f ⇤ � ') = �X · T (

 ���
f ⇤ � ') = �X · T �' · Tf =

 �
T̂' · Tf =

 �������
(Tf)⇤ � T̂'.

Step 2. For every lax extension T̂ of T ,  (T̂ ) := � = (�X)X with

�X :=
 ��
T̂"X =

 ����
T̂ (yX)⇤ : TPX // PTX

is a lax natural transformation satisfying the P-unit law and the P-multiplication law.
(a) (Tf)! · �X 6 �Y · T (f!) for all Q-functors f : X // Y . Indeed,

(Tf)! · �X =
 ����������
T̂ (yX)⇤ � (Tf)⇤ (Lemma 2.12(1))

6
 �����������������
T̂ (yX)⇤ � (Tf)⇤ � T̂ (1⇤Y ) (Lemma 8.1(i))

=
 ����������
T̂ (yX)⇤ � T̂ (f ⇤) (Lemma 8.1(i))

6
 ���������
T̂ ((yX)⇤ � f ⇤) (T̂ satisfies (2))

=
 ����������
T̂ ((f!)

⇤ � (yY )⇤) (Lemma 2.11(4))

=
 ����������
(Tf!)

⇤ � T̂ (yY )⇤ (Lemma 8.1(i))

= �Y · T (f!). (Lemma 2.12(1))

(b) yTX 6 �X · T yX . Indeed,

yTX =
 ��
1⇤TX 6

 ���
T̂ (1⇤X) (Lemma 8.1(i))

=
 ���������
T̂ (y⇤X � (yX)⇤) (yX is fully faithful)

=
 �����������
(T yX)

⇤ � T̂ (yX)⇤ (Lemma 8.1(i))

= �X · T yX . (Lemma 2.12(1))
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(c) sTX · (�X)! · �PX 6 �X · T sX . Indeed,

sTX · (�X)! · �PX =
 ������������
T̂ (yPX)⇤ � T̂ (yX)⇤ (Lemma 2.12(1))

6
 ������������
T̂ ((yPX)⇤ � (yX)⇤) (T̂ satisfies (2))

=
 �������������
T̂ (((yX)!)⇤ � (yX)⇤) (y is natural)

=
 �����������
T̂ ((y!X)

⇤ � (yX)⇤) ((yX)! a y!X)

=
 �����������
(T y!X)

⇤ � T̂ (yX)⇤ (Lemma 8.1(i))

= �X · T sX . (Lemma 2.12(1))

Step 3. � and  are inverses to each other. For each � : TP //PT ,  �(�) = � since

( �(�))X =
 ������
�(�)(yX)⇤ = �X · T

 ���
(yX)⇤ = �X · T1PX = �X .

Conversely, for every lax extension T̂ , one has

 �������
(� (T̂ ))' =

 ����
T̂ (yX)⇤ · T �' =

 �����������
(T �' )⇤ � T̂ (yX)⇤ =

 ����������
T̂ ( �' ⇤ � (yX)⇤) =

 �
T̂',

where the last three equalities follow respectively from Lemmas 2.12(1), 8.1(i) and 2.10(4).

For a 2-monad T = (T,m, e) on Q-Cat, a lax extension T̂ of T to Q-Dist becomes a
lax extension of the 2-monad T if it further satisfies

(4) ' � e⇤X � e⇤Y � T̂',

(5) T̂ T̂' �m⇤X � m⇤Y � T̂'

for all Q-distributors ' : X //� Y . By adjunction, (4) and (5) may be equivalently
expressed as

(4’) (eY )⇤ � ' � T̂' � (eX)⇤,

(5’) (mY )⇤ � T̂ T̂' � T̂' � (mX)⇤.

8.3. Theorem. Lax extensions of a 2-monad T = (T,m, e) on Q-Cat to Q-Dist corre-
spond bijectively to distributive laws of T over P.
Proof. With Proposition 8.2 at hand, it su�ces to prove

• T̂ satisfies (4) () � satisfies (d), and

• T̂ satisfies (5) () � satisfies (e)
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for every lax extension T̂ of the 2-functor T and � =  (T̂ ) with �X =
 ����
T̂ (yX)⇤ :

TPX // PTX.
First, (T̂ satisfies (4) () � satisfies (d)). Since Lemma 2.12(1) and the naturality

of e imply

(eX)! · �' =
 ����
' � e⇤X and �X · ePX · �' = �X · T �' · eY =

 �
T̂' · eY =

 �����
e⇤Y � T̂'

for all ' : X //� Y , it follows that

(eX)! 6 �X · ePX () 8' : X //� Y : (eX)! · �' 6 �X · ePX · �'
() 8' : X //� Y : ' � e⇤X � e⇤Y � T̂'.

Second, (T̂ satisfies (5) () � satisfies (e)). Similarly as above, one has

(mX)! · �TX · T�X · TT �' = (mX)! · �TX · T
 �
T̂' = (mX)! ·

 ��
T̂ T̂' =

 �������
T̂ T̂' �m⇤X

and

�X ·mPX · TT �' = �X · T �' ·mY =
 �
T̂' ·mY =

 �����
m⇤Y � T̂'

by Lemma 2.12(1) and the naturality of m. Consequently,

(mX)! · �TX · T�X 6 �X ·mPX

() 8' : X //� Y : (mX)! · �TX · T�X · TT �' 6 �X ·mPX · TT �'
() 8' : X //� Y : T̂ T̂' �m⇤X � m⇤Y � T̂'.

A strict extension of T : Q-Cat //Q-Cat is a 2-functor

T̂ : Q-Dist //Q-Dist

that coincides with T on objects and satisfies

(3⇤) T̂ (f ⇤ � ') = (Tf)⇤ � T̂'

for all f : X // Y , ' : Z //� Y . It is moreover a strict extension of the 2-monad
T = (T,m, e) on Q-Cat if

(4⇤) ' � e⇤X = e⇤Y � T̂',

(5⇤) T̂ T̂' �m⇤X = m⇤Y � T̂'

for all ' : X //� Y . In other words, a lax extension T̂ of T is strict if all the inequalities
in (2), Lemma 8.1(i), (4) and (5) are equalities. From the above proofs one immediately
sees that strict extensions of T to Q-Dist correspond bijectively to strict distributive laws
of T over P.

For a lax extension T̂ of T we can now define:
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8.4. Definition.A (T,Q)-category (X,↵) consists of aQ-categoryX and aQ-distributor
↵ : X //� TX satisfying the lax unit and lax multiplication laws

1⇤X � e⇤X � ↵ and T̂↵ � ↵ � m⇤X � ↵.

A (T,Q)-functor f : (X,↵) // (Y, �) is a Q-functor f : X // Y with

↵ � f ⇤ � (Tf)⇤ � �.

(T,Q)-categories and (T,Q)-functors constitute a 2-category (T,Q)-Cat, and we write
(T, T̂ ,Q)-Cat to stress the dependency on the chosen extension T̂ if there is any danger
of ambiguity.

8.5. Theorem. If � and T̂ are related by the correspondence of Theorem 8.3, then

(�,Q)-Alg ⇠= (T, T̂ ,Q)-Cat.

Proof. For any Q-category X, as one already has

Q-Dist(X, TX) ⇠= Q-Cat(TX,PX)

with the isomorphism given by

(↵ : X //� TX) 7! ( �↵ : TX // PX),

in order to establish a bijection between (T,Q)-category structures on X and (�,Q)-
algebra structures on X, it su�ces to prove

• 1⇤X � e⇤X � ↵ () yX 6 �↵ · eX , and

• T̂↵ � ↵ � m⇤X � ↵ () y!X · �↵ ! · �X · T �↵ 6 �↵ ·mX ,

for all Q-distributors ↵ : X //� TX. Indeed, the first equivalence is easy since
 �
1⇤X = yX

and
 ����
e⇤X � ↵ =  �↵ · eX by Lemma 2.12(1). For the second equivalence, just note that

 ����
m⇤X � ↵ = �↵ ·mX and

 ����
T̂↵ � ↵ =

 �������������
(T̂ ( �↵ ⇤ � (yX)⇤) � ↵ (Lemma 2.10(4))

=
 ��������������
(T �↵ )⇤ � T̂ (yX)⇤ � ↵ (Lemma 8.1(i))

=
 �������
T̂ (yX)⇤ � ↵ · T �↵ (Lemma 2.12(1))

= y!X · �↵ ! · �X · T �↵ , (Lemma 2.12(1) and �X =
 ����
T̂ (yX)⇤)

Finally, a Q-functor f : X // Y is a (T,Q)-functor f : (X,↵) // (Y, �) if, and only

if, f : (X, �↵ ) // (Y,
 �
� ) is a lax �-homomorphism since

↵ � f ⇤ � (Tf)⇤ � � () f! · �↵ =
 ���
↵ � f ⇤ 6 ������(Tf)⇤ � � =

 �
� · Tf

by Lemma 2.12(1).
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8.6. Example.

(1) For the identity 2-monad I on Q-Cat, the identity 2-functor on Q-Dist is a strict
extension of I and it is easy to see (I,Q)-Cat ⇠= Mon(Q-Dist).

(2) The distributive law � of P over itself described in Theorem 4.1 corresponds to the
lax extension P̂ of P (which is strict as an extension of P) with

P̂' := '�⇤ : PX //� PY

for ' : X //� Y . From Theorem 4.2 one soon knows (P,Q)-Cat ⇠= Q-Cls.

(3) The strict distributive law �† of P† over P given in Theorem 5.1 determines the strict
extension P̌† of P† with

P̌†' := ('�)⇤ : P
†X //� P†Y.

Theorem 5.3 shows that (P†,Q)-Cat ⇠= Mon(Q-Dist).

(4) Theorem 6.1 gives the distributive law ⇤ of PP† over P that corresponds to the lax

extension dPP† of PP† (which is strict as an extension of PP†) with

dPP†' := P̂P̌†' = (('�)⇤)
�⇤ = '�!⇤ : PP†X //� PP†Y.

From Theorem 6.3 one has (PP†,Q)-Cat ⇠= Q-Int.

(5) The distributive law ⇤† of P†P over P (see Theorem 7.1) is related to the lax extension
dP†P of P†P (which is strict as an extension of P†P) with

dP†P' := P̌†P̂' = ('�⇤�)⇤ = ('�¡)⇤ : P
†PX //� P†PY.

Theorem 7.2 shows that (P†P,Q)-Cat ⇠= Q-Cls.
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editors, Non-classical logics and their applications to fuzzy subsets: a handbook of
the mathematical foundations of fuzzy set theory, volume 32 of Theory and Decision
Library, pages 53–105. Springer, Berlin-Heidelberg, 1995.
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