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Abstract

For a quantaloid Q, considered as a bicategory, Walters introduced categories enriched in Q. Here
we extend the study of monad-quantale-enriched categories of the past fifteen years by introducing
monad-quantaloid-enriched categories. We do so by making lax distributive laws of a monad T
over the discrete presheaf monad of the small quantaloid Q the primary data of the theory, rather
than the lax monad extensions of T to the category of Q-relations that they equivalently describe.
The central piece of the paper establishes a Galois correspondence between such lax distributive
laws and lax Eilenberg-Moore T-algebra structures on the set of discrete presheaves over the
object set of Q. We give a precise comparison of these structures with the more restrictive notion
introduced by Hofmann in the case of a commutative quantale, called natural topological theories
here, and describe the lax monad extensions introduced by him as minimal. Throughout the
paper, a variety of old and new examples of ordered, metric and topological structures illustrate
the theory developed, which includes the consideration of algebraic functors and change-of-base
functors in full generality.
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1. Introduction

For monads S and T on a category C, liftings of S along the forgetful functor CT // C of the
Eilenberg-Moore category of T, or extensions of T along the insertion functor C //CS to the Kleisli
category of S, correspond precisely to Beck’s [4] distributive laws � : TS // ST of T over S; see
[3] and II.3 of [26] for a compact account of these correspondences. For C = Set,T = L the free
monoid (or list) monad, and S the free Abelian group monad, their algebraic prototype interpretes
the left-hand terms of the equations

x(y + z) = xy + xz and (x+ y)z = xz + yz

as elements of the free monoid LSX over (the underlying set of) the free Abelian group SX over
some alphabet X and assigns to them the right-hand terms in SLX, to then obtain the category
of (unital) rings as the Eilenberg-Moore algebras of a composite monad SL as facilitated by �.
Similarly, keeping T = L but letting now S = P be the power set monad, the distributive law

�X : LPX // PLX, (A1, ..., An) 7! A1 ⇥ ...⇥An,

produces a composite monad whose Eilenberg-Moore category is the category of quantales, i.e., of
the monoid objects in the monoidal-closed category Sup of sup-lattices (see [30, 44]), characterized
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as the complete lattices with a monoid structure whose multiplication distributes over arbitrary
suprema in each variable. Ever since the appearance of Beck’s original work, distributive laws
have been, and continue to be, studied from a predominantly algebraic perspective, at many levels
of generality; see, for example, [51, 32, 21, 6]. But what is their role in topology, if any?

As a unification of the settings used by Lawvere [36] and by Manes [39] and Barr [2] for their
respective descriptions of metric spaces and topological spaces, the viewpoint ofMonoidal Topology
[12, 15, 14, 47, 24, 26] has been that some key categories of analysis and topology are described as
categories of lax (T,V)-algebras, also called (T,V)-categories, where V is a quantale and T a Set-
monad with a lax extension to the category V-Rel of sets and V-valued relations (ormatrices [5]) as
morphisms. For example, for V = 2 the two-element chain and for T = U the ultrafilter monad with
its lax Barr extension to relations, one obtains the Manes-Barr presentation of topological spaces
in terms of ultrafilter convergence (with just two axioms that generalize reflexivity and transitivity
of ordered sets). With the same monad, but now with V = [0,1] being Lawvere’s extended real
half-line and addition playing the role of the tensor product, one obtains Lowen’s [37] category
of approach spaces, which incorporates both Barr’s Top and Lawvere’s Met in a satisfactory
manner. Perhaps one of the best successes of the subject so far has been the strictly equational
characterization of exponential objects in the lax setting of (T,V)-categories. For the extensive
literature on the subject, we must refer the reader to the literature list in [26], in particular the
Notes to Chapters III and IV of [26], which also list many important related approaches, such as
that of Burroni [10] (which drew Lambek’s [35] multicategories into the setting) and the thesis
of Möbus [42] (which, beyond compactness and Hausdor↵ separation, explored a wide range of
topological concepts in the relational monadic setting).

For the general (T,V)-setting, it had been realized early on that V-Rel is precisely the Kleisli
category of the V-power set monad PV (with PVX = VX), and it was therefore plausible that lax
extensions T̂ of T to V-Rel correspond to monotone lax distributive laws of T over PV (see [46] and
Exercise III.1.I of [26]). Our initial point in this paper is to underline the role of lax distributive
laws as the primary data in the study of topological categories, rather than as some secondary
data derived from lax monad extensions, the establishment of which can be tedious (see [12, 47]).
In fact, in analyzing step by step the correspondence between the two entities (as we will do in
Section 6 of this paper), we see that lax distributive laws minimize the number of variables in, and
often the computational e↵ort for, checking the required inequalities. It is therefore consequential
that here we express (T,V)-categories directly as lax �-algebras, without prior reference to the lax
monad extension which the ambient lax distributive law � corresponds to. Thus, their axioms are
entirely expressed in terms of maps, rather than V-relations, and of the two Set-monads at play, T
and PV. We note that, to date, the strict counterpart of the notion of lax �-algebra as introduced
in Section 4 does not seem to have been explored yet – and may be of much lesser importance
than the lax version –, but must in any case not be confused with a di↵erent notion appearing in
IV.3 of Manes’ book [40].

In fact, in this paper we present the lax distributive laws and their equivalent lax monad exten-
sions, together with their isomorphic model categories (i.e., lax �-algebras vs. (T,V)-categories)
at a considerably generalized level, by replacing the quantale V by a small quantaloid Q, i.e., by
a small category (rather than a monoid) enriched in the category Sup of complete lattices and
their suprema preserving maps (see [45, 53, 54, 23]). For this to work, T must now be a monad on
the comma category Set/Q0, with Q0 the set of objects of Q, rather than just on Set as in the
quantale case when Q0

⇠= 1 is a singleton set. However, noting that every Set-monad T lifts to a
Set/Q0-monad when Q0 carries a Eilenberg-Moore T-algebra structure, one realizes immediately
that the range of applications is not at all reduced by moving to the comma category. The oppo-
site is true, even when T is the identity monad and � the identity transformation of the discrete
presheaf monad PQ, where lax �-algebras are simply Q-categories, as first considered in Walters’
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pioneering note [58]. More generally then, in the hierarchy

quantaloids monoidal-closed categories

closed bicategories

quantaloids

closed bicategories

monoidal-closed categoriesquantaloids

quantales

quantaloids monoidal-closed categoriesmonoidal-closed categories

quantales

we add a monad to the enrichment through quantaloids, thus complementing the corresponding
past e↵orts for quantales and monoidal-closed categories, and leaving the field open for future
work on closed bicategories. In doing so, our focus is not on a generalization per se, but rather
on the expansion of the range of meaningful examples. In fact, through the consideration of
quantaloids that arise from quantales via the well-studied Freyd-Grandis “diagonal construction”,
originating with [18], presented in [20], and used by many authors (see, for example, [28, 43, 55]), we
demonstrate that the quantaloidic context allows for the incorporation of many “partially defined”
structures, which typically relax the reflexivity condition of the total context in a meaningful way.

In [24], Hofmann gave the notion of a (lax) topological theory which, in the presence of the Set-
monad T and the commutative quantale V, concentrates all needed information about the specific
Barr-type lax extension of T to V-Rel into a (lax) T-algebra structure ⇠ : TV // V on the set V,
such that ⇠ makes the monoid operations ⌦ : V ⇥ V // V and k : 1 // V lax T-homomorphisms
and satisfies a monotonicity and naturality condition. While in [16] we characterized the Barr-
Hofmann lax extensions of T arising from such theories among all lax extensions, the two main
results of this paper clarify the role of Hofmann’s notion in the quantale setting and extend it
considerably to the more general context of a quantaloid Q. First, in Section 5 we establish a
Galois correspondence between monotone lax distributive laws of a given monad T on Set/Q0

and certain lax T-algebra structures ⇠ on PQQ0. The lax distributive laws closed under this
correspondence, called maximal, give rise to new types of lax monad extension that don’t seem to
have been explored earlier. Secondly, in Theorem 8.2, we give a precise comparison of our notion
of topological theory (as given in Definition 5.4) with Hofmann’s more restrictive notion. We also
give a context in which the Hofmann-type extensions are characterized as minimal (see Theorem
8.5). Let us emphasize that the conditions on the cartesian binary and nullary monoid operations
used by Hofmann don’t compare easily with the conditions on the multiplication and unit of the
discrete presheaf monad as used in our setting, and they don’t seem to be amenable to direct
extension from the context of a commutative quantale to that of a quantaloid. For an overview
chart on the relationships between lax distributive laws, lax monad extensions, and topological
theories, we refer to Section 8.

A brief outlook on the forthcoming paper [34] seems to be in order, where we present the non-
discrete counterpart of the theory presented here, thus considering monads on the category Q-Cat
of small Q-categories and their lax distributive laws over the (full) presheaf monad. It is clear
from the outset, and largely verified by the existing works on monad-quantale-enriched categories,
that this setting will make for a more satisfactory theory, simply because the full presheaf monad,
unlike its discrete counterpart, is lax idempotent (or of Kock-Zöberlein type). Nevertheless, the
prior consideration of the discrete case in this paper seems to be a necessary step, in order for us
to be able to provide a viable array of monads on Q-Cat since, with a lax extension of a monad
on Set/Q0 at hand, it is easy to “lift” monads on Set/Q0 to Q-Cat (as has been done in [57] in
the case of a quantale).

For general categorical background, we refer the reader to [38, 1, 7, 31].
Acknowledgement. Parts of the theory developed in the paper have been presented in talks at

the Joint Meeting of the American and Portuguese Mathematical Societies in Oporto (Portugal)
in June 2015 and at Sichuan and Nanjing Universities in November 2015. I am grateful for helpful
comments received, especially from Dirk Hofmann, Maria Manuel Clementino, Gavin Seal, Lili
Shen, Hongliang Lai, and Dexue Zhang.
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2. Quantaloid-enriched categories

A quantaloid is a category Q enriched in the monoidal-closed category Sup [30] of complete
lattices with suprema-preserving maps; hence, the hom-sets of Q are complete lattices, and compo-
sition of morphisms from either side preserves arbitrary suprema and has therefore right adjoints.
As a consequence, one has binary operations & and . representing the “internal homs”, that is:
for u : r //s, v : s //t, w : r //t in Q one has the morphisms (v & w) : r //s, (w . u) : s //t
given by the equivalences

u  v & w () v � u  w () v  w . u.

A lax homomorphism ' : Q //R of quantaloids is a lax functor (thus satisfying the rules 1't  '1t
and 'v �'u  '(v � u)) which maps hom-sets monotonely; ' is a (strict) homomorphism if ' is a
functor preserving suprema taken in the hom-sets. We denote the category of small quantaloids
and their (lax) homomorphisms by Qnd (LaxQnd). The set-of-objects functor

(�)0 : LaxQnd // Set,Q 7! obQ =: Q0

has a right adjoint (�)c which provides each set X with the chaotic order and considers it as a
category Xc with (Xc)0 = X, so that for all x, y 2 X there is exactly one morphism x // y,
denoted by (x, y); having singleton hom-sets only, Xc is trivially a quantaloid, and every Set-map
becomes a homomorphism.

Throughout the paper, let Q be a small quantaloid. A small Q-category is a set X provided
with a lax homomorphism a : Xc

//Q. Its object part a : X //Q0 assigns to every x 2 X its
array (also called type or extent) ax 2 Q0, often denoted by |x| = |x|X = ax, and its morphism
part gives for all x, y 2X Q-morphisms a(x, y) : |x| // |y|, subject to the rules

1|x|  a(x, x), a(y, z) � a(x, y)  a(x, z).

A Q-functor f : (X, a) // (Y, b) is an array-preserving map f : X // Y with a(x, y)  b(fx, fy)
for all x, y 2 X. In other words then, the resulting category Q-Cat of small Q-categories and
their Q-functors is the lax comma category of small chaotic quantaloids over Q, and one has the
set-of-objects functor

Q-Cat Set/Q0
(�)0

//

Xc

Q
a ��

Xc Yc
f

// Yc

Q
b��

X

Q0

|-|X ��

X Y
f

// Y

Q0

|-|Y��
7!

to the comma category of sets over Q0. In what follows, we will often write X instead of Xc or
(X, a).

An easily proved (see [48]), but useful, fact is:

Proposition 2.1. The functor (�)0 is topological (in the sense of [22]) and, as a consequence,
Q-Cat is totally complete and totally cocomplete (in the sense of [52]).

Proof. The (�)0-initial structure a on X with respect to a family of (Set/Q0)-morphisms fi :
X // Yi with each Yi carrying the Q-category structure bi(i 2 I) is given by

a(x, y) =
^

i2I
bi(fix, fiy),

with x, y 2 X.
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Incidentally, it seems fitting to note here that topologicity of a faithful functor is characterized
as total cocompleteness when the concrete category in question is considered as a category enriched
over a certain quantaloid: see [19, 49].

Next, one easily sees that every lax homomorphism ' : Q // R of quantaloids induces the
change-of-base functor

B' : Q-Cat //R-Cat, (X, a) 7! (X,'a),

which commutes with the underlying Set-functors. More precisely, with B'0 denoting the e↵ect
of B' on the underlying sets over Q0, one has the commutative diagram of functors which exhibits
(B', B'0) as a morphism of topological functors:

Set/Q0 Set/R0
B'0

//

Q-Cat

Set/Q0

(�)0
✏✏

Q-Cat R-Cat
B'

// R-Cat

Set/R0

(�)0
✏✏

Obviously, B' preserves (�)0-initiality when ' preserves infima. Let us also mention that, if we
order the hom-sets of LaxQnd by

'   () 8u : r // s in Q : 'r =  r,'s =  s and 'u   u,

then '   gives a natural transformation B' // B whose components at the Set-level are
identity maps; thus a 2-functor B(�) : LaxQnd //CAT emerges.

The one-object quantaloids are the (unital) quantales, i.e., the complete lattices V that come
with a monoid structure whose binary operation ⌦ preserves suprema in each variable. We gen-
erally denote the ⌦-neutral element by k; so, in quantaloidic terms, k = 1⇤, when we denote by ⇤
the only object of V as a category. Let us record here a well-known list of relevant quantales V
with their induced categories V-Cat.

Example 2.2. (1) The terminal quantaloid 1 is a quantale, and 1-Cat = Set. The initial
quantale is (as a lattice) the two-element chain 2 = {?< >}, with ⌦ = ^, k = >, and 2-Cat
is the category Ord of preordered sets and monotone maps. (In what follows, we suppress
the prefix “pre” in “preorder”, adding “separated” whenever antisymmetry is required.)

(2) [0,1] denotes the extended real line, ordered by the natural � (so that 0 becomes the
largest and 1 the least element) and considered as a quantale with the binary operation +,
naturally extended to 1. (This is the monoidal-closed category first considered by Lawvere
[36].) A [0,1]-category is a generalized metric space, i.e., a set X provided with a function
a : X⇥X // [0,1] with a(x, x) = 0 and a(x, z)  a(x, y)+a(y, z) for all x, y, z 2 X; [0,1]-
functors are non-expanding maps. We write Met = [0,1]-Cat for the resulting category.
The only homomorphism 2 // [0,1] of quantales has both a left and a right adjoint, hence
there is an embedding Ord //Met that is both reflective and coreflective.

(3) The quantale [0,1] is of course isomorphic to the unit interval [0, 1], ordered by the natural
 and provided with the multiplication. Interpreting a(x, y) 2 [0, 1] as the probability that
x, y 2 X be related under a given random order ã on X, we call (X, a) 2 [0, 1]-Cat a
probabilistic ordered set and denote the resulting cateory by ProbOrd, which, of course, is
just an isomorphic guise of Met.

Both, [0,1] and [0, 1] are embeddable into the quantale � of all distance distribution func-
tions ' : [0,1] // [0, 1], required to satisfy the left-continuity condition '(�) = sup↵<�'(↵),
for all � 2 [0,1]. Its order is inherited from [0, 1], and its monoid structure is given by the
commutative convolution product ('⌦  )(�) = sup↵+��'(↵) (�); the ⌦-neutral function
 satisfies (0) = 0 and (↵) = 1 for all ↵ > 0. Interpreting a(x, y)(↵) as the probability
that a given randomized metric ã : X ⇥ X // [0,1] satsisfies ã(x, y) < ↵, one calls the
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objects (X, a) in �-Cat probabilistic metric spaces [25, 29], and we denote their category by
ProbMet.

The quantale homomorphisms � : [0,1] //� and ⌧ : [0, 1] //�, defined by �(↵)(�) =
0 if �  ↵, and 1 otherwise, and ⌧(u)(�) = u if � > 0, and 0 otherwise, induce full em-
beddings of Met and ProbOrd into ProbMet, respectively. Their significance lies in
the fact that they present � as a coproduct of [0,1] and [0, 1] in the category of com-
mutative quantales and their homomorphisms, since every ' 2 � has a presentation ' =
sup�2[0,1]�(�)⌦ ⌧('(�)).

(4) The powerset 2M of a (multiplicative) monoid M (with neutral element eM ) becomes a
quantale when ordered by inclusion and provided with the composition B �A = {�↵ | ↵,� 2
M} for A,B ✓ M ; in fact, it is the free quantale over the monoid M . The objects of 2M -
Cat are sets X equipped with a family (↵)↵2M of relations on them satisfying the rules
x eM x and (x ↵ y, y � z ) x �↵ z); morphisms must preserve each relation of the
family; see [26] V.1.4. Every homomorphism ' : M //N of monoids may be considered a
homomorphism ' : 2M // 2N of quantales via direct image, while its right adjoint given by
inverse image is in general only a lax homomorphism '�1 : 2N // 2M . Still, 2-functoriality
of (�)-Cat produces adjunctions '(�) a '�1(�) : 2N -Cat //2M -Cat. In particular, when
considering 1 //M // 1 with 1 trivial, one sees that there is a coreflective embedding of
Ord into 2M -Cat, as well as a reflective one.

(5) Every frame, i.e., every complete lattice in which binary infima distribute over arbitrary
suprema, may be considered a quantale; in fact, these are precisely the commutative quan-
tales in which every element is idempotent. For example, in addition to 2 of (1), ([0,1],�)
may be considered a quantale [0,1]max when, instead of ↵ + � as in (2), the binary oper-
ation is given by max{↵,�}. The resulting category [0,1]max-Cat is the category UMet
of generalized ultrametric spaces (X, a) whose distance function must satisfy a(x, z) 
max{a(x, y), a(y, z)} instead of the weaker triangle inequality.

A quantale V is called divisible [27] if for all u  v in V there are a, b 2 V with a⌦v = u = v⌦b;
it is easy to see that then one may choose a = u . v and b = v & u. Applying the defining
property to u = k and v = > the top element, so that > = > ⌦ k = > ⌦ >⌦ b  > ⌦ b = k, one
sees that such a quantale must be integral, i.e., k = >. Of the quantales of Example 2.2, all but
2M are divisible; 2M is not even integral, unless the monoid M is trivial.

We refer to [18, 20] for the the Freyd-Grandis construction of freely adjoining a proper orthog-
onal factorization system to a category. In the case of a quantaloid Q it produces the quantaloid
DQ of “diagonals” of Q (so named in [55], after the prior treatments in [28, 43]), which has a
particulary easy description when the quantaloid is a divisible quantale V: the objects of the
quantaloid DV are the elements of V, and there is a morphism (u, d, v) : u // v in DV if d 2 V
satisfies d  u^ v; for ease of notation, we write d : u // v, keeping in mind that it is essential to
keep track of the domain u and the codomain v. The composite e � d of d with e : v // w in DV
is defined by e⌦ (v & d) = (e. v)⌦ d in V, and v : v // v serves as the identity morphism on v
in DV. The order of the hom-sets of DV is inherited from V.

The quantale V is fully embedded into DV by the homomorphism ◆ = ◆V : V // DV, v 7!
(v : k // k), of quantaloids. There are lax homomorphisms, known as the backward and forward
globalization functors (see [17, 43, 56]),

� : DV // V, � : DV // V,

(d : u // v) 7! v & d (d : u // v) 7! d. u

which, from a factorization perspective, play the role of the domain and codomain functors. They
satisfy �◆V = 1V = �◆V and therefore make V a retract of DV. Consequently, the full embedding
V-Cat // DV-Cat induced by ◆ has retractions, facilitated by � and � (see Example 7.5).

More importantly, when one considers V as a V-category (V,h) with h(u, v) = v . u, there is
a full reflective embedding

EV : DV-Cat // V-Cat/V
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which provides a DV-category (X, a) with the V-category structure d defined by d(x, y) = a(x, y).
a(x, x) and considers it as a V-category over V via tx = a(x, x). Conversely, the reflector provides
a V-category (X, d) that comes equipped with a V-functor t : X // V, with the DV-category
structure a, defined by a(x, y) = d(x, y)⌦ tx; see [34].

The quantaloids DV induced by the divisible quantales V of Example 2.2 are of interest in what
follows. Here we mention only a couple of easy cases.

Example 2.3. (1) The quantaloid D2 has objects ?,>, and there are exactly two morphisms
?,> : > // > while all other hom-sets are trivial, each of them containing only ?. The
object part of a D2-category structure on a set X is given by its fibre over >, i.e., by a
subset A ✓ X and an order on A; in other words, by a truly partial (!) order on X. A
D2-functor f : (X,A) // (Y,B) is a map f : X // Y with f�1B = A whose restriction to
A is monotone. We write ParOrd for D2-Cat.

(2) For a D([0,1])-category (X, a) one must have (in the natural order  of [0,1]) |x| 
a(x, x)  |x| for all x 2 X, so that the object part of the structure a : X ⇥X // [0,1] is
determined by its morphism part. Since ↵�� = (↵. ⌫)+� = ↵�⌫+� for ⌫  ↵,� 2 [0,1],
the defining conditions on a may now be stated as

a(x, x)  a(x, y) and a(x, z)  a(x, y)� a(y, y) + a(y, z) for all x, y, z 2 X.

With D([0,1])-functors f : (X, a) // (Y, b) required to satisfy

b(f(x), f(y))  a(x, y) and b(f(x), f(x)) = a(x, x) for all x, y 2 X

one obtains the category ParMet of partial metric spaces, as originally considered in [9].
(For example, when one thinks of a(x, y) as of the cost of transporting goods from location
x to location y, which will entail some fixed overhead costs a(x, x) and a(y, y) at these
locations, the term �a(y, y) in the “partial triangle inequality” justifies itsself since the
operator should not pay the overhead twice at the intermediate location y.) For V = [0,1],
the full embedding EV in fact gives an isomorphism

ParMet ⇠= Met/[0,1]

of categories; i.e., partial metric spaces and their non-expanding maps may equivalently
be considered as metric spaces (X, d) that come with a “norm” t : X // [0,1] satisfying
ty � tx  d(x, y) for all x, y 2 X, the morphisms of which are norm-preserving and non-
expanding. The presentation of ParMet as a comma category makes it easy to relate it
properly to Met, as we may look at the forgetful functor ⌃ : Met/[0,1] //Met and its
right adjoint X 7! (⇡2 : X⇥ [0,1] // [0,1]) (with the direct product taken in Met). When
expressed in terms of partial metrics, ⌃ is equivalently described by

B� : ParMet //Met, (X, a) 7! (X, ã), ã(x, y) = a(x, y)� a(x, x),

and its right adjoint assigns to (X, d) 2 Met the set X ⇥ [0,1] provided with the partial
metric d+, defined by

d+((x,↵), (y,�)) = d(x, y) + max{↵,�}

for all x, y 2 X,↵,� 2 [0,1].

3. Encoding a quantaloid by its discrete presheaf monad

For a quantaloid Q one forms the category Q-Rel of Q-relations, as follows: its objects are
those of Set/Q0, i.e., sets X that come with an array (or type) map a = aX : X // Q0, also
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denoted by |-| = |-|X , and a morphism ' : X //7 Y in Q-Rel is given by a family of morphisms
'(x, y) : |x|X // |y|Y (x 2 X, y 2 Y ) in Q; its composite with  : Y //7 Z is defined by

( � ')(x, z) =
_

y2Y
 (y, z) � '(x, y).

A map f : X // Y over Q0 may be seen as a Q-relation via its Q-graph or its Q-cograph, as
facilitated by the functors

Set/Q0
(�)�

//Q-Rel oo
(�)�

(Set/Q0)
op

f�(x, y) =

⇢
1|x| if f(x) = y
? else

�
= f�(y, x).

For X in Set/Q0 and s 2 Q0, a Q-presheaf � on X with array |�| = s is a Q-relation � :
X //7 {s} (where {s} is considered as a set over Q0 via the inclusion map); hence, � is a family
(�x : |x| // s)x2X of Q-morphisms with specified common codomain. Assigning to X the set
PX = PQX of Q-presheaves on X defines the object part of a left adjoint to (the opposite of)
the Q-cograph functor, with the morphism part and the correspondence under the adjunction
described by

X Y
'
//7

Y PX
 �'
//

( �' (y))x = '(x, y)
Set/Q0 Q-Relop

(�)�
// Q-RelopSet/Q0

P
oo ?

(PY PX)
'�
// �oo (X Y ).

'
//7

⌧ 7! ⌧ � '

The unit y and counit " of the adjunction are given by

yX =
 �
1�X : X // PX, (yy)x = 1|y| i↵ x = y; "X : X //7 PX, "X(x,�) = �x : |x| // |�|.

The adjunction induces the monad P = PQ = (P, s, y) on Set/Q0 which, for future reference, we
record here explicitly as well:

P : Set/Q0
// Set/Q0, (X

f
// Y ) 7! f! := (f�)� : PX // PY, (f!�)y =

_

x2f�1y

�x;
� 7! � � f�

sX = "�X : PPX // PX, (sX⌃)x =
_

�2PX
⌃� � �x.

⌃ 7! ⌃ � "X

One notes that Q-Rel is a (large) quantaloid that inherits the pointwise order of its hom-
sets from Q. The full embedding Q // Q-Rel, which interprets every s 2 Q0 as the set {s}
over Q0, is therefore a homomorphism of quantaloids. Its image serves as a generating set in
Q-Rel. Under the category equivalence Set/Q0 ' SetQ0 the set PX over Q0 corresponds to
(Q-Rel(X, {s}))s2Q0 , which lives in SupQ0 . The corresponding order on PX is described by

�  �0 () |�| = |�0| and 8x 2 X (�x  �0x).

For f : X // Y in Set/Q0, the map f! : PX // PY , considered as a morphism in SupQ0 ,
preserves suprema and, therefore, has a right adjoint f ! : PY // PX which actually preserves
suprema as well and is easily described in Set/Q0 by

8⌧ 2 PY, x 2 X ((f !⌧)x = ⌧fx);

since
f ! = (f�)

�,
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the adjunction f! a f ! follows from f� a f� in Q-Rel and the monotonicity of (-)� on hom-sets,
which we explain next.

The sets Set(Y,PX) with their pointwise order inherited from PX make the bijections

Q-Rel(X,Y ) // Set/Q0(Y,PX), ' 7!  �' ,

order isomorphisms. Since  ���
 � ' = '� ·

 �
 

(for  : Y //7 Z), monotonicity of ( 7!  � ') in  makes the maps

Set/Q0(Z,PY ) // Set/Q0(Z,PX), g 7! '� · g,

monotone. This proves item (1) of the following Lemma.

Lemma 3.1. For ','0 : X //7 Y in Q-Rel and f : X // Y, g, g0 : Z // PY, h : W // Z in
Set/Q0 one has:

(1) '  '0, g  g0 ) '� · g · h  '0� · g0 · h;

(2) yX  f ! · yY · f, f ! · sY = sX · (f !)!.

Proof. The inequality of (2) follows from the naturality of y and the adjunction f! a f !. For the
stated equality, using

'� = sX · ( �' )!

we can show more generally

'� · sY = sX · ( �' )! · sY = sX · sPX · ( �' )!! = sX · (sX)! · ( �' )!! = sX · ('�)!.

Let us finally mention that, of course, there is a functorial dependency of PQ on the quantaloid
Q, which we may describe briefly, as follows. Let # : Q //R be a lax homomorphism of quantales,
and let B#0 : Set/Q0

// Set/R0 be the induced “discrete change-of-base functor” (as in Section
2). We can then regard # as a lax natural transformation

# : B#0PQ // PRB#0 ,

so that
(B#0f)! · #X  #Y ·B#0(f!)

for all f : X //Y in Set/Q0; indeed, for X 2 Set/Q0, one defines #X : B#0PQX //PRB#0X by

� = (�x)x2X 7! #� = (#(�x))x2X .

In fact, # is now a lax monad morphism, as described by the following two diagrams:

B#0PQ PRB#0#
//

B#0

B#0PQ

B#0y
Q

��

B#0

PRB#0

yRB#0

���
B#0PQ PRB#0#

//

B#0PQPQ

B#0PQ

B#0 s
Q
✏✏

B#0PQPQ PRPRB#0PRPRB#0

PRB#0

sRB#0✏✏

B#0PQPQ PRB#0PQ
#PQ
// PRB#0PQ PRPRB#0

PR# //

�

Note that, if Q,R are quantales, these properties simplify considerably, since then B#0 may be
treated as being the identity functor of Set. Furthermore, if # : Q //R is a homomorphism of
quantaloids, the lax natural transformation # becomes strict and makes the two diagrams commute
strictly. Consequently, in the quantale case one obtains a morphism PQ // PR of monads.

We will return to # as a lax monad morphism in Section 7 where we discuss change-of-base
functors in greater generality.
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4. Monads laxly distributing over the presheaf monad, and their lax algebras

Let T = (T,m, e) be a monad on Set/Q0. We wish to generate certain lax extensions of T
to Q-Rel, i.e., to the (dual of the) Kleisli category of the presheaf monad PQ. Since, as is well
known, strict extensions are provided by distributive laws TP //PT (see [26]), we should consider
a lax distributive law � : TP // PT instead, that is: a family �X : TPX // PTX (X 2 Set/Q0)
of morphisms in Set/Q0 satisfying the following inequalities for all f : X // Y :

(a)

PTX PTY
(Tf)!

//

TPX

PTX

�X
✏✏

TPX TPY
T (f!)

// TPY

PTY

�Y
✏✏

 (Tf)! · �X  �Y · T (f!) (lax naturality of �);

(b)
TPX PTX

�X

//

TX

TPX

T yX

��

TX

PTX

yTX

��� yTX  �X · T yX (lax PQ-unit law);

(c)

TPX PTX
�X

//

TPPX

TPX

T sX
✏✏

TPPX PPTXPPTX

PTX

sTX
✏✏

TPPX PTPX
�PX // PTPX PPTX

(�X)!
//

� sTX · (�X)! · �PX  �X · T sX (lax PQ-mult. law);

(d)
TPX PTX

�X

//

PX

TPX

ePX

��

PX

PTX

(eX)!

��� (eX)!  �X · ePX (lax T-unit law);

(e)

TPX PTX
�X

//

TTPX

TPX

mPX
✏✏

TTPX PTTXPTTX

PTX

(mX)!
✏✏

TTPX TPTX
T�X// TPTX PTTX

�TX//

� (mX)! ·�TX ·T�X  �X ·mPX (lax T-mult. law).

Each of these laws is said to hold strictly (at f or X) if the respective inequality sign may be
replaced by an equality sign; for a strict distributive law, all lax laws must hold strictly everywhere.

The lax distributive law � is called monotone if

f  g ) �X · Tf  �X · Tg

for all f, g : Y // PX in Set/Q0. For simplicity, in what follows, we refer to a monotone lax
distributive law � : TP //TP just as a monotone distributive law, which indirectly emphasizes the
fact that the ambient 2-cell structure is given by order; we also say that T distributes monotonely
over PQ by � in this case, adding strictly when � is strict.

Example 4.1. (1) For every quantaloid Q, the identity monad on Set/Q0 distributes strictly
and monotonely over PQ, via the identity transformation 1P.

(2) For every quantale V, the list-monad L on Set, i.e., the free-monoid monad with underlying
Set-functor LX =

S
n�0 X

n, distributes strictly and monotonely over PV, via

⌦X : LPVX // PVLX, (�1, ...,�n) 7! � with �(x1,...,xm) =

⇢
�1
x1
⌦ ...⌦ �n

xn
if m = n,

? else.

�

For V = 2, so that P2
⇠= P is the (covariant) power set functor, we in particular obtain the

strict monotone distributive law

⇥X : LPX // PLX, (A1, ..., An) 7! A1 ⇥ ...⇥An,

that was mentioned in the Introduction.
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(3) For every quantale V, the Set-monad L may be extended to Set/V: using the monoid
structure of V, one maps every (X, a) 2 Set/V to (LX, ⇣ ·La), with ⇣ : LV //V the monoid
homomorphism with ⇣(v) = v, i.e., ⇣ : (v1, ..., vn) 7! v1⌦ ...⌦vn. For the quantaloid Q = DV
(as described in Section 2 when V is divisible) and L considered as a Set/V-monad, one now
obtains a strict monotone distributive law ⌦ : LPQ // PQL defined just as in (2), with the
understanding that � = ⌦X(�1, ...,�n) is now given by Q-arrows

�(x1,...,xm) : |x1|⌦ ...⌦ |xm| // |�| = |�1|⌦ ...⌦ |�n|.

(4) (See [33].) For every quantale V = (V,⌦, k), the power set monad P = P2 of Set distributes
monotonely over PV by the law � : PPV

//PVP which, when we write PVX = VX as the set
of maps X // V, is defined by

�X : P(VX) // VPX , (�XF)(A) =
^

x2A

_

�2F
�(x),

for all F ✓ VX , A ✓ X.

(5) Let U = (U,⌃, ˙(-)) denote the ultrafilter monad on Set; so, U assigns to a set X the set
of ultrafilters on X, the unit assigns to a point in X its principal ultrafilter on X, and the
monad multiplication is given by the so-called Kowalsky sum; see [39, 2, 26]. For every
commutative and completely distributive quantale V (see [59, 26]), one defines a monotone
distributive law � : UPV

// PVU by

�X : U(VX) // VUX , (�Xz)(x) =
^

A2x,C2z

_

x2A,�2C
�(x),

for all ultrafilters z on VX , x on X; compare with Corollary IV.2.4.5 of [26].

Returning to the general context of a quantaloid Q and a monad T on Set/Q0, we define:

Definition 4.2. For a monotone distributive law � : TP // PT , a lax �-algebra (X, p) over Q is
a set X over Q0 with a map p : TX // PX over Q0 satisfying

(f)

TX PXp
//

X

TX

eX

��

X

PX

yX

��� yX  p · eX (lax unit law);

(g)

TX PXp
//

TTX

TX

mX
✏✏

TTX PPXPPX

PX

sX
✏✏

TTX TPX
Tp
// TPX PTX

�X // PTX PPX
p!
//

� sX ·p! ·�X ·Tp  p ·mX (lax mult. law).

A lax �-homomorphism f : (X, p) // (Y, q) of lax �-algebras must satisfy

(h)

PX PY
f!

//

TX

PX

p
✏✏

TX TY
Tf

// TY

PY

q
✏✏

 f! · p  q · Tf (lax homomorphism law).

The resulting category is denoted by (�,Q)-Alg.

Example 4.3. (1) For T the identity monad on Set/Q0 and � = 1PQ , there is an isomorphism
(�,Q)-Alg ⇠= Q-Cat that commutes with the forgetful functors to Set/Q0. Indeed, a lax
homomorphism a : Xc

//Q of quantaloids constitutes a Q-relation a : X //7 X, such that
p = �a : X //PX satisfies the lax unit- and multiplication laws (f) and (g), and conversely;
similarly for the morphisms of the two categories.
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(2) In Section 6 we will elaborate on the correspondence between monotone distributive laws �
of T over PQ and lax extensions T̂ of the monad T to Q-Rel. The �-algebra axioms for a
structure p : TX // PQX may then be expressed in terms of a Q-relation X //7 TX. In
the case of Q being a commutative quantale V,

(�,V)-Alg ⇠= (T,V)-Cat

becomes the familiar category of (T,V)-categories (X, a : TX //7 X) (as defined in [26], but
see Remark 6.7 below), satisfying the lax-algebra conditions conditions

k  a(eX(x), x) and a(y, z)⌦ T̂ a(X, y)  a(mX(X), z)

for all z 2 X, y 2 TX,X 2 TTX; morphisms, i.e., (T,V)-functors f : (X, a) // (Y, b),
satisfy a(x, x0)  b(fx, fx0) for all x, x0 2 X. For example, in the case of Example 4.1(2),
with T = L and V = 2, one obtains the category MulOrd of multiordered sets X (carrying
a reflexive and transitive relation LX //7 X). For V = [0,1] one obtains the category
MulMet of multimetric spaces (X, a : LX ⇥X // [0,1]), defined to satisfy the conditions

a((x), x) = 0,

a((x1,1, . . . , x1,n1| {z }
x1

, . . . , xm,1, . . . , xm,nm| {z }
xm

), z)  a(x1, y1) + · · ·+ a(xm, ym) + a((y1, . . . , ym), z);

morphisms f : (X, a) // (Y, b) are non-expanding: b((fx1, ..., fxn), fy)  a((x1, ..., xn), y).

(3) (See [33].) For any quantale V and the monotone distributive law � of Example 4.1(4) that
makes the powerset monad P = P2 distribute over PV,

(�,V)-Alg = V-Cls

is the category of V-closure spaces (X, c : PX //VX) which in particular (when V is integral),
at every “level” u 2 V, gives rise to the “c-closure” A(u) = {x 2 X | c(A)(x) � u} of A ✓ X.
Considering now the full reflective subcategory of V-Cls of those spaces (X, c) for which c
is a homomorphism of join-semilattices, so that the finite additivity conditions

c(;) = ? and c(A [B) = c(A) _ c(B)

for all A,B ✓ X are satisfied, one obtains for V = 2, [0,1], or �, respectively topological
spaces (as described by a closure operation), approach spaces (as described by a point-set
distance function [37]), or probabilistic approach spaces [8]; in general, we call them V-
approach spaces. Since lax �-homomorphisms provide the “right” morphisms in each of the
three cases, we denote the resulting category by V-App and obtain in the special cases the
categories

2-App = Top, [0,1]-App = App, �-App = ProbApp.

(4) As shown in [33], for a commutative and completely distributive quantale V and the mono-
tone distributive law � of Example 4.1(5) that makes U distribute over PV,

(�,V)-Alg ⇠= V-App

is the category of V-approach spaces; see also Example 7.3. Considering for V the quantales
2, [0,1], and �, in this way one obtains respectively the ultrafilter characterization of the
objects of the categories Top of topological spaces ([2, 26]), App of approach spaces ([37,
12, 26]), and ProbApp of probabilistic approach spaces ([8, 60, 25, 29]).

In generalization of Proposition 2.1 one easily proves:

Proposition 4.4. (�,Q)-Alg is topological over Set/Q0 and, hence, totally complete and totally
cocomplete.
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Proof. For any family of �-algebras (Yi, qi) and Set/Q0-maps fi : X // Yi (i 2 I), the fixed set
X obtains its initial structure p with respect to the forgetful functor (�,Q)-Alg // Set/Q0 as

p :=
^

i2I
(fi)

! · qi · Tfi

which, in pointwise terms, reads as (px)x =
V

i2I(qi(Tfi(x)))fix, for all x 2 X, x 2 TX.

5. Topological theories and maximal lax distributive laws

In addition to the given small quantaloid Q, in this section we restrict ourselves to considering
monads T on Set/Q0 that are liftings of Set-monads along the forgetful ⌃ : Set/Q0

//Set. The
following Proposition (which remains valid when Set is replaced by an arbitrary category) states
that these are completely described by Eilenberg-Moore algebra structures on Q0, just as we have
encountered them in the special case of the list monad in Example 4.1(3).

Proposition 5.1. Let T = (T,m, e) be a monad on Set. Then there is a bijective correspondence
between T-algebra structures ⇣ : TQ0

//Q0 and monads T0 = (T 0,m0, e0) on Set/Q0 with

⌃T 0 = T⌃, ⌃e0 = e⌃, ⌃m0 = m⌃.

Proof. For a “⌃-lifting” T0 of T, let ⇣ be the array function of the Set/Q0-object T 0(Q0, 1Q0),
whose domain must necessarily be TQ0. For any Set/Q0-object (X, a), the unique Set/Q0-
morphism a : (X, a) // (Q0, 1Q0) to the terminal object is being mapped by T 0 to

(TX, aTX)
Ta // (TQ0, ⇣), so that aTX = ⇣ · Ta (⇤).

The object assignment by T 0 is therefore uniquely determined by ⇣, and so is its morphism as-
signment, by faithfulness of ⌃. Furthermore, since necessarily

e0(X,a) = eX : (X, a) // (TX, ⇣ · Ta) and m0(X,a) = mX : (TTX, ⇣ · T ⇣ · TTa) // (TX, ⇣ · Ta),

in Set/Q0, one has ⇣ ·Ta ·eX = aX and ⇣ ·Ta ·mX = ⇣ ·T ⇣ ·TTa which, for X = Q0 and a = 1Q0 ,
amount to the T-algebra laws ⇣ · eQ0 = 1Q0 and ⇣ ·mQ0 = ⇣ · T ⇣.

Conversely, with T 0 defined by (⇤), these laws similarly give the lifting T0 of T along ⌃.

In what follows, we will not distinguish notationally between T0 and T. So, we are working
with a Set-monad T = (T,m, e) and a fixed T-algebra structure ⇣ : TQ0

//Q0 on Q0 that allows
us to treat T as a monad on Set/Q0. For such T and a monotone distributive law � : TP // PT
we consider the Set/Q0-maps

⇠ := (TPQ0

�Q0 // PTQ0
⇣!
// PQ0) and ✓ := (TPPQ0

�PQ0 // PTPQ0
⇠!
// PPQ0).

Proposition 5.2. ⇠ and ✓ are lax T-algebra structures on PQ0 and PPQ0, respectively, making
yQ0 : (Q0, ⇣) //(PQ0, ⇠) and ⌫Q0 : (PPQ, ✓) //(PQ0, ⇠) lax T-homomorphisms, that is, producing
the following laxly commuting diagrams:

PQ0 TPQ0

ePQ0 //PQ0

PQ0

1PQ0

""

TPQ0

PQ0

⇠

✏✏

TPQ0 PQ0
⇠

//

TTPQ0

TPQ0

mPQ0

✏✏

TTPQ0 TPQ0
T⇠

// TPQ0

PQ0

⇠

✏✏

Q0 PQ0yQ0

//

TQ0

Q0

⇣

✏✏

TQ0 TPQ0

T yQ0 // TPQ0

PQ0

⇠

✏✏

 � 
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PPQ0 TPPQ0

ePPQ0 //PPQ0

PPQ0

1PPQ0

""

TPPQ0

PPQ0

✓

✏✏

TPPQ0 PPQ0
✓
//

TTPPQ0

TPPQ0

mPPQ0

✏✏

TTPPQ0 TPPQ0
T✓ // TPPQ0

PPQ0

✓

✏✏

PPQ0 PQ0sQ0

//

TPPQ0

PPQ0

✓

✏✏

TPPQ0 TPQ0

T sQ0 // TPQ0

PQ0

⇠

✏✏

 � 

Moreover, ⇠ (✓) is a strict T-algebra structure on PQ0 (PPQ0) if � satisfies the lax T-unit and
-multiplication laws (d) and (e) strictly at Q0 (at PQ0, respectively); and yQ0 (sQ0) is a strict T-
homomorphism if � satisfies the lax PQ-unit law (b) (the lax PQ-multiplication law (c), respectively)
strictly at Q0.

Proof. Lax unit law for ⇠: By (d), ⇠ · ePQ0 � ⇣! · (eQ0)! = (⇣ · eQ0)! = 1PQ0 , with equality holding
when � satisfies (d) strictly at Q0. Lax multiplication law for ⇠: By (e),

⇠ ·mPQ0 � ⇣! · (mQ0)! · �TQ0 · T�Q0 = ⇣! · (T ⇣)! · �TQ0 · T�Q0 = ⇣! · �Q0 · T (⇣!) · T�Q0 = ⇠ · T ⇠,

with equality holding when � satisfies (e) strictly at Q0.
One proceeds similarly for the (lax) unit and multiplication laws for ✓.
Lax homomorphism law for yQ0 : By (b), ⇠ · T yQ0 � ⇣! · yTQ0 = yQ0 · ⇣, with equality holding

when � satisfies (b) strictly at Q0. Lax homomorphism law for sQ0 : By (c),

⇠ · T sQ0 � ⇣! · sTQ0 · (�Q0)! · �PQ0 = sQ0 · ⇣!! · (�Q0)! · �PQ0 = sQ0 · ⇠! · �PQ0 = sQ0 · T yQ0 ,

with equality holding when � satisfies (c) strictly at Q0.

Remark 5.3. (1) Let t := |-|PQ0 denote the array map of PQ0 (that assigns to a Q0-indexed
family of Q-morphisms in PQ0 their common codomain). Then |-|TPQ0 = ⇣ · Tt (see (⇤) of
Proposition 5.1), and since ⇠ is a map over Q0, we must have t · ⇠ = ⇣ · Tt. In other words,
t : (PQ0, ⇠) // (Q0, ⇣) is a strict T-homomorphism.

(2) From ⇠ = ⇣! · �Q0 one obtains �Q0  ⇣ ! · ⇠ by adjunction, and the lax naturality (a) of � at
t then gives

�PQ0  (Tt)! · �Q0 · T (t!)  (Tt)! · ⇣ ! · ⇠ · T (t!).

Consequently, one obtains an upper bound for ✓:

✓ = ⇠! · �PQ0  ⇠! · (Tt)! · ⇣ ! · ⇠ · T (t!).

We now embark on a converse path, by establishing a monotone distributive law from a given
map ⇠, in addition to ⇣, and by choosing ✓ maximally.

Definition 5.4. Let T be a Set-monad that comes with a T-algebra structure ⇣ on the object set
Q0 of the small quantaloid Q. A topological theory for T and Q is a Set-map ⇠ : TPQ0

// PQ0

satisfying the following conditions:

0. t · ⇠ = ⇣ · Tt (with t as in Remark 5(1)) (array compatibility);
1. 1PQ0  ⇠ · ePQ0 , ⇠ · T ⇠  ⇠ ·mPQ0 (lax T-algebra laws);
2. yQ0 · ⇣  ⇠ · T yQ0 , sQ0 · ✓  ⇠ · T sQ0 (with ✓ = ⇠! · (⇣ · Tt)! · ⇠ · T (t!)) (lax T-homom. laws);
3. 8f, g : Y // PQ0 in Set/Q0 (f  g ) ⇠ · Tf  ⇠ · Tg) (monotonicity).

The theory is strict if the inequality signs in conditions 1 and 2 may be replaced by equality signs.

Proposition 5.2 produces for every (strict) monotone distributive law a (strict) topological
theory. We will call this theory induced by the given law.
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Theorem 5.5. For T,Q, ⇣ as in Definition 5.4 and a topological theory ⇠,

�⇠X := (⇣ · Ta)! · ⇠ · T (a!)

for all X = (X, a) 2 Set/Q0 defines a monotone distributive law �⇠ for T and Q. This law is
largest amongst all laws that induce the given theory ⇠.

Proof. We check monotonicity of � = �⇠ and each of the conditions (a)-(e), considering f :
(X, a) // (Y, b) in Set/Q0. Note that c := ⇣ · Ta is the array function of TX. With t the array
function of PQ0 (see Remark (1)), an easy inspection shows that s := t · a! is the array function
of PX.

Monotonicity: For g, h : Y //7 PX in Set/Q0, monotonicity of ⇠ gives

�X · Tg = c! · ⇠ · T (a! · g)  c! · ⇠ · T (a! · h) = �X · Th.

(a) With the adjunction (Tf)! a (Tf)!, from b ·f = a one obtains (Tf)! · (Ta)!  (Tb)!. Hence,

(Tf)! · �X = (Tf)! · (Ta)! · ⇣ ! · ⇠ · T (a!)  (Tb)! · ⇣ ! · ⇠ · T (b!) · T (f!) = �Y · T (f!).

(b) Condition 2 for a lax topological theory and Lemma 3.1(2) give

�X · T yX = c! · ⇠ · T (a!) · T yX = c! · ⇠ · T yQ0 · Ta � c! · yQ0 · c � yTX .

(c) The adjunction (T (a!))! a (T (a!))! gives (T (a!))! · (Ts)!  (Tt)!. Hence, with condition 2
for a lax topological theory and Lemma 3.1(2) one obtains

�X · T sX = c! · ⇠ · T (a!) · T sX = c! · ⇠ · T sQ0 · T (a!!)
� c! · sQ0 · ✓ · T (a!!) = sTX · (c!)! · ✓ · T (a!!)
= sTX · (c!)! · ⇠! · (Tt)! · ⇣ ! · ⇠ · T (t!) · T (a!!)
� sTX · (c!)! · ⇠! · (T (a!))! · (Ts)! · ⇣ ! · ⇠ · T (s!)
= sTX · (c!)! · ⇠! · (T (a!))! · (⇣ · Ts)! · ⇠ · T (s!) = sTX · (�X)! · �PX .

(d) From ⇣ · eQ0 = 1Q0 one obtains (eQ0)!  ⇣ ! by adjunction. Together with condition 3 for a
lax topological theory, this gives

�X · ePX = c! · ⇠ · T (a!) · ePX = c! · ⇠ · ePQ0 · a!
� (⇣ · Ta)! · a! � (Ta)! · (eQ0)! · a! = (Ta)! · (Ta)! · (eX)! � (eX)!.

(e) With d := ⇣ · Tc the array function of TTX, from c ·mX = d one obtains (mX)! · d!  c!

by adjunction, so that condition 3 for a topological theory gives

�X ·mPX = c! · ⇠ · T (a!) ·mPX = c! · ⇠ ·mPQ0 · TT (a!)
� c! · ⇠ · T ⇠ · TT (a!) � (mX)! · d! · ⇠ · T ⇠ · TT (a!)
� (mX)! · d! · ⇠ · T (c!) · T (c!) · T (⇠) · TT (a!) = (mX)! · �TX · T�X .

Next we show that the topological theory ⇠0 induced by � = �⇠ equals ⇠. Indeed, since ⇣ is
surjective, one has ⇣� � ⇣� = 1TQ0 and therefore

⇠0 = ⇣! · �Q0 = ⇣! · ⇣ ! · ⇠ = (⇣� � ⇣�)� · ⇠ = ⇠.

Finally, let  : TP // PT be any monotone distributive law inducing ⇠, so that ⇣! · Q0 = ⇠.
Then

�X = c! · ⇠ · T (a!) = (Ta)! · ⇣ ! · ⇣! · Q0 · T (a!) � (Ta)! · Q0 · T (a!) = (Ta)! · T (a!) · X � X .
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Remark 5.6. (1) When stated in pointwise terms, the definition of � = �⇠ reads as

(�Xz)x = (⇠ · T (a!)(z))⇣·Ta(x),

for all X = (X, a) 2 Set/Q0, x 2 TX, z 2 TPX.
(2) For a topological theory ⇠, the structure ✓ as in Definition 5.4 always satisfies the lax T-unit

and -multiplication laws of Proposition 5.2, since ⇠ is induced by the monotone distributive law
�⇠.

Corollary 5.7. For a quantaloid Q and a Set-monad T that comes equipped with a T-algebra
structure ⇣ on the set of objects of Q, the assignments

(⇠ 7! �⇠) and (� 7! ⇠� := ⇣! · �Q0)

define an adjunction between the ordered set of topological theories for T and Q and the conglom-
erate of monotone distributive laws TPQ // PQT , ordered componentwise.

Definition 5.8. A monotone distributive law � is maximal if it is closed under the correspondence
of Corollary 5.7, that is, if it is induced by some topological theory or, equivalently, by ⇠�. More
explicitly then, � is maximal if, and only if, for all X = (X, a) 2 Set/Q0,

�X = (Ta)! · ⇣ ! · ⇣! · �Q0 · T (a!).

Note that this condition simplifies to �X = (Ta)! · �Q0 · T (a!) when ⇣ is bijective.

Corollary 5.9. Maximal monotone distributive laws correspond bijectively to topological theories.

Example 5.10. (1) For T and � identical (as in Example 4.1(1)), with ⇣ = 1Q0 also the induced
map ⇠ = 1PQ0 is identical, but the maximal law �⇠ associated with it (by Theorem 5.5) is
not; for a set X with array function |-| : X //Q0 one has

�⇠X : PQX // PQX, (�⇠X�)y =
_

{�x | x 2 X, |x| = |y|},

for all � 2 PX, y 2 X.

(2) For T = L and the strict distributive law ⌦ of Example 4.1(2), the induced map ⇠ : LV //V
with (v1, ..., vn) 7! v1 ⌦ ... ⌦ vn is in fact the Eilenberg-Moore structure of the monoid
(V,⌦, k). The maximal law �⇠X : L(VX) //VLX maps (�1, ...,�n) to the map LX //V with
constant value

W
{�1(z1)⌦ ...⌦ �n(zn) | z1, ..., zn 2 X}, for every set X.

(3) For Q = DV with V divisible, T = L, and the distributive law and the map ⇣ : LV // V
as in Example 4.1(3) (which coincides with the map ⇠ of (2) above), the now induced map
⇠ : L(PV) // PV = PQV is given by

(⇠(�1, ...,�n))u =
_

v1⌦...⌦vn=u

�1
v1 ⌦ ...⌦ �n

vn : u // |�1|⌦ ...⌦ |�n|,

for all �1, ...,�n 2 PV, u 2 V.

(4) The map ⇠ : PV // V induced by the law � of Example 4.1(4) has constant value >.

(5) The map ⇠ : UV // V induced by the ultrafilter monad and the law � as in Example 4.1(5)
is given by

⇠(z) =
^

C2z

_
C (=

_

C2z

^
C, if V is completely distributive),

for every ulltrafilter z on V; it plays a central role in [24].
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While typically maximal monotone distributive laws are rather special and often allow only for
trivial �-algebras, especially when Q is a quantale (see Remark 8.4(2)), they do lead to interesting
categories (�,Q)-Alg when Q is a multi-object quantaloid, including the case when Q = DV for
a quantale V. We can mention here only the easiest case.

Example 5.11. Consider the maximal law � = �⇠ induced by the identity map ⇠ = 1PQ0 of
Example 5.10(1), for any quantaloid Q and T the identity monad on Set/Q0. Writing a(x, y) :=
(py)x for x, y 2 X and a lax �-algebra structure p : X // PX on a set X with array map
|-| : X //Q0, conditions (f), (g) of Definition 4.2 translate to

1|x|  a(x, x) and (|y| = |y0| =) a(y0, z) � a(x, y)  a(x, z))

for all x, y, y0, z 2 X. Since in particular a(y, y) � a(x, x)  a(x, y) whenever |x| = |y|, these
conditions are equivalent to

(|x| = |y| =) 1|x|  a(x, y)) and a(y, z) � a(x, y)  a(x, z)

for all x, y, z 2 X. Consequently then, (�,Q)-Alg can be seen as the full subcategory of Q-Cat
containing those Q-categories (X, a) satisfying 1|x|  a(x, y)) for all x, y with the same array. In
the case of Q = D[0,1] (see Example 2.3(2)), this is the full subcategory of ParMet of those
partial metric spaces (X, a) satisfying the array-invariance condition

a(x, x) = a(y, y) =) a(x, y) = a(x, x)

for all x, y 2 X.

6. Lax distributive laws of T over PQ versus lax extensions of T to Q-Rel

In this section we give a precise account of the bijective correspondence between monotone
distributive laws of T over PQ and so-called lax extensions of T to Q-Rel, i.e., to the Kleisli
category of PQ, where T is now again an arbitrary monad of Set/Q0, i.e., not necessarily a lifting
of a Set-monad as in Section 5.

Remark 6.1. For future reference, we give a list of identities that will be used frequently in what
follows. In part they have already been used in Section 3, and they all follow from the discrete
presheaf adjunction that induces PQ. For morphisms ' : X //7 Y,  : Y //7 Z in Q-Rel and
f : X // Y, g : X // Z, h : Z // Y in Set/Q0 one has:

(1)  �' = '� · yY , ' = �' � � "X , '� = sX · �' !, ('�)� = "Y � ';

(2)
 ���
 � ' = '� ·

 �
 , g! · �' =

 ���
' · g�,

 ���
h� � ' = �' · h;

(3)
 �
f� = yY · f = f! · yX ,

 �
1�X = yX , 1�X = y�X � "X ,  �"X = 1PX .

In what follows, we analyze which of the inequalities required for lax extensions and distributive
laws correspond to each other, starting with the most general scenario. Hence, initially we consider
mere families �X : TPX // PTX (X 2 Set/Q0) of maps in Set/Q0, which we will call (T,Q)-
distribution families, and contrast them with families T̂' : TX //7 TY (' : X //7 Y in Q-Rel),
which we refer to as (T,Q)-extension families. Certainly, a distribution family � = (�X)X deter-
mines an extension family

�(�) = T̂ = (T̂')' with
 �
T̂' := �X · T �' ,

also visualized by
(' : X //7 Y ) 7! (T̂' : TX //7 TY )

( �' : Y // PX) 7!
TY

TPX.
T �' ��

TY PTX

 �
T̂'

// PTX

TPX.

??

�X
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We see immediately that we may retrieve (�X)X from (T̂')', by choosing ' such that  �' = 1PX ,
which is the case precisely when ' = "X : X //7 PX (the co-unit of the adjunction presented in
Section 3). Hence, when assigning to any extension family T̂ = (T̂')' the distribution family

 (T̂ ) = � = (�X)X with �X :=
 ��
T̂"X ,

we certainly have  �(�) = � for all distribution families �. The following Proposition clarifies
which extension families correspond bijectively to distribution families. We call an extension
family T̂ monotone if it satisfies

8','0 : X //7 Y ('  '0 =) T̂'  T̂'0),

and monotonicity of a lax distribution family is defined as monotonicity for a lax distributive law
in Section 4.

Proposition 6.2. � and  establish a bijective correspondence between all (T,Q)-distribution
families and those (T,Q)-extension families T̂ = (T̂')' which satisfy the left-op-whiskering con-
dition

(0) T̂ (h� � ') = (Th)� � T̂'

for all ' : X //7 Y in Q-Rel, h : Z // Y in Set/Q0. The correspondence restricts to a bijective
correspondence between the conglomerate (T,Q)-DIS of all monotone distribution families and the
conglomerate (T,Q)-EXT of all monotone extension families satisfying (0).

Proof. For a distribution family � and T̂ := �(�), let us first verify the identity (0), using the
definition of T̂ and Remark 6.1(2):

 �������
(Th)� � T̂' =

 �
T̂' · Th = �X · T �' · Th = �X · T (

 ���
h� � ') =

 ������
T̂ (h� � ').

Monotonicity of T̂ follows trivially from the corresponding property of �.
Next, for any extension family T̂ satisfying (0), we must show � (T̂ ) = T̂ . Indeed, with

� :=  (T̂ ), the definition of �(�) and Remark 6.1(1) give

 �������
(� (T̂ ))' = �X · T �' =

 ��
T̂"X · T �' = (T̂"X)� · yTPX · T �'

= (T̂"X)� · ((T �' )�)� · yTY = (T̂ ( �' � � "X))� · yTY = (T̂')� · yTY =
 �
T̂'.

That monotonicity of � follows from the monotonicity of T̂ and (0) is clear once one has
observed that

�X · Tf =
 ��
T̂"X · Tf =

 ��������
(Tf)� · T̂"X =

 �������
T̂ (f� · "X)

for all f : Y // PX in Set/Q0.

Before pursuing the bijective correspondence further, let us contrast condition (0) with some
other natural conditions for an extension family, as follows.

Proposition 6.3. Let the monotone extension family T̂ satisfy T̂ � T̂'  T̂ ( � ') for all
', 2 Q-Rel. Then the following conditions are equivalent when quantified over the variables
occurring in them (with maps f : X // Y, h : Z // Y over Q0):

(i) 1�TX  T̂ (1�X), T̂ (h� � ') = (Th)� � T̂';

(ii) 1�TX  T̂ (1�X), T̂ ( � f�) = T̂ � (Tf)�;

(iii) (Tf)�  T̂ (f�), (Tf)�  T̂ (f�).
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Proof. (i)) (iii) The hypotheses, the adjunction f� a f�, and the monotonicity give

1�TX  T̂ (1�X)  T̂ (f� � f�) = (Tf)� � T̂ (f�),

so that (Tf)�  T̂ (f�) follows with the adjunction (Tf)� a (Tf)�. Furthermore,

(Tf)� = (Tf)� � 1TY  (Tf)� � T̂ (1�Y ) = T̂ (f� � 1�Y ) = T̂ (f�).

(iii)) (i) One uses (iii) and the general hypotheses on T̂ to obtain:

(Th)� � T̂'  T̂ (h�) � T̂'  T̂ (h� � ')
 (Th)� � (Th)� � T̂ (h� � ')  (Th)� � T̂ (h�) � T̂ (h� � ')
 (Th)� � T̂ (h� � h� � ')  (Th)� � T̂'.

(i), (ii): One proceeds analogously to (i), (iii).

In what follows we compare the conditions on � 2 (T,Q)-DIS encountered in Section 4 with
some relevant conditions on the related family T̂ 2 (T,Q)-EXT under the correspondence of
Proposition 6.2, so that T̂ = �(�),� =  (T̂ ), all to be read as quantified over all new variables
(' : X //7 Y, : Y //7 Z, f : X // Y, g : Y //X) occurring in them.

(a)

PTX PTY
(Tf)!

//

TPX

PTX

�X

✏✏

TPX TPY
T (f!)

// TPY

PTY

�Y

✏✏

 (1) T̂ � (Tg)�  T̂ ( � g�)

(b)
TPX PTX

�X

//

TX

TPX

T yX

��

TX

PTX

yTX

��� (2) 1�TX  T̂ (1�X)

(2’) (Tf)�  T̂ (f�)

(c)

TPX PTX
�X

//

TPPX

TPX

T sX
✏✏

TPPX PPTXPPTX

PTX

sTX
✏✏

TPPX PTPX
�PX // PTPX PPTX

(�X)!
//

� (3) T̂ � T̂'  T̂ ( � ')

(3’) (T̂')� ·
 ��
T̂"Y 

 ��
T̂"X · T'�

(d)
TPX PTX

�X

//

PX

TPX

ePX

��

PX

PTX

(eX)!

��� (4) ' � e�X  e�Y � T̂'

(e)

TPX PTX
�X

//

TTPX

TPX

mPX
✏✏

TTPX PTTXPTTX

PTX

(mX)!
✏✏

TTPX TPTX
T�X// TPTX PTTX

�TX//

� (5) T̂ T̂' �m�X  m�Y � T̂'

Proposition 6.4. Let � 2 (T,Q)-DIS and T̂ 2 (T,Q)-EXT be related under the correspondence
of Proposition 6.5, so that T̂ = �(�),� =  (T̂ ). Then:

(a), (1), (b), (2), (20), (a)&(c)) (3), (30)) (c), (20)&(3)) (a), (d), (4), (e), (5),

and in each of these implications or equivalences one may replace the inequality sign by an equality
sign on both sides of the implication or equivalence sign.
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Proof. (a))(1): The hypothesis (a) and Remark 6.1 give

 �������
T̂ � (Tg)� = (Tg)! ·

 �
T̂ = (Tg)! · �X · T

 �
  �Z · T (g! ·

 �
 ) = �Z · T ((g�)� ·

 �
 ) =

 ������
T̂ ( � g�),

with equality holding when equality holds in (a).
(1))(a): The hypotheses (0), (1), the naturality of " and the repeated application of Remark

6.1 give the inequality (a), with equality holding when equality holds in (1):

(Tf)! · �X = ((Tf)�)� ·
 ��
T̂"X =

 ��������
T̂"X · (Tf)�


 �������
T̂ ("X � f�) =

 ��������
T̂ ((f!)

� � "Y =
 ����������
(T (f!))

� � T̂"Y

=
 ��
T̂"Y · T (f!) = �Y · T (f!).

(b)) (20):
 ���
T̂ (f�) = �Y · T

 �
f� = �Y · T yY · Tf � yTY · Tf =

 ���
(Tf)�.

(20) )(2))(b): Consider f = 1X and use the same steps as in (b)) (20). Trivially then,
equality holds in (b) if, and only if, equality holds in (2), or (20).

(a)&(c)) (30): With � :=  (T̂ ), inequality (30) follows from (a) and (c) and Remark 6.1, with
equality holding if it holds in both (a) and (c), as follows:

�X · T ('�) = �X · T sX · T ( �' !)

� sTX · (�X)! · �PY · T ( �' !)

� sTX · (�X)! · (T �' )! · �Y

= sTX · (
 �
T̂')! · �Y = (T̂')� · �Y .

(30))(c): Inequality (c) follows when one puts ' = "X in (30), with equality holding when it
holds in (30):

�X · T sX = �X · T ("�X) � (T̂"X)� · �PX = sTX · (
 ��
T̂"X)! · �PX = sTX · (�X)! · �PX .

(30))(3): With �X =
 ��
T̂"X one obtains (3) from (3’) and Remark 6.1, as follows:

 �����
T̂ � T̂' = (T̂')� ·

 �
T̂ = (T̂')� · �Y · T

 �
  �X · T'� · T

 �
 = �X · T (

 ���
 � ') =

 ������
T̂ ( � ').

(3)) (30): One exploits the naturality of " and (3) (putting  = "Y ) to obtain:

(T̂')� ·
 ��
T̂"Y =

 ������
T̂"Y � T̂' 

 ������
T̂ ("Y � ') =

 ����������
T̂ (('�)� � "X) =

 ����������
(T'�)� � T̂"X =

 ��
T̂"X · T'�,

with equality holding precisely when equality holds in (3).

(20)&(3))(1): T̂' � (Tg)�  T̂' � T̂ (g�)  T̂ (' � g�).

(d)() (4): We show “) ”; the implication “( ” follows similarly, with ' = "X :

 ����
' � e�X = (eX)! · �'  �X · ePX · �' = �X · T �' · eY =

 �
T̂' · eY = (T̂')� ·

 �
e�Y =

 �����
e�Y � T̂'.

(e)() (5): Since again “( ” follows by putting ' = "X , we show only “) ”:

 �������
T̂ T̂' �m�X = (mX)! ·

 ��
T̂ T̂' = (mX)! · �TX · T

 ���
(T̂') = (mX)! · �TX · T�X · TT �'

 �X ·mPX · TT �' = �X · T �' ·mY =
 �
T̂' ·mY = (T̂')� ·

 ��
m�Y =

 ������
m�Y � T̂'.
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A lax extension T̂ of the monad T to Q-Rel is a monotone (T,Q)-extension family satisfying
conditions (0), (2)-(5) for all ' : X //7 Y, : Y //7 Z in Q-Rel and h : Z // Y in Set/Q0,
i.e., a left-whiskering lax functor T̂ : Q-Rel // Q-Rel that coincides with T on objects and
makes e� : T̂ //7 1Set/Q0

and m� : T̂ //7 T̂ T̂ lax natural transformations. We have proved in
Propositions 6.2, 6.3 and 6.4 the following theorem (which corrects and generalizes Exercise III.1.I
in [26]):

Theorem 6.5. There is a bijective correspondence between the monotone distributive laws of the
monad T over PQ and the lax extensions T̂ of T to Q-Rel. These lax extensions are equivalently
described as monotone (T,Q)-extension families T̂ satisfying the following inequalities (for all
f,', as above):

1. (Tf)�  T̂ (f�),

2. (Tf)�  T̂ (f�),

3. (= (3)) T̂ � T̂'  T̂( � '),

4. (eY )� � '  T̂' � (eX)�,

5. (mY )� � T̂ T̂'  T̂' � (mX)�.

For a lax extension T̂ of the monad T to Q-Rel we can now define:

Definition 6.6. A (T,Q)-category (X,↵) is a set X over Q0 equipped with a Q-relation ↵ :
X //7 TX satisfying the lax unit and multiplication laws

1�X  e�X � ↵ and T̂↵ � ↵  m�X � ↵.

A (T,Q)-functor f : (X,↵) // (Y,�) must satisfy

↵ � f�  (Tf)� � �.

Hence, the structure of a (T,Q)-category (X,↵) consists of a family of Q-morphisms ↵(x, x) :
|x|X // |x|TX (x 2 X, x 2 TX), subject to the conditions

1|x|  ↵(x, eXx) and T̂↵(y,Z) � ↵(x, y)  ↵(x,mXZ),

for all x 2 X, y 2 TX,Z 2 TTX. The (T,Q)-functoriality condition for f reads in pointwise form
as

↵(x, y)  �(fx, Tf(y))

for all x 2 X, y 2 TX. The emerging category is denoted by

(T,Q)-Cat;

only if there is the danger of ambiguity will we write (T, T̂ ,Q)-Cat to stress the dependency on
the chosen extension T̂ .

Remark 6.7. When Q is a commutative quantale V, then the structure of a (T,V)-category
(X,↵) may be written equivalently as a V-relation TX //7 X, and the notion takes on the familiar
meaning (as presented in [26]). However, it is important to note that, because of the switch in
direction of the V-relation ↵ : X //7 TX (as a lax coalgebra structure) to a lax algebra structure
TX //7 X as in [26], (T, T̂ ,V)-Cat defined here actually becomes (T,V, Ť )-Cat as defined in
[26], III.1, with Ť' := (T̂ ('�))� and '� : Y //7 X, '�(y, x) = '(x, y), for all V-relations ' :
X //7 Y, x 2 X, y 2 Y (see Exercise III.1.J in [26]).

Before presenting further examples, let us point out that (T,Q)-categories and -functors are
just disguised lax �-algebras with their lax homomorphisms, since Q-relations ↵ : X //7 TX
correspond bijectively to Set/Q0-morphisms p : TX // PX under the adjunction of Section 3.
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Proposition 6.8. When � and T, T̂ are related by the correspondence of Theorem 6.5, then there
is a (natural) isomorphism

(�,Q)-Alg ⇠= (T, T̂ ,Q)-Cat

of categories which commutes with the underlying Set/Q0-functor.

Proof. Given a (T,Q)-category structure ↵ on X, repeated applications of the rules of Remark
6.1 confirm that  �↵ makes X a lax �-algebra:

 �↵ · eX =
 ����
e�X � ↵ �

 �
1�X = yX ,

 �↵ ·mX =
 �����
m�X � ↵ �

 ����
T̂↵ � ↵ = ↵� ·

 �
T̂↵ = sX · �↵ ! · �X · T �↵ .

Conversely, given a lax �-algebra structure p on X, putting ↵ := p� · "X one has  �↵ = p, and

the same computational steps as above show
 ���
e�X · ↵ �

 �
1�X and

 ����
m�x · ↵ �

 ����
T̂↵ · ↵, so that ↵ is a

(T,Q)-category structure on X.

A (T,Q)-functor f : (X,↵) // (Y,�) gives a lax �-homomorphism f : (X, �↵ ) // (Y,
 �
� ), since

f! · �↵ =
 ���
↵ � f� 

 ������
(Tf)� � � =

 �
� · Tf,

and conversely.

Example 6.9. (1) Let T be a Set-monad with a lax extension T̃ to Rel = 2-Rel that we
now wish to extend further to D2-Rel. As in Proposition 5.1, we first consider a T-algebra
structure ⇣ : T2 //2, which then allows us to consider T as a monad on Set/2, the category
of sets X with a given subset A (see Example 2.3(2)). Of course, one now wishes to compute
T (X,A) as the pair (TX, TA). Since the array function of X is the characteristic function cA
of A, this is possible precisely when the Set-functor T satisfies the pullback transformation
condition

X 2cA
//

A

X
✏✏

A 1// 1

2

>
✏✏

y
=)

y· ·

TX T2
TcA
//

TA

TX
✏✏

TA T1// T1

T2T2 2,
⇣
//

T1

T2

T1 1// 1

2,

>
✏✏

and this condition certainly holds when T is taut (i.e., preserves pullbacks of monomor-
phisms) and ⇣�11 = T1. Since a morphism ' : (X,A) //7 (Y,B) (where A ✓ X,B ✓ Y )
in D2-Rel is completely determined by the restricted relation 'rest : A //7 B, one may now
declare x to be T̂'-related to y if, and only if, x 2 TA, y 2 TB and x is T̃'-related to y, to
obtain a lax extension of T to D2-Rel.

With T̃ and the T-algebra structure ⇣ on 2 given such that ⇣�11 = T1, the objects (X,A,↵)
of the category (T, T̂ ,D2)-Cat may be described as sets X with a subset A such that (A,↵) 2
(T, T̃ , 2)-Cat; morphisms f : (X,A,↵) // (Y,B,�) are maps f : X // Y with f�1B = A
whose restrictions A // B are (T, 2)-functors. The list monad L (with ⇣ : L2 // 2 given
by ^) and the ultrafilter monad U both satisfy our hypotheses, and (T, T̂ ,D2)-Cat then
describes the categories of ParMulOrd and ParTop of partial multi-ordered sets and partial
topological spaces, respectively.

(2) Expanding on Example 4.1(2),(3) and Example 4.3(2), with L laxly extended to D[0,1]-Rel,
one obtains as (L,D[0,1])-Cat the category ParMulMet of partial multi-metric spaces
whose objects X may be described as sets carrying a distance function a : LX⇥X // [0,1]
(see Remark 6.7) subject to the conditions

max(
nX

i=1

a(xi, xi), a(y, y))  a((x1, ..., xn)y),

a((x1,1, . . . , x1,n1| {z }
x1

, . . . , xm,1, . . . , xm,nm| {z }
xm

), z) 
⇣ mX

i=1

a(xi, yi)� a(yi, yi)
⌘
+ a((y1, . . . , ym), z);
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their morphisms f : (X, a) // (Y, b) must satisfy

b((f(x1), . . . , f(xn)), f(y))  a((x1, . . . , xn), y) and b(f(x), f(x)) = a(x, x),

for all x, x1, ..., xn, y 2 X.

7. Algebraic functors, change-of-base functors

Here we consider the standard types of functors arising from a variation in the two parameters
defining the categories (�,Q)-Alg ⇠= (T, T̂ ,Q)-Cat, which have been discussed earlier, in the
quantale-monad-enriched case (see [14, 26]) as well as for T in more general settings (see [11]), but
not in the current monad-quantaloid-enriched context, which does require some extra pecautions.

Let us first consider two monads T = (T,m, e), S = (S, n, d) on Set/Q0, both mono-
tonely distributing over PQ, via the monotone distributive laws �,, respectively; equivalently,
both coming equipped with lax extensions T̂ and Ŝ to Q-Rel, respectively. An algebraic mor-
phism h : (T, T̂ ) //7 (S, Ŝ) of lax extensions is a family of Q-relations hX : TX //7 SX (X 2
Set/Q0), satisfying the following conditions for all f : X // Y in Set/Q0, ' : X //7 Y, ↵ :
X //7 TX in Q-Rel:

a. hX � (Tf)�  (Sf)� � hY , (lax naturality)
b. e�X  d�X � hX , (lax unit law)
c. ŜhX � hTX �m�X  n�X � hX , (lax multiplication law)
d. Ŝ' � hX  hY � T̂', (lax compatability)
e. Ŝ(hX � ↵)  ŜhX � Ŝ↵. (strictness at h)

Note that, because of the lax functoriality of Ŝ, “” in condition e actually amounts to “=”.

Putting now ⌧X :=
 �
hX and exploiting Remark 6.1, we may equivalently call a family of Set/Q0-

morphisms ⌧X : SX // PQTX (X 2 Set/Q0) an algebraic morphism ⌧ :  // � of mono-
tone distributive laws if the following conditions hold for all f : X // Y, g : Y // PQX, p :
TX // PQX in Set/Q0:

a’. (Tf)! · ⌧X  ⌧Y · Sf, (lax naturality)
b’ yTX · eX  ⌧X · dX , (lax unit law)
c’. (mX)! · sTTX · (⌧TX)! · TX · S⌧X  ⌧X · nX , (lax multiplication law)
d’. sTX · (⌧X)! · X · Sg  sTX · (�X)! · (Tg)! · ⌧Y , (lax compatibility)
e’. X · SsX · S(p!) · S⌧X  sSX · (X)! · (Sp)! · TX · S⌧X . (strictness at p)

A routine calculation shows:

Proposition 7.1. Every algebraic morphism h : (T, T̂ ) // (S, Ŝ) of lax extensions induces the
algebraic functor

Ah : (T, T̂ ,Q)-Cat // (S, Ŝ,Q)-Cat, (X,↵) 7! (X,hX � ↵).

When h is equivalently described as an algebraic morphism ⌧ :  // �, then Ah is equivalently
described as the algebraic functor

A⌧ : (�,Q)-Alg // (,Q)-Alg, (X, p) 7! (X, ⌫X · p! · ⌧X).

Considering S and Ŝ identical or, equivalently,  = 1P, with the algebraic morphism hX = e�X
or, equivalently, ⌧X = yTX · eX , one obtains:

Corollary 7.2. For every monad T on Set/Q0 with lax extension T̂ and corresponding monotone
distributive law �, there is an algebraic functor

A : (T,Q)-Cat //Q-Cat, (X,↵) 7! (X, e�X � ↵)
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that is equivalently described by

A : (�,Q)-Alg //Q-Cat, (X, p) 7! (X, p · eX).

Example 7.3. (See [33].) For the powerset monad P = P2 and the ultrafilter monad U with their
monotone distributive laws � and � over PV of Example 4.1(4),(5) and their corresponding lax
extensions P̂ and U to V-Rel, where V = (V,⌦, k) is a commutative and completely distributive
quantale, the algebraic morphism h with hX : UX //7 PX, hX(x, A) = k if A 2 x 2 UX, and
hX(x, A) = ? else, induces the algebraic functor

(U,V)-Cat // (P,V)-Cat ⇠= V-Cls,

which actually takes values in V-App and facilitates the isomorphism of categories (U,V)-Cat ⇠=
V-App already mentioned in equivalent form in Example 4.3(4).

In order to describe change-of-base functors in the general setting of this paper, let us now con-
sider a lax homomorphism # : Q //R of quantaloids, so that we have a lax natural transformation
# : B#0PQ //PRB#0 (see the end of Section 3), and a Set-monad T = (T,m, e) which, according
to Proposition 5.1, has been lifted to Set/Q0 and Set/R0 via T-algebra structures ⇣ : TQ0

//Q0

and ⌘ : TR0
// R0, respectively, such that #0 : Q0

// R0 is a T-homomorphism. The liftings
of T to Set/Q0 and Set/R0 commute with the “discrete change-of-base functor” B#0 , that is:
B#0T = TB#0 , B#0e = eB#0 , B#0m = mB#0 . (These provisions are, of course, trivially satisfied
when Q and R are quantales.)

Extendinging now B#0 to a functor B̃# : Q-Rel // R-Rel by (B̃#')(x, y) = #('(x, y)) and
considering lax extensions T̂ , Ť of T to Q-Rel,R-Rel, respectively, we call # compatible with T̂ , Ť
if

Ť B̃#'  B̃#T̂' (?)

for all ' : X //7 Y in Q-Rel. (Note that the two R-relations in (?) are comparable since B#0T =
TB#0 .) If we describe the two lax extensions T̂ , Ť equivalently by the monotone distributive laws
�,, respectively, using the natural lax natural transformation # : B#0PQ //PRB#0 (see the end

of Section 3) and the easily verified rule
 ��
B̃#' = #X · B#0

 �' , we see that (?) may equivalently be
formulated as

B#0 · T#  #T ·B#0� (??).

Now we can state the following Proposition, which one may prove using lax extensions and
transcribing the known proof for the quantale case (see [26], III.3.5); alternatively, one may proceed
by using the monotone distributive laws and the lax monad inequalities of # as stated at the end
of Section 3.

Proposition 7.4. Under hypothesis (?) one obtains the change-of-base functor

B# : (T, T̂ ,Q)-Cat // (T, Ť ,R)-Cat, (X,↵) 7! (B#0X, B̃#↵).

Under hypothesis (??) this functor is equivalently described as

B# : (�,Q)-Alg // (,R)-Alg, (X, p) 7! (B#0X,#X ·B#0p).

Example 7.5. For a commutative and (for simplicity) divisible quantale V, we consider the lax
extensions of the list monad L to V-Rel and DV-Rel induced by the monotone distributive laws of
Example 4.1(2),(3), which we may both denote by L̂. In fact, for ' : X //7 Y and xi 2 X, yj 2 Y
one has

L̂'((x1, ..., xn), (y1, ..., ym)) = '(x1, y1)⌦ ...⌦ '(xm, ym) if m = n,

to be interpreted as an arrow |x1|⌦ ...⌦ |xn| // |y1|⌦ ...⌦ |yn| in the DV-case, and the value is
? otherwise. For the homomorphism ◆ : V // DV and its retractions �, � as described in Section
2, one sees that B̃◆ embeds V-Rel fully into DV-Rel, providing every set with the constant array
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function with value k, while its retractions B̃� and B̃� are given by B̃�'(x, y) = |y| & '(x, y)
and B̃�'(x, y) = '(x, y) . |x|. Since the compatability condition (?) holds for all, ◆, � and �
(strictly so for ◆), as “liftings” of the corresponding functors mentioned in Section 2, one obtains
the full embedding B◆ : (L,V)-Cat // (L,DV)-Cat and its retractions B�, B� , which we describe
explicitly here only in the case V = [0,1] using the notation of Example 6.9(2):

B�, B� : ParMultMet //MulMet

B� : (X, a) 7! (X, a�), a�((x1, ..., xn), y) = a((x1, ..., xn), y)�
nX

i=1

a(xi, xi),

B� : (X, a) 7! (X, a�), a�((x1, ..., xn), y) = a((x1, ..., xn), y)� a(y, y).

The full reflective embedding EV : DV-Cat // V-Cat/V of Section 2 may be “lifted” along
the algebraic functors (L,DV)-Cat // DV-Cat and (L,V)-Cat/V // V-Cat/V to obtain a full
reflective embedding

E = EL,V : (L,DV)-Cat // (L,V)-Cat/V,

which we briefly describe next, always assuming that V be commutative and divisible. First, in
accordance with the general setting of III.5.3 of [26], we combine the monoid structure of V with its
internal hom and regard V as an (L,V)-category (V, h) with h : LV //7 V (see Remark 6.7) given
by h((v1, ..., vn), u) = (v1 ⌦ ... ⌦ vn) . u. Now E provides an (L,DV)-category (X, a) with the
(L,V)-category structure d defined by d((x1, ..., xn), y) = a((x1, ..., xn), , y). a(y, y) and considers
it an (L,V)-category over V via tx = a(x, x). Conversely, the reflector provides an (L,V)-category
(X, d) that comes equipped with an (L,V)-functor t : X //V, with the (L,DV)-category structure
a defined by a((x1, ..., xn), y) = d((x1, ..., xn), y)⌦ ty.

In the case V = [0,1] the functor E becomes an isomorphism of categories, so that in the
notation of Example 6.9(2) one has

ParMulMet ⇠= MulMet/[0,1].

Therefore, just as described in Section 2 in the “non-multi” case, the standard construction of a
right adjoint to the functor ⌃ : MulMet/[0,1] //MulMet therefore gives a right adjoint to
B� : ParMulMet //MulMet.

8. Comparison with Hofmann’s topological theories

In [24], for a Set-monad T = (T,m, e) and a commutative quantale V = ((V,⌦, k), Hofmann
considers maps ⇠ : TV // V satisfying the following conditions:

1. 1V  ⇠ · eV, ⇠ · T ⇠  ⇠ ·mV (lax T-algebra laws);
2*. k · ⇣  ⇠ · Tk, ⌦ · (⇠ ⇥ ⇠) · can  ⇠ · T (⌦) (lax T-homom. laws);
3. 8f, g : Y // V in Set (f  g ) ⇠ · Tf  ⇠ · Tg) (monotonicity);
4. ⇠X(�) := ⇠ · T� (� 2 PVX = VX) defines a nat. transf. PV

// PVT (naturality).

Here k and ⌦ are considered as maps 1 //V and V⇥V //V, respectively; can : T (V⇥V) //TV⇥TV
is the canonical map with components T⇡1, T⇡2, where ⇡1,⇡2 are product projections, and (in
accordance with the notation introduced in Proposition 5.1) ⇣ : T1 // 1 is the unique map onto a
singleton set 1. Note that Hofmann [24] combined conditions 3 and 4 to a single axiom; however,
the separation as given above (and in [16]) is easily seen to be equivalent with Hofmann’s combined
axiom and will make the comparison with the conditions of Definition 5.4 more transparent.

Let us now compare these conditions with conditions 0–3 for a topological theory as given in
Definition 5.4, in the case that Q = V is a commutative quantale. First we give a direct comparison
of condition 2* with condition 2 of Definition 5.4 which, in the current context, reads as follows:
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2. y1 · ⇣  ⇠ · T y1, s1 · ✓  ⇠ · T s1 (lax T homom. laws);

here ⇣ : T1 //1 is trivial, and ✓ = ⇠! · (⇣ ·Tt)! · ⇠ ·T (t!), for t : V //1. Indeed, the latter condition
implies the former, as we show first.

Proposition 8.1. Every map ⇠ : TV // V satisfying condition 2 satisfies condition 2*.

Proof. Since k = y1, the first inequality of condition 2 actually coincides with the first inequality
of condition 2*. The crucial ingredient to comparing the second inequalities in both conditions is
the map

� : V ⇥ V // PVV = VV, �(u, v)(w) = u⌦ (yVv)(w) =

⇢
u if w = v,
? else

�
,

since, as one easily verifies, s1 · � = ⌦. It now su�ces to show

(⇤) � · (⇠ ⇥ ⇠) · can  ✓ · T�;

indeed, one can then conclude from s1 · ✓  ⇠ · T s1 the desired inequality, as follows:

⌦ · (⇠ ⇥ ⇠) · can = s1 · � · (⇠ ⇥ ⇠) · can  s1 · ✓ · T�  ⇠ · T s1 · T� = ⇠ · T (⌦).

In order to check (⇤), let w 2 T (V⇥ V) and z 2 V. On one hand, with x := T⇡1(w), y := T⇡2(w),
one obtains

(� · (⇠ ⇥ ⇠) · can(w))(z) = �(⇠(x), ⇠(y))(z) =

⇢
⇠(x) if z = ⇠(y),
? else

�
,

and on the other, with z := T�(w), and since t! · � = ⇡1, one obtains

(✓ · T�(w))(z) = (⇠! · (⇣ · Tt)! · ⇠ · T (t!)(z))(z)

=
_

a2TV,⇠(a)=z

((⇣ · Tt)! · ⇠ · T (t!)(z))(z)

=
_

a2TV,⇠(a)=z

⇠(T (t!)(z)) =

⇢
⇠(x) if 9 a 2 TV (⇠(a) = z)
? else

�
,

which shows (⇤).

Next we will show that, in the presence of conditions 1, 3, 4, conditions 2 and 2* become
equivalent, provided that the Set-functor T of T satisfies the Beck-Chevalley condition (BC), that
is: if T transforms (weak) pullback diagrams in Set into weak pullback diagrams (see [24, 26]).
Note that the Set-functors of both L and U satisfy BC.

Calling a topological theory ⇠ (as defined in Definition 5.4) natural if ⇠ satisfies condition 4
above, we can show:

Theorem 8.2. For a commutative quantale V and a Set-monad T with T satisfying the Beck-
Chevalley condition, the natural topological theories for T and V are characterized as the maps ⇠
satisfying Hofmann’s conditions 1, 2*, 3, 4.

Proof. From Proposition 8.1 we know that every natural topological theory satisfies Hofmann’s
conditions. Conversely, having ⇠ satisfying Hofmann’s conditions, since T satisfies BC, one can
define the induced lax Barr-Hofmann extension T⇠ of T, as given in Definition 3.4 of [24]:

(T⇠')(x, y) =
_

{⇠ · (T |'|)(w) | w 2 T (X ⇥ Y ), T⇡1(w) = x, T⇡2(w) = y}, (†)
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for all V-relations ' : X //7 Y, x 2 TX, y 2 TY , with |'| : X ⇥ Y // V denoting the map giving
the values of '. Let � :=  (T⇠) be the corresponding monotone distributive law (see Theorem
6.5), and ⇠ = ⇠� the induced topological theory (see Proposition 5.2), i.e.,

⇠ = ⇣! · �1 = ⇣! ·
 ��
T⇠"1,

with "1 : 1 //7 V the counit at 1 of the discrete presheaf adjunction. Since |"1| : 1⇥ V // V and
⇡2 : 1 ⇥ V // V may both be identified with the identity map on V, this formula gives, for all
a 2 TV,

⇠(a) =
_

{(T⇠"1)(b, a) | b 2 T1} =
_

{⇠(w) | w 2 TV, T⇡2(w) = a} = ⇠(a),

Consequently, since ⇠ is induced by a monotone distributive law, ⇠ = ⇠ is a topological theory,
with naturality given by hypothesis.

In [16] we showed that, when T satisfies BC, the assignment ⇠ 7! T⇠ of (†) defines a bijective

correspondence between the maps ⇠ satisfying conditions 1, 2*, 3, 4 and those lax extensions T̂ of
T that are

• left-whiskering, that is: T̂ (g� � ') = (Tg)� � T̂' for all V-relations ' : X //7 Y and maps
g : Y // Z; and

• algebraic, that is:

T̂'(x, y) =
_

{T̂ ('1)(b,w) | b 2 T1,w 2 T (X ⇥ Y ), T⇡1(w) = x, T⇡2(w) = y},

for all V-relations ' : X //7 Y ; here '1 has the same values as ' but is considered as a
V-relation 1 //7 X ⇥ Y .

(The proof of this characterization is easily reconstructed by following the proof of Theorem 8.5
below.) We therefore obtain with Theorem 8.2:

Corollary 8.3. Under the hypotheses of Theorem 8.2, the assignment ⇠ 7! T⇠ of (†) defines a
bijective correspondence between the natural topological theories for T and V and the left-whiskering
and algebraic lax extensions of T to V-Rel.

The following chart summarizes the correspondences described in this paper:

monotone
distributive laws

maximal monotone
distributive laws

topological
theories

natural
topological
theories

left-whiskering
algebraic lax

monad extensions

lax monad
extensions

`Cor. 5.7

⇠
�

 

Thm. 6.5

⇠
Cor. 5.9

⇠
Cor. 8.3
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Caution is needed when reading this chart as a diagram, as it commutes only in a limited way.
The following Remark and Theorem shed light on this cautionary note.

Remark 8.4. (1) The Proof of Theorem 8.2 shows that, starting with a natural topological
theory and, under the provisions of Theorem 8.2 on V and T, chasing it counterclockwise all
around the chart, one arrives at the same topological theory.

(2) However, under the assumptions of Theorem 8.2 on V and T, chasing a natural topological
theory ⇠ upwards on the two possible paths one obtains very di↵erent types of lax monad
extensions; their typical properties appear to be almost disjoint. Most remarkably, assigning
to ⇠ the maximal monotone distributive law �⇠ and then the lax monad extension T̂ = �(�⇠),
one observes easily that, for ' : X //7 Y, x 2 TX, y 2 TY and a : X // 1,

T̂'(x, y) = ⇠(T (a! · �' )(y))

does not depend on x ! But also the other path up (⇠ 7! T⇠) leads to quite special monad
extensions, since being left-whiskering and algebraic are restrictive properties which, for
example, exclude all extensions T̂ that fail to satisfy the symmetry condition T̂ ('�) = (T̂')�

(see Remark 6.7), in particular the important extensions first considereded by Seal [47]. In
fact, in the following theorem we give a context in which T⇠ is described as minimal among
extension families inducing ⇠.

For a commutative quantale V and a Set-monad T = (T,m, e), continuing to use the notations
⇣ : T1 // 1 and '1 : 1 //7 X ⇥ Y whenever ' : X //7 Y in V-Rel, let us call an extension family
T̂ = (T̂')' (see Section 6) admissible if, for all ',

(T̂')1 � (canX,Y )� � T̂ ('1) � ⇣�,

and algebraic, if “ � ” may always be replaced by “=”; here canX,Y : T (X ⇥ Y ) // TX ⇥ TY is
the canonical map. (Note that this definition of algebraicity is just an element-free rendering of
the definition given above in a narrower context.) Denoting by (T,V)-EXTadm the conglomerate
of all admissible, left-op-whiskering and monotone extension families of T (see Proposition 6.2),
one has a monotone map

⌅ : (T,V)-EXTadm
// {⇠ 2 Set(TV,V) | ⇠ monotone}, T̂ 7! ⇣! ·

 ��
T̂"1 =

 �����
T̂"1 � ⇣�,

with monotonicity of arbitrary maps TV // V to be understood as in condition 3 above, and
with their order given pointwise as in V. The following Theorem shows that this map is an order
embedding and has a right adjoint, given by

⇠ 7! T⇠, with (T⇠')
1 = (canX,Y )� � (T |'|)� � ⇠� � "1

and |'| =
 �
'1 : X ⇥ Y // V as used in (†); in fact, the formula above is just an element-free

rendering of the formula (†) of Theorem 8.2.

Theorem 8.5. Let T : Set // Set satisfy BC, V be a commutative quantale and the map ⇠ :
TV // V be monotone. Then T⇠ is the least of all admissible, left-op-whiskering and monotone

extension families T̂ with ⌅(T̂ ) = ⇠.

Proof. First we verify that T⇠ is left-op-whiskering, so that it satisfies condition (0) of Proposition
6.2. Indeed, for ' : X //7 Y and h : Z // Y , with |h� � '| = |'| · (1X ⇥ h) one obtains

(T⇠(h
� � '))1 = (canX,Z)� � (T |h� � '|)� � ⇠� � "1 = (canX,Z)� � (T (1⇥ h))� � (T |'|)� � ⇠� � "1.

Since the satisfaction of BC by T forces

(canX,Z)� � (T (1⇥ h))� = (1TX ⇥ Th)� � (canX,Y )�
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(see Proposition 1.4.3 of [16]), the previous identity gives (T⇠(h��'))1 = ((Th)��T⇠')1, as desired.
For admissibility of T⇠, first an easy inspection shows ⇠� � "1 = T⇠"1 � ⇣�. Since T⇠ is left-op-

whiskering, this identity and '1 = |'|� � "1 in fact confirm even its algebraicity:

(T⇠')
1 = (canX,Y )� � (T |'|)� � T⇠"1 � ⇣� = (canX,Y )� � T⇠(|'|� � "1) � ⇣� = (canX,Y )� � T⇠('1) � ⇣�.

For an arbitrary admissible, left-op-whiskering and monotone T̂ with ⌅(T̂ ) = ⇠, we first use
the left-op-whiskering property to obtain T̂ ('1) = (T |'|)� � T̂"1 and then

 �������
T̂ ('1) � ⇣� = ⇣! ·

 ���
T̂ ('1) = ⇣! ·

 ��
T̂"1 · T |'| = ⇠ · T |'|.

Consequently, the admissibility of T̂ gives the desired inequality

(T⇠')
1 = (canX,Y )��(T |'|)��⇠��"1 = (canX,Y )��(

 �������
T̂ ('1) � ⇣�)��"1 = (canX,Y )��T̂ ('1)�⇣�  (T̂')1,

which confirms the minimality of T⇠.
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H. Röhrl, editors, Proceedings of the Conference on Categorical Algebra, La Jolla 1965, pp.
121–176. Springer, Berlin-Heidelberg, 1966.

[19] R. Garner. Topological functors as total categories. Theory and Applications of Categories,
29(15):406–421, 2014.

[20] M. Grandis. On the monad of proper factorization systems in categories. Journal of Pure
and Applied Algebra, 171(1):17–26, 2002.

[21] C. Hermida. Representable multicategories. Advances in Mathematics, 151(2):164–225, 2000.

[22] H. Herrlich. Topological functors. General Topology and its Applications, 4(2):125–142, 1974.

[23] H. Heymans. Sheaves on quantales as generalized metric spaces. Ph.D thesis, Universiteit
Antwerpen, 2010.

[24] D. Hofmann. Topological theories and closed objects. Advances in Mathematics, 215:789–824,
2007.

[25] D. Hofmann and C.D. Reis. Probabilistic metric spaces as enriched categories. Fuzzy Sets
and Systems, 210:1-21, 2013.

[26] D. Hofmann, G.J. Seal, and W. Tholen, editors. Monoidal Topology: A Categorical Approach
to Order, Metric, and Topology. Cambridge University Press, Cambridge, 2014.
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Di↵érentielle Catégoriques, 22(3):283–286, 1981.

[59] R.J. Wood. Ordered sets via adjunction. In: Categorical Foundations (edited by M.C. Pedic-
chio and W. Tholen), pp. 5–47, Cambridge University Press, 2004.

[60] D. Zhang. Tower extensions of topological constructs. Commentationes Mathematicae Uni-
versitatis Carolinae, 41(1):41-51, 2000.

32


