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Abstract 
 

We clarify the role of Hofmann’s Axiom in the old-style definition of a semi-
abelian category. By removing this axiom we obtain the categorical 
counterpart of the notion of an ideal-determined variety of universal algebras 
– which we therefore call an ideal-determined category. Using known 
counter-examples from universal algebra we conclude that there are ideal-
determined categories which fail to be Mal’tsev. We also show that there are 
ideal-determined Mal’tsev categories which fail to be semi-abelian. 
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1. Introduction 

In modern terms, a pointed category C with finite limits and finite colimits is semi-
abelian if it is Barr-exact and Bourn-protomodular. As shown in [JMT], these two 
conditions may be equivalently replaced by the following older-style axioms:   
 
(A) Every morphism admits a pullback-stable (normal epi, mono)-factorization (where 
“normal epimorphism” means “cokernel of some morphism”). 
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(B) For every commutative diagram 
 
                q                      
          F               C                    
 
      w                       v                                                                                                      (1.1)                               
 
          E               B                                     
                   p 
 
with normal epimorphisms p, q and monomorphisms v, w, one has   
 
(B1) if w is normal, then so is v; 
 
(B2) (“Hofmann's Axiom”) if v is normal and ker(p) ≤ w as subobjects of E, then w is 
also normal. 
 
While the equivalence proof for the new-versus-old-style definitions given in [JMT] went 
a long way towards Mac Lane's [M] original quest for an appropriate categorical setting 
that would allow for a generalization of various classical group-theoretic constructions 
and results (see in particular [BB]), the following rather obvious question remained 
unanswered: 
 
Question 1.1. Is Hofmann's Axiom redundant in the list of old-style axioms (i.e., does 
(B2) follow from (A), (B1) for pointed finitely complete and finitely cocomplete 
categories)?  
 
This question draws particular relevance from the fact that some authors worked in 
settings that do not include Hofmann's Axiom, especially those working in Kurosh-
Amitsur radical theory. 
 
By exploiting known results and counterexamples from universal algebra, in this paper 
we provide the expected negative answer to Question 1.1. In fact, we will show that a 
pointed finitely-complete and finitely-cocomplete Barr-exact category satisfying 
canditions (A), (B1)  
 
− may fail to be Mal'tsev (which is a necessary condition for protomodularity in this 

context) and 
− may fail to be protomodular even when it is Mal'tsev. 
 
The pivotal step for this exploitation is the surprising realization that pointed varieties of 
universal algebras satisfying (A), (B1) were studied already in the 1970s and 80s under 
different names: they were called BIT (“buona teoria degli ideali”) in [U1] and ideal-
determined in [GU], and this fact leads us not just to a single counterexample but to an 
interesting class of them. We use the latter term to introduce the categorical notion given 
in the title of this paper and use results from [JMU1 and [JMU2] to demonstrate its 
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relevance beyond the resolution of Question 1.1. We conclude the paper with some open 
questions that should form the basis for future work in this context, work that should also 
clarify more comprehensively the status of the notion of ideal-determined category vis-a-
vis Z. Janelidze's subtractive categories [J1]. 
 
 
2. Ideal-determined categories 
 
Let us recall some notions from universal algebra used in this paper: 
 
Definition 2.1. A pointed variety C of universal algebras is said to be BIT  in the sense of 
[U1], or, equivalently, ideal determined in the sense of [GU], if its congruences are 
determined by its ideals, i.e., if the following two conditions hold: 
 

(a) if every congruence on any algebra in C is generated by its 0-class (i.e., no smaller 
congruence has the same 0-class); 
 

(b) every ideal in every algebra in C is normal, i.e., it is the 0-class of a congruence.  
 
Varieties of universal algebras satisfying condition 2.1(a) are called 0-regular. On the 
other hand, as mentioned in [JMU1], in the language of categorical algebra condition 
2.1(a) simply says that every regular epimorphism in C is normal. Since every variety of 
universal algebras admits a pullback-stable (regular epi, mono)-factorization, condition 
2.1(a) is nothing but the algebraic version of condition (A) of the Introduction. 
 

As shown in [JMU2], a subalgebra S of an algebra A in a pointed variety C is an ideal if, 
and only if, there exist a surjective homomorphism f : A' → A in C and a normal 
subalgebra N in A' for which f(N) = A'. Therefore, under condition (A), condition 2.1(b) is 
nothing but the algebraic version of condition (B1) of the Introduction. 
 

Accordingly we introduce: 
 
Definition 2.2. A category pointed finitely complete and finitely cocomplete category C 
is said to be ideal determined if it satisfies conditions (A) and ((B1). 
 
We obtain immediately: 
 
Proposition 2.3. A pointed variety of universal algebras is ideal determined as a category 
if and only if it is ideal determined in the sense of universal algebra. � 
 
Furthermore, the universal-algebraic motivation for “ideal determined” can be 
reformulated categorically as follows: 
 

According to [JMU2], a monomorphism v : C → B in a pointed category C with finite 
limits and colimits satisfying condition (A) should be called an ideal if there exists a 
commutative diagram of the form (1.1) in C, in which p and q are normal epimorphisms 
and w is a normal monomorphism. Hence, with this terminology C is ideal determined if, 
and only if, its ideals are normal monomorphisms. On the other hand, condition (A) 
simply says that C is a regular category in which every regular epimorphism is normal. 
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Hence, in terms of the correspondence between normal monomorphisms and normal 
epimorphisms we may briefly say that ideal-determined categories are regular 
categories in which regular epimorphisms are determined by ideals. 
 
Let us now recall when a variety of universal algebras is semi-abelian, combining  past 
work from both category theory and universal algebra. The universal-algebraic side of the 
story was discovered in [JMU1] (see Theorems 1.3 and 1.4 in [JMU1]), with another 
crucial remark made in [JMU2]. The equivalence (a)⇔(c) in the following theorem 
follows also from the main result of [BJ], while (b)⇔(c) had been proved originally in 
[Be]: 
 
Theorem 2.4. The following conditions on a pointed variety C of universal algebras are 
equivalent: 
 

(a) C is a semi-abelian category; 
 

(b) C satisfies the Split Short Five Lemma (see [JMT]); 
 

(c) C is 0-coherent in the sense of E. Beutler [Be], i.e., for every A in C, every subalgebra 
A' in A, and every congruence R on A, one has: 
 
          {a ∈ A | (0,a) ∈ R} ⊆ A' implies {a ∈ A | (a',a) ∈ R} ⊆ A' for all a' in A.                        
 
(d) C is BIT speciale in the sense of [U2] (=classically ideal determined in the sense of 
[U3]), i.e., there are binary terms t1, ..., tn, and an (n+1)-ary term t satisfying the identities 
t(x,t1(x,y),...,tn(x,y)) = y and ti(x,x) = 0 for each i = 1, ..., n. � 
 
This theorem shows that various semi-abelian categorical constructions are closely 
related to the universal-algebraic theory of Magari ideals as developed by Ursini and his 
collaborators in [U1], [U2], and by the authors of various subsequent papers. 
 
 
Remark 2.5.  Already from [U2] it is well known that not every ideal determined (=BIT) 
variety of universal algebras is classically ideal determined (=BIT speciale). Hence, not 
every ideal-determined category is semi-abelian, but is it always a Mal’tsev category? 
The negative answer is again provided by universal algebra. The first of a string of 
counter-examples was provided in [GU] (“implication algebras”), which eventually led to 
the proof of the following much stronger result by G. D. Barbour and J.G. Raftery [BR]: 
For every natural number n ≥ 2 there is a pointed ideal-determined variety of universal 
algebras which has (n+1)-permutable congruences but not n-permutable congruences.  
 
 
3. Not every ideal determined Mal’tsev category/variety is semi-abelian  
 
Throughout this section C denotes a pointed variety of universal algebras. We shall write 
M(C) for the (pointed) variety obtained from C by adding a ternary operation p satisfying 
the Mal’tsev identities: 



 5

 
          p(x,y,y) = x = p(y,y,x).                                                                                           (3.1) 
 
Given a morphism α : A → B in C with B in M(C), we can always make A an object in 
M(C), by choosing any map (not necessarily a homomorphism) β : α(A) → A with  
β(0) = 0 and αβ(b) = b for each b ∈ α(A), and then by defining p on A by 
 
                             x if y = z, 
          p(x,y,z) =    z if x = y, 
                             β(p(α(x),α(y),α(z))) if x ≠ y ≠ z; 
 
we will denote that object by A[α,β]. The morphism α determines a morphism  
A[α,β] → B in M(C), and if β is a morphism in C, it actually determines a morphism  
B → A[α,β] in M(C). 
 
Now, consider the diagram 

                   κ'              α'            
          K               A'              B      
                                    β' 
                          ι                                                                                                             (3.2)                             
                                    α 

          K               A               B                      
                   κ               β 

 
in C constructed as follows: 
 

• α and β are arbitrary morphisms in C with αβ = 1B; 
• K = α−1(0) is the kernel of α, and A' is a subalgebra in A containing K and β(B); 
• ι, κ, and κ' are the inclusion maps, and α' and β' the induced maps determined by α' = 
αι and ιβ' = β, respectively.  
 

There are many ways of making B an object in M(C); let us put 
 
                             x if y = z, 
          p(x,y,z) =    z if x = y, 
                             0 if x ≠ y ≠ z 
 
in B and denote this object by B0. After that we can form A[α,β], and, since A' contains 
β(B), it determines a subalgebra in A[α,β]; moreover, that subalgebra is nothing but 
A'[α',β'], and the diagram (3.2) determines a similar diagram in M(C), namely, 
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                    κ'                         α'            
          K0               A'[α',β']               B0      
                                                β' 
                                 ι                                                                                                     (3.3)                              
                                                α 

          K0                A[α,β]                B0,                      
                    κ                          β 

 
where K0 is constructed similarly to B0. This proves: 
 
Theorem 3.1. M(C) is semi-abelian if and only if so is C. � 
 
In particular, since we know that not every (pointed) ideal-determined variety is semi-
abelian, we immediately conclude that not every ideal-determined Mal’tsev variety is 
semi-abelian. Therefore there exist Barr-exact, Mal’tsev and ideal-determined categories 
that are not semi-abelian. 
 
Remark 3.2. (a) The arguments used for obtaining (3.3) from (3.2) and then deducing 
Theorem 3.1, apply obviously not just for (3.1) but also for similar conditions involving 
equalities of “one-step” terms. 
 

(b) One could use similar arguments with β in (3.2) being merely a map with  
β(0) = 0 and αβ(b) = b for every b ∈ α(A), not a homomorphism, as we originally 
required in the construction of A[α,β].    
 
4. Four open questions 
 
Question 4.1. Is every ideal-determined category Barr exact? 
 
An obvious candidate for a counter-example would be a quasi-variety of universal 
algebras that generates a familiar ideal-determined variety. However, this does not work: 
in fact, it is easy to show that if a quasi-variety generates an ideal-determined variety then 
it is a variety. This indicates that one should begin by studying exact completions of 
ideal-determined categories. 
 
Question 4.2. Is a pointed finitely complete and finitely cocomplete Barr-exact category 
ideal determined if, and only if, it satisfies condition (A) and is subtractive in the sense of 
Z. Janelidze [J1]?  
 
Since the subtractive categories that are varieties are the same as subtractive varieties, in 
the “varietal” case the affirmative answer is well known [GU], and this is in fact the 
reason why we are interested in this question. Barr exactness is essential here, and the 
reason for that is clear not only by the comment to Question 4.3 given below, but also by 
the fact that, say, the category of torsion-free abelian groups is subtractive and satisfies 
condition (A) but fails to be ideal determined. 
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Question 4.3. Is a category C abelian whenever both C and Cop are ideal determined? 
 
This question is closely related to the previous ones since, as shown by Z. Janelidze [J2], 
under mild additional conditions (which are much weaker than the conjunction of (A) and 
our standard assumption of beinf pointed and finitely complete and finitely cocomplete), 
C is additive whenever both C and Cop are subtractive. And together with Barr exactness 
additivity would imply abelianness.  
 
Our fourth question is rather vague: 
 
Question 4.4. What is the role of finite cocompleteness in this work?  
 
Finite cocompleteness is not very often used, but it holds in all algebraic examples. It is 
not clear to us to what extent it would be interesting to study the classes of categories 
considered above without this assumption.   
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