
NATURAL WEAK FACTORIZATION SYSTEMS

MARCO GRANDIS§ AND WALTER THOLEN†

Abstract. In order to facilitate a natural choice for morphisms created
by the (left or right) lifting property as used in the definition of weak
factorization systems, the notion of natural weak factorization system
in the category K is introduced, as a pair (comonad, monad) over K2.
The link with existing notions in terms of morphism classes is given via
the respective Eilenberg–Moore categories.

Dedicated to Jiř́ı Rosický at the occasion of his sixtieth birthday

1. Introduction

Weak factorization systems (L,R) play a key role for Quillen model cat-
egories, defined in terms of (cofibrations, trivial fibrations) and (trivial cofi-
brations, fibrations). While the two players L and R have good stability
properties under some colimits and limits, respectively, unlike the counter-
parts appearing in the orthogonal factorization systems, they fail to be closed
under the formation of all colimits and limits, coequalizers and equalizers
among them. The general reason for that, of course, lies in the fact that
morphisms provided by the (right or left) lifting property are not chosen
naturally, even in the presence of a functorial realization for the system.

While the notion of lax factorization algebra presented in [RT1] leads to a
natural extension of the presentation of orthogonal factorization systems as
Eilenberg–Moore algebras for the “squaring monad” on CAT (see [C], [KT],
[RW]) it does not give a remedy for the defect just described. This paper,
therefore, takes a new look at what “functorial weak factorization systems”
ought to be and, after a careful recollection of the existing notions, proposes
to define such systems in the category K by a pair (comonad, monad) in
K2, under suitable conditions.

A first step in the passage towards a pair of morphism classes in K
is made by considering the respective Eilenberg–Moore categories. Their
(co)algebras are morphisms in K that come with a (co)algebraic structure,
and it is that structure that contains all information to construct “liftings”
naturally. Of course, as in all Eilenberg–Moore categories, all (co)limits
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2 MARCO GRANDIS§ AND WALTER THOLEN†

are now created over K2. If both the comonad and monad are idempotent,
the structures become properties, and the approach takes us back to the
traditional presentation of orthogonal factorization systems in terms of two
subclasses of morK.

Those results are presented in Sections 2 and 3, and examples follow
in Section 4. These encompass the examples treated in [RT1]. Further-
more, all cofibrantly generated weak factorization systems in locally finitely-
presentable categories are natural, but we must leave a presentation of the
rather lengthy and cumbersome proof to a later paper.

2. Natural weak factorization systems

2.1. Morphisms (u, v) : f ! g in the category K2 are commutative squares
u

//

f
≤≤

g

≤≤

v
//

of morphisms in the category K. The two projections give the (vertical)
domain and the codomain functors dom, cod: K2 ! K, and there is a natural
transformation ∑ : dom ! cod with ∑f = f . According to [RT1], a functorial

realization of a weak factorization system of K is given by a functor F : K2 !
K and natural transformations ∏ : dom ! F , Ω : F ! cod such that

F
Ω

!!

CC
CC

CC
CC

dom

∏
<<zzzzzzzz ∑

// cod

commutes and, for all f 2 obK2,

∏f 2 LF := {g | 9s : ∏g = s · g, Ωg · s = 1},
Ωf 2 RF := {g | 9p : Ωg = g · p, p · ∏g = 1}.

Now, (LF ,RF ) is indeed a weak factorization system (wfs) of K in the
sense of [AHRT], and any wfs (L,R) that admits a functorial realization
(F, ∏, Ω) (so that all properties above are satisfied, with LF , RF traded for
L, R) necessarily satisfies L = LF , R = RF (see Theorem 2.4 of [RT1]).
These data provide for every morphism f a commutative diagram

FLf
ΩLf

// Ff

Ωf
%%

LLLLLLLLLLLL

∏Rf
// FRf

ΩRF

≤≤

A

∏Lf

OO

∏f

99rrrrrrrrrrr

f
// B

where we have written Lf for ∏f (considered as an object of K2), and Rf
for Ωf , and where ΩLf , ∏Rf have splittings s, p with

(1) ∏Lf = s · ∏f , ΩLf · s = 1, ΩRf = Ωf · p, p · ∏Rf = 1.
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Unfortunately, these splittings (that are used for constructing “liftings”)
need to be chosen each time and add a non–constructive aspect to the notion
of functorial realization of wfs.

2.2. The natural transformation ∏ in 2.1 is equivalently described by a
functor L : K2 ! K2 with

(2) domL = dom, codL = F, ∑L = ∏.

Now Ω may be described by a natural transformation © : L ! 1K2 with

(3) dom© = 1dom, cod© = Ω;

explicitly, ©f is the commutative square

A
1A

//

∏f

≤≤

A

f
≤≤

Ff
Ωf

// B

Likewise, when we present Ω as a functor R : K2 ! K2 with

(4) domR = F, codR = cod, ∑R = Ω,

then ∏ may be presented as a natural transformation § : 1K2 ! R with

(5) dom§ = ∏, cod§ = 1cod;

hence, §f is the commutative square

A
∏f

//

f
≤≤

Ff

Ωf

≤≤

B
1B

// B

Now, let us suppose that there is a natural choice for the splittings s, p
satisfying (1). Hence, we suppose that there are natural transformations
æ : F ! FL, º : FR ! F with

(6) ∏L = æ · ∏, ΩL · æ = 1F , ΩR = p · º, º · ∏R = 1F .

Equivalently, æ and º can be described by natural transformations ß : L !
LL and ¶ : RR ! R with

(7) domß = 1dom, codß = æ, ©L · ß = 1L,
cod¶ = 1cod, dom¶ = º, ¶ · §R = 1R.

Explicitly, ßf and ¶f are respectively the commutative diagrams

A
1A

//

∏f

≤≤

A

∏Lf

≤≤

FRf
ºf

//

ΩRf

≤≤

Fr

Ωf

≤≤

Ff æf

// FLf B
1B

// B
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It seems natural to assume that (L,©,ß) and (R,§, ¶) actually form a
comonad and a monad on K2, respectively, so that in addition to (7) one
has

(8) L© · ß = 1L, ßL · ß = Lß · ß,
¶ · §R = 1R, ¶ ·¶R = ¶ ·R¶.

Alternatively, in addition to (6) one requires

(9) F (1a, Ωf ) · æf = 1Ff , æLf · æf = F (1A,æf ) · æf ,
ºf · F (∏f , 1B) = 1Ff , ºf · ºRf = ºf · F (æF , 1B).

This leads to the Definition 2.4 below, for which the following setting is
considered.

2.3. Let CAT//K be the 2–category whose objects are functors with values
in K, whose arrows F : U ! V are commutative triangles

A F
//

U
√√

@@
@@

@@
B

V
ƒƒƒƒ

ƒƒ
ƒƒ

K
of functors, and whose 2-cells are natural transformations Æ : F ! G with
V Æ = 1U . A monad (T, ¥, µ) on U in CAT//K is simply a monad (T, ¥, µ) on
A in CAT with UT = U , U¥ = 1U , Uµ = 1U . A comonad on U in CAT//K
is described analogously.

2.4. Definition. A natural weak factorization system (natural wfs) in a
category K is a pair (L, R) such that

(1) L = (L,©,ß) is a comonad on dom in CAT//K,

(2) R = (R, §, ¶) is a monad on cod in CAT//K,

(3) codL = domR, cod© = ∑R, dom§ = ∑L.
From our discussion in 2.1, 2.2 one sees immediately:

2.5. Proposition. (i) Let us be given a functor F : K2 ! K and natural

transformations

∏ : dom ! F, Ω : F ! cod, æ : F ! FL, º : FR ! F,

(where L,R : K2 ! K2
respectively represent ∏, Ω as in 2.2). If Ω · ∏ =

∑ : dom ! cod and (6) holds, then (F, ∏, Ω) is a functorial wfs (with a natural

choice of splittings).

(ii) There is a bijection between natural wfs (L, R) = (L,©, ß;R, §,¶) on

K, as in 2.4, and systems (F, ∏, Ω, æ,º) as in (i) which satisfy Ω · ∏ = ∑ and

the conditions (6), (9). Given a natural wfs (L, R), one defines the system:

F := codL = domR, ∏ := dom§, Ω := cod©, æ := codß, º := dom¶.
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Conversely, given such a system, one defines the associated natural wfs as

in 2.2.
§

2.6. For a natural wfs (L, R), let LL and RR denote the Eilenberg–Moore
categories of L and R, respectively. Hence, an object in LL is a pair
(f, (i, s) : f ! Lf) such that

f
1

ƒƒƒƒ
ƒƒ

ƒƒ
ƒƒ

(i,s)
≤≤

(i,s)
// Lf

ßf

≤≤

f Lf
©f

oo

L(i,s)
// LLf

commutes in K2. Since necessarily i = 1, with 2.5 we can simply write

obLL = {(f : A ! B, s : B ! Ff) | ∏f = sf, Ωf ·s = 1B,æf ·s = F (1A, s)·s};

a morphism (u, v) : (f, s) ! (g, t) in LL is a morphism (u, v) : f ! g in K2

which satisfies t · v = F (u, v) · s. Hence, objects in LL are, in the setting
of 2.1, simply morphisms of LF (see 2.1) that come with a given splitting s
which, in addition, must be compatible with the (co)multiplicative structure
of L; morphisms of LL must respect the given splittings.

Similarly one obtains

obRR = {(f : A ! B, p : A ! Ff) | Ωf = fp, p∏f = 1A, pºf = p·F (p, 1B)},

with morphisms (u, v) : (f, p) ! (g, q) in RR satisfying u · p = q · F (u, v).

2.7. Corollary. Let (L, R) be a natural wfs of K. Then, in the notation

of 2.1 and 2.2, every morphism f : A ! B factors as

Ff
Ωf

√√

BB
BB

BB

A

∏f
>>|||||| f

// B

with (∏f , æf ) 2 LL and (Ωf ,ºf ) 2 RR. Furthermore, for all (f, s) 2 LL and

(g, q) 2 RR and (u, v) : f ! g in K2
, there is a naturally chosen diagonal

morphism w as in

A
u

//

f
≤≤

C

g

≤≤

B v
//

w
>>~

~
~

~
D

namely: w = q · F (u, v) · s. If K has colimits (resp. limits) of a given type,

then LL (resp. RR) also has them, formed as in K2
.

Proof. The forgetful functors LL ! K2 and RR ! K2 create colimits and
limits, respectively. §
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3. Orthogonal factorization systems

3.1. Recall that an orthogonal factorization system in a category K may
be given by a pair (L,R) of classes of morphisms of K, both closed under
composition with isomorphisms, such thatK = R·L, and for all f 2 L, g 2 R
and (u, v) : f ! g in K2 there is a unique morphism w with wf = u and
gw = v.

Equivalently, it may be described by a functor F : K2 ! K with FE = 1K

and

F (1, f) 2 L1
F := {g | F (g, 1) iso},

F (f, 1) 2 R1
F := {g | F (1, g) iso}

(see Theorem A of [KT]); here E : K ! K2 is the full embedding with
A 7! 1A, and the morphisms (1, f), (f, 1) stem from the generic factorization

f
(f,1B)

¬¬

??
??

??
?

1A

(1A,f)
??ƒƒƒƒƒƒƒ

Ef=(f,f)
// 1B

in K2, for every f : A ! B in K.
Note that such a functor F gives rise to a natural wfs, with ∏f = F (1, f),

Ωf = F (f, 1) and æf , ºf both isomorphisms. Since orthogonal factorization
systems are weak factorization systems ([AHS], [AHRT]), one has L1

F = LF

and R1
F = RF .

3.2. Theorem. Orthogonal factorization systems of K are equivalently de-

scribed as those natural wfs (L, R) for which L and R are idempotent. In

this case the Eilenberg–Moore categories LL and RR are equivalent to LF

and RF , considered as full coreflective and reflective subcategories of K2
,

with F as in 2.5.

Proof. It is clear that an orthogonal factorization system gives rise to a
natural wfs (L, R) with L, R idempotent, see 3.1. Conversely, having such
a natural wfs, in the notation on 2.5 one has æ, º iso. In order to be able
to apply Theorem A of [KT], we just have to show FE = 1K; in fact, it is
su±cient to show FE ª= 1K (see 2.2 of [KT]). Hence, we must show that for
every object A in K, the morphisms l = ∏1A and r = Ω1A are isos (see 2.6 of
[RT1]).

To this end, one considers the morphism (l, 1A) : 1A ! r in K2 and notices
that F (l, 1A) is iso since º1A is iso (by (9) of 2.2). Now we factor (l, 1A) as

1A
(1A,l)

// l
(l,r)

// r.

By idempotency of R and L, we may assume Ωl = 1B and ∏r = 1B (with
B = F1A), so that an application of F to the factorization of (l, 1A) leads
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to the following commutative diagram

A
1A

//

l

≤≤

A

1

l
//

l

≤≤

B

1B

≤≤

B

2

F (1A,l)
//

r

≤≤

B
F (l,r)

//

1B

≤≤

B

r

≤≤

A
l

// B r
// A

Now one has:
l · r = F (l, r) · l · r (commutativity of 1 )

= F (l, r) · F (1A, l) (commutativity of 2 )
= F (l, 1A) (since r · l = 1A)

Hence, l · r is an isomorphism, and then both l, r must be isos. §
3.3. Remarks. Here are three related open problems.
1. The proof of 3.2 uses idempotency of both players of the natural wfs
(L, R). We do not know whether idempotency of one of them implies idem-
potency of the other.
2. In a wfs (L,R), one class determines the other. We do not know if, for a
natural wfs (L, R), L and R determine each other.
3. Are there distinct natural wfs inducing the same functorial wfs, that is:
do there exist distinct natural wfs (L, R), (L0, R0) with (in the notation of
2.5) F = F 0, ∏ = ∏0, Ω = Ω0, but æ 6= æ0 or º 6= º0?

4. Examples

4.1. In a category K with binary products, every map f : X ! Y has a
well-known graph-factorization

(10) f = Ωf · ∏f = p2h1, fi : X ! X £ Y ! Y,

where p2 is the second projection of the cartesian product.
Dually, in a category K with binary sums, a map f : X ! Y has a cograph-

factorization

(11) f = Ωf .∏f = [f, 1]i1 : X ! X + Y ! Y,

where i1 is the first injection of the sum and Ωf = [f, 1] : X + Y ! Y has
co-components Ωf · i1 = f, Ωf · i2 = 1Y .

Plainly, both factorizations are functorial. Furthermore, they can be made
into natural wfs, by dual procedures: below, we describe the second, which,
when K is lextensive [CJ], leads to the weak factorization system (coproduct
injections, split epimorphisms), recently considered in [RT2].

For the first, it is well-known that, when K = Set, LF coincides with the
class of split monos, which amounts to the injective mappings except the
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empty embeddings in non-empty sets, while RF contains all the surjective
mappings and empty inclusions.

4.2. Proposition. [The cograph factorization] Let K be a category with

binary sums. The cograph factorization of a map, recalled above in (11),
can be made into a natural wfs, so that, if K is lextensive, the maps of

LF ,RF can be characterised as coproduct injections and split epimorphisms,

respectively.

Proof. The cograph factorization is functorial, with

(12) F : K2 ! K,
F (f : X ! Y ) = X + Y, F ((u, v) : f ! g) = u + v,

and the natural transformations ∏, Ω defined above, in (11). In order to make
it into a natural wfs, let us define the following two natural transformations,
related with the factorization of Lf = i1 and Rf = [f, 1] displayed in the
diagram below

(13) æ : F ! FL, æf = [i1, i3] : X + Y ! X + X + Y,
º : FR ! F, ºf = [i1, i2, i2] : X + Y + Y ! X + Y,

X

i1
≤≤

X

i1
≤≤

X + Y

[i1,i2]
≤≤

X + Y

1
≤≤

X + Y
æf

//

1
≤≤

X + X + Y

[i1,i1,i2]
≤≤

X + Y + Y

[f,1,1]
≤≤

ºf
// X + Y

[f,1]
≤≤

X + Y X + Y Y Y

The last axiom (9) is easily verified.
Let now K be lextensive [CJ], and let us proceed to characterise the sets

LF ,RF . In the left diagram below

(14)
X

f
// Y

s

zzv
v

v
v

X
g

// Y1
s1

}}|
|

|
|

Y2

j2
≤≤

s2

~~|
|

|
|

X
i1

// X + Y
[f,1]

// Y X g
// Y Y Y

the morphism s decomposes as a sum s1 + s2 : Y1 + Y2 ! X + Y, and
f is the composition of a map g : X ! Y1 with the injection; but this
g is an isomorphism, since the previous diagram restricts to the central
diagram above; thus, f : X ! Y is a coproduct-injection. One easily sees
that an L-coalgebra is precisely a pair (f, s) as above, since the last condition,
æf ·s = F (1X , s) ·s, is automatically satisfied. Moreover, taking into account
the right diagram above, s is determined by the injections f : X ! Y and
j2 : Y2 ! Y. Therefore, an L-coalgebra can be equivalently described as a
pair of maps (f : X ! Y, f 0 : X 0 ! Y ) which are the injections of a sum-
decomposition of Y.
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Finally, in the diagram

(15)
X

f
// Y

X
i1

// X + Y

t
eeK

K
K

K

[f,1]
// Y

the map t must be of the form [1X , t0], with ft0 = 1Y , whence RF coincides
with the set of split epis (and this holds in an arbitrary category K). Again,
an R-algebra is just such a pair (f, t), which amounts to a splitting ft0 =
1Y . §

4.3. We consider now two dual factorizations of a functor, for the category
CAT (cf. [Gy], I, 1.11)

(a) First, we can factor an arbitrary functor f : X ! Y through the comma
category Ff = (f # Y ), via a left adjoint right inverse i and a functor q

(16) X
i

// (f # Y )
p

oo_ _ _
q

// Y qi = f (i a p),

(17) i(x) = (x, fx; 1 : fx ! fx), q(x, y; b : fx ! y) = y,

(18) p(x, y; b : fx ! y) = x, ¥ : 1X = pi,
" : ip ! 1Ff , "(x,y; b) = (1x, b) : (x, fx; 1fx) ! (x, y; b).

(b) Dually, we can also factor an arbitrary functor g : Y ! X through the
comma category Gg = (X # g), via a right adjoint right inverse j and a
functor p

(19) Y
j

// (X # g)
q

oo_ _
p

// X pj = g (q a j),

(20) j(y) = (gy, y; 1 : gy ! gy), p(x, y; b : x ! gy) = x,

(21) q(x, y; b : x ! gy) = y, " : qj = 1Y ,
¥ : 1Gg ! jq, ¥(x,y; b) = (b, 1y) : (x, y; b) ! (gy, y; 1gy).

We prove below that these factorizations can be made into natural wfs. If
f a g, then we can identify (f # Y ) with (X # g), and find a factorization of
adjunctions; the latter is not functorial on the category of adjunctions, but
on a suitable double category of functors and adjunctions (see [GP], 3.5) in
a sense which will be dealt with in a sequel.
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4.4. Let us construct a natural wfs for the factorization 4.3(a), through
(f # Y ) (the other can be obtained by duality). With the previous notation,
we have a functor

(22)
F : CAT2 ! CAT, F (f : X ! Y ) = (f # Y ),
F ((u, v) : f ! g) : Ff ! Fg,
F (u, v)(x, y; b : fx ! y) = (ux, vy; vb : vfx = gux ! vy),

and a functorial factorization, defined by the natural transformations:

(23)
∏ : dom ! F, ∏f = i : X ! (f # Y ),
Ω : F ! cod, Ωf = q : (f # Y ) ! Y,
Ω∏ = ∑ : dom ! cod.

First, the functor Lf = i : X ! (f # Y ) factors as follows through the
comma category FLf = (Lf # (f # Y )), whose general object is of type
(x0, x, y; a : x0 ! x; b : fx ! y)

(24)
Lf = (RLf) · (LLf) : X ! (Lf # (f # Y )) ! (f # Y ),
LLf(x) = (x, x, fx; 1x, 1fx),
RLf(x0, x, y; a : x0 ! x; b : fx ! y) = (x, y; b : fx ! y).

The natural transformation æ, related with the previous factorization of
Lf , is defined as:

(25) æ : F ! FL, æf : (f # Y ) ! (Lf # (f # Y )),
æf (x, y; b : fx ! y) = (x, x, y; 1x, b : fx ! y),

X

Lf=i
≤≤

X

LLf
≤≤

(f # Y )
æf

//

1
≤≤

(Lf # (f # Y ))

RLf
≤≤

(f # Y ) (f # Y )

Second, we factor Rf = q : (f # Y ) ! Y through FRf = (q # Y ), whose
general object is of type (x, y, b : fx ! y; y0; b0 : y ! y0),

(26)

q = Rf = (RRf) · (LRf) : (f # Y ) ! (q # Y ) ! Y,
(LRf)(x, y; b : fx ! y) = (x, y, b : fx ! y; y, 1: y ! y),
(RRf) = Rq : (q # Y ) ! Y,
(RRf)(x, y, b : fx ! y; y0, b0 : y ! y0) = y0,

and we define the natural transformation º, related with the previous fac-
torization of Rf

(27) º : FR ! F, ºf : (q # Y ) ! (f # Y ),
(ºf )(x, y, b : fx ! y; y0, b0 : y ! y0) = (x, y0; b0b : fx ! y0),
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(f # Y )

LRf
≤≤

(f # Y )

1
≤≤

(q # Y )
ºf

//

RRf
≤≤

(f # Y )
q

≤≤

Y Y

Verifying the remaining axioms is straightforward, if long.

4.5. Proposition. This structure defines a natural wfs.

Proof. We will use various comma categories, among which

(28) C = (f # Y ), C 0 = (g # Y 0),
C 00 = (Lf # C), C 000 = (LLf # C 00),

writing their projections as follows

(29)

p : C ! X, q : C ! Y, ! : C ! Y 2,
p0 : C 0 ! X 0, q0 : C 0 ! Y 0, !0 : C 0 ! Y 02,
p00 : C 00 ! X 00, q00 : C 00 ! C, !00 : C 00 ! C2,
P : C 000 ! X, Q : C 000 ! C 00, ≠ : C 000 ! C 002.

Computing the components of the transformations introduced above (in
4.4) quickly becomes heavy and confusing. Therefore, let us note that the
functor F defined above is determined as follows by the projections of C 0 =
(g # Y 0):

(30) p0 · F (u, v) = up : (f # Y ) ! X 0, q0 · F (u, v) = vq : (f # Y ) ! Y 0,
!0 · F (u, v) = v! : vfp ! vq (vfp = gup).

Again, the natural transformation æf is determined by the projections of
C 00 = (Lf # (f # Y )):

(31) p00 · æf = p : (f # Y ) ! X, q00 · æf = 1: (f # Y ) ! (f # Y ),
(!00 · æf )(x, y; b : fx ! y) = (1x, b) : (x, fx; 1) ! (x, y; b),

and also the last equation can be made free of components, rewriting it as:

(32) p · !00æf = 1p, q · !00æf = ! : fp ! q,

(which amounts to using the 2-dimensional universal property of the comma
(f # Y )).

Now, to test the condition F (1X , Ωf ).æf = 1Ff we use the projections
p, q,! of (f # Y ), together with the characterisation (30) of the functors of
type F (u, v)

p · F (1X , Ωf )æf = p00æf = p = p · 1Ff ,
q · F (1X , Ωf )æf = Ωfq00æf = q = q · 1Ff ,
! · F (1X , Ωf )æf = Ωf!00æf = q!00æf = ! = ! · 1Ff .
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Similarly, to verify that æLf · æf = F (1X ,æf ) · æf : Ff ! FLLf, we use
the projections P,Q,≠ of C 000 = FLLf = (LLf # (Lf # (f # Y ))), further
replacing ≠ with its projections p00≠, q00≠ (as in (32))

P · F (1X ,æf )æf = p00æf = P · æLfæf ,
Q · F (1X ,æf )æf = æfq00æf = æf = Q · æLfæf ,
p00≠ · F (1X ,æf )æf = p00æf!00æf = p!00æf = 1p = 1p00æf = p00≠ · æLfæf ,
q00≠ · F (1X ,æf )æf = q00æf!00æf = !00æf = q00≠ · æLfæf .

We end with verifying the remaining two conditions of (9) on º. For the
first:

ºf · (F (∏f , 1Y )(x, y; b) = (ºf )(∏f (x), y, b) = (ºf )(x, fx, 1fx, y, b)
= (x, y; b).

For the second, after computing

ºq : (Rq # Y ) ! (q # Y ),
(ºq)(x, y, b : fx ! y; y0, b0 : y ! y0; y00, b00 : y0 ! y00)

= (x, y, b : fx ! y; y00, b00b0 : y ! y00),

we have (working on components):

(ºf · ºq)(x, y, b; y0, b0; y00, b00) = (ºf )(x, y, b; y00, b00b0)
= (x, y00; b00b0b : fx ! y00),

ºf · F (ºf , 1Y )(x, y, b; y0, b0; y00, b00) = (ºf )(ºf (x, y, b; y0, b0), y00, b00)
= (ºf )(x, y0; b0b, y00, b00) = (x, y00; b00b0b : fx ! y00).

§
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[RT2] J. Rosický, W. Tholen, Factorization, fibration and torsion, preprint (York Univer-
sity 2006).

[RW] R. Rosebrugh and R.J. Wood, Coherence for factorization algebras, Theory Appl.
Categories 10 (2002) 134-147.



NATURAL WEAK FACTORIZATION SYSTEMS 13

Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35,
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