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Abstract 

We clarify the relationship between separable and covering morphisms in 
general categories by introducing and studying an intermediate class of 
morphisms that we call strongly separable. 

1. Introduction 

The so-called separable Galois theory of commutative rings is closely related to 
Grothendieck’s Galois theory of coverings of schemes in algebraic geometry. In fact, both 
of them are special cases of the purely-categorical Galois theory; the details of which are 
explained in [BJ] and [J2], with many references to the relevant literature (see especially 
[AG], [CHR], [Janusz], [G], [DI], [VZ1], [VZ2], and [M]). We recall: here in particular 
the following fundamental notion: 
 
Definition 1.1. (a) Let R be a commutative ring. A commutative R-algebra S is said to be 
separable if it is projective as an S⊗RS-module. 
 

(b) A commutative separable R-algebra is said to be strongly separable if it is projective 
as an R-module. � 
 
(All rings and algebras in this paper are supposed to be with 1; many authors also require 
1 ≠ 0, but it is better not to do so.) 
 
It is known that a commutative separable R-algebra is strongly separable if, and only if, 
the structure homomorphism R → S, considered as a morphism S → R of the 
corresponding affine schemes, is a covering morphism. In other words, the projectivity 
condition of Definition 1.2(b), which becomes trivial in the classical case of fields, is 
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exactly what one needs to add to the definition of separable algebra in order to make it 
equivalent to the definition of covering morphism (of affine schemes). Now, Definition 
1.1(a) has a straightforward categorical reformulation, first introduced and studied in [CJ] 
for lextensive categories, and then in [JT1] for arbitrary categories equipped with an 
admissible Galois structure, or simply with an endofunctor satisfying suitable mild 
conditions. Furthermore, the categorical notion of a covering (see e.g. [J2] and references 
there) plays a central role in categorical Galois theory. Therefore it is natural to search for 
a purely-categorical condition which, when added to the definition of separable 
morphism, will again make it equivalent to the definition of covering morphism – which 
in fact was done in [CJ] in the special case of lextensive categories. 
 
The purpose of the present paper is to present such a condition. More precisely, we 
introduce a notion of strongly separable morphism and prove (see Theorems 4.3 and 4.5:  
 

• A strongly separable morphism is a covering if and only if it satisfies a certain 
pullback-stability condition (which partly generalizes Theorem 25 of [CJ]); 
• In the context of [CJ] and in the presence of a suitable Galois structure, a covering 
morphism is always strongly separable. This statement uses the corresponding 
separability result from [CJ] and cannot be extended to the general context, since we gave 
an example of a non-separable covering in [JT1].  
      
Unfortunately we do not know if our categorical notion of strongly separable fully agrees 
with Definition 1.1(b). We could avoid this uncertainty by adding the above-mentioned 
pullback-stability condition to our definition of a strongly separable morphism, but that 
does not seem to be a good idea, particularly because the definition chosen here yields the 
desirable “equation” 
 
          strongly separable = F-separated + F-compact (Proposition 3.2),                        
  
in the sense of [T] for a suitable F. Still, the above-mentioned additional condition is 
itself “Galois-theoretic”, which is less visible in the special case already considered in 
[CJ], but becomes clearly motivated by the results of [CJKP] and [JK] in the general case 
we consider here. 
 
The conclusion seems to be that although algebraic and categorical definitions of 
separable and covering morphisms agree, the algebraic and categorical ways to compare 
them may differ.   
 
Note, however, that the categorical approach uses effective descent morphisms, and 
hence suggests (see e.g. [JT2]) to replace “projective as R-module” with “makes R → S a 
pure monomorphism of R-modules” in Definition 1.1(b).  

2. Separable = separated 

Let (I,H,η,ε) : C → X be a fixed adjunction between categories with finite limits, B an 
object in C, and (IB,HB,ηB,εB) : (C↓B) → (X↓I(B)) the induced adjunction, in which 
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IB(A,α) = (I(A),I(α)) and HB(X,ϕ) = (B×HI(B)H(X),pr1). We will always assume that the 
adjunction (I,H,η,ε) is admissible in the sense of categorical Galois theory (see [J1], [BJ], 
[J2], and references there), which calls for the co-units εB : IBHB → 1(X↓I(B)) to be 
isomorphisms, for every object B; for simplicity, we will also assume that ε : IH → 1X 
itself is an isomorphism, in fact the identity functor on a full subcategory X  in C, with H 
: X → C  the inclusion functor. In particular, we will write 
 
          HB(X,ϕ) = (B×I(B)X,pr1).                                                                                        (2.1) 
 
Accordingly, it is convenient to identify the composite HI with I, and consider (I,η) as a 
pointed endofunctor of C, but we note that many of the definitions and results below can 
be formulated for more general pointed endofunctors of C as in [JT1]. We also note that 
our assumptions may be expressed equivalently by saying that (X is a full reflective 
subcategory in C and) the reflection I : C → X is semi-left-exact in the sense of  
C. Cassidy, M. Hébert, and G. M. Kelly [CHK]. 
 

Let us recall (see, for example, [J2]): 
 
Definition 2.1. A morphism α : A → B (or an object (A,α) in (C↓B)) in C is said to be 
 

(a) a trivial covering (of B), if it satisfies the following equivalent conditions: 
 

(i) the morphism ηB
(A,α) : (A,α) → HBIB(A,α) is an isomorphism, 

(ii) (A,α) ≈ HB(X,ϕ) for some ϕ : X → I(B), 
(iii)the diagram 

 
                               ηA 

                    A                     I(A) 
 

               α                                    I(α)                                                                             (2.1)        
                       

                    B                     I(B) 
                               ηB 

 
is a pullback; 

 

(b) a covering, if there exists an effective descent morphism p : E → B such that (A,α) is 
split over (E,p), i.e. the image of (A,α) under the pullback functor p* : (C↓B) → (C↓E) is 
a trivial covering of E; 
 

(c) separable, if the diagonal ∆α = 〈1A,1A〉 : A → A×BA is a trivial covering. � 
 
The separable morphisms here are the same as T-separable morphisms in the sense of 
[JT1], where T = HI; this notion of separability is essentially far more general than 
separability in the sense of [CJ] (see Example 2.5).  (The preservation of the terminal 
object by T required in [JT1] is equivalent to the same property of I; we circumvented 
this condition here by requiring not only the local co-units εB but alsoε  itself to be  
isomorphisms.) From the results of [JT1] we obtain: 
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Proposition 2.2. The class of separable morphisms in C contains all monomorphisms and 
all trivial coverings; it is closed under composition and all limits in the arrow category of 
C, and is left cancelable (i.e. βα separable implies α separable), and hence pullback 
stable. � 
 
The following observation is not mentioned in [JT1] explicitly, but can be deduced from 
the results there: 
 
Proposition 2.3. If α : A → B is a split monomorphism, then it is a trivial covering if and 
only if it can be presented as the equalizer of two parallel morphisms into an object in X. 
 

Proof. Presenting α as the equalizer of two parallel morphisms into an object X is the 
same as presenting it as a pullback of the form 
 
          A                       X 
 

      α                                   ∆X = 〈1X,1X〉                                                                             (2.2)        
                       

          B                     X×X 
 
Since every morphism in X is a trivial covering, and the class of trivial coverings is 
obviously pullback stable, the possibility of such a presentation (with X in X) implies that 
α is a trivial covering. Conversely, if α is a trivial covering, then it is a pullback of I(α), 
which is a regular monomorphism in X (because α was supposed to be a is split 
monomorphism, and hence so is I(α)). And since every regular monomorphism in X has 
a presentation as needed, it now suffices to just compose the two pullbacks in the diagram 
                                
          A                     I(A)                       X 
 

  

                       
          B                     I(B)                     X×X. � 
 
Corollary 2.4. A morphism α : A → B is separable if and only if it is separated, i.e. there 
exists an equalizer diagram of the form 
 
                     ∆α                              
          A                     A×BA                     X                                                                      (2.3) 
 
with X in X. � 
 
Let us also recall some important examples of separable morphisms: 
 
Example 2.5. A morphism α : A → B in a lextensive category C is called separable 
(=decidable) in [CJ] if the diagonal ∆α : A → A×BA is a coproduct injection. This 



 5 

definition does not involve X and hence is not exactly a special case of the present one. 
However there are (at least) two reasonable contexts where they agree, which applies to 
many geometric examples: 
 

(a) Let C = Fam(A) be the category of families (="free coproduct completion") of objects 
in a category A such that C has pullbacks, and A has a terminal object. Since the category 
of sets can be identified with Fam(1), and Fam(−) is a 2-functor, the adjunction A → 1 
induces an admissible adjunction C → Sets (see [BJ] or [J2] for details). It is then easy to 
see hat the separable morphisms in the sense of our definition above are the same as the 
separable morphisms in C in the sense of [CJ]. In particular C could be any locally 
connected (=molecular) topos; then the separable morphisms are precisely the decidable 
ones in the topos-theoretic sense. 
 

(b) The same can be said about finite families and finite sets. The notion of locally 
connected topos is then also to be replaced with its appropriate finite version, which for 
instance will include all toposes with finite hom-sets. � 
 
Example 2.6. Let R be a commutative ring and S a commutative R-algebra (both with 1 
preserved by the structure homomorphism R → S). The following conditions are  
well-known to be equivalent (see e.g. [DI]):  
 

(a) S is a separable R-algebra (see Definition 1.1); 
 

(b) the multiplication map µS : S⊗RS → S is a split epimorphism of S⊗RS-modules; 
 

(c) there exists an idempotent e in S⊗RS with µS(e) = 1; 
 

(d) µS : S⊗RS → S is a product projection in the category of (commutative) rings; 
 

(e) the structure homomorphism R → S considered as a morphism S → R in the opposite 
category of commutative rings, is separable in the sense of [CJ]. 
 

Let C be a full subcategory of the opposite category (Comm-R-alg)op of commutative  
R-algebras (with 1) satisfying the following conditions: 
 

(i) it is closed under pullbacks in (Comm-R-alg)op; 
 

(ii) the set of idempotents in any S in C is finite; 
 

(iii) if S ≈ S1×S2 in Comm-R-alg, then S is in C if and only if so are S1 and S2. 
 

When R is connected, i.e. has no non-trivial idempotents, we can use Example 2.5(b) to 
construct an adjunction C → Finite Sets, and a morphism α : A → B in C will be 
separable if and only if A is a separable B-algebra. In particular we could take R to be a 
field and C the opposite category of commutative R-algebras (with 1 again) that are 
finite-dimensional as vector spaces over R. Recall that an R-algebra S would then be 
separable if and only if it is a finite product of finite separable field extensions of R. � 
 
Example 2.7. Let C be an elementary topos, j a Lawvere – Tierney topology on C,  
X = shvj(C) the corresponding category of internal sheaves, H : X → C the inclusion 
functor, I : C → X the sheafication functor, and A an object in C. Then the following 
conditions are equivalent: 
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(a) A → 1 is a separable morphism; 
 

(b) A is an internal separated presheaf in the topos-theoretic sense. � 

3. Strongly separable morphisms 

Let (I,H,η,ε) : C → X be as in Section 2. Since it is a semi-left-exact reflection in the 
sense of [CHK], it produces a corresponding reflective factorization system (E,M) in C. 
As it was later observed in [CJKP] and in [JK], this construction from [CHK] plays an 
important role in Galois theory; in particular M coincides with the class of trivial 
covering morphisms. At the moment we just need to recall that for a morphism α : A → B 
in C, the canonical factorization α = mαeα is given by the commutative diagram 
 
          A 
                                                ηA  
                                  eα                           
 
                          α                 B×I(B)I(A)                        I(A)                                            (3.1) 
                                                                       pr2 
                                                      mα= pr1                       I(α) 
 
                                                    B                               I(B), 
                                                                        ηB 
 
and we introduce 
 

Definition 3.1. A morphism α : A → B in C is said to be strongly separable if it is 
separable and for every pullback α' of α, the morphism eα' is an effective descent 
morphism. � 
 
In order to describe the basic properties of the class of strongly separable morphisms, it is 
convenient to introduce operators Sep, St, Loc, −#X as follows: if F is a class of 
morphisms in C, then: 
 

• St(F) is the stabilization of F, i.e. the class of all morphisms in C each pullback of 
which is in F; in [T] this class is denoted by c(F) and its elements are called F-compact 
morphisms. 
 

• Sep(F) is the class of F-separable (=F-separated) morphisms, i.e. those morphisms  
α : A → B in C for which ∆α : A → A×BA is in St(F); in [T] this class is denoted by d(F) 
and its elements are also called F-separated morphisms. 
  

• Loc(F) is the localization of F, i.e. the class of all morphisms in C some pullback of 
which along an effective descent morphism is in F. 
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• F#X is the class of morphisms in C which are in F up to X, i.e. the class of those α’s 
which have eα in F. 
 

We will apply these operators to the following two classes, each of which contains all 
isomorphisms, is closed under composition, and is pullback stable: 
 

• TrivCov(C), the class of trivial coverings in C; 
 

• EffDes(C), the class of effective descent morphisms in C. 
 

According to this notation we have 
 

• St(TrivCov(C)) = TrivCov(C) and St(EffDes(C)) = EffDes(C); 
 

• Sep(TrivCov(C)) is the class of separable morphisms in C; 
 

• Sep(TrivCov(C))∩St(EffDes(C)#X) is the class of strongly separable morphisms in C; 
 

• Loc(TrivCov(C)) is the class of covering morphisms in C. 
 

Note also that since a monomorphism is an effective descent morphism if and only if it is 
an isomorphism, we have Sep(TrivCov(C)) = Sep(EffDes(C)#X), and we conclude 
 
Proposition 3.2. A morphism in C is strongly separable if and only if it is EffDes(C)#X-
separated and EffDes(C)#X-compact in the sense of [T]. � 
 
It is easy to show that the class EffDes(C)#X is closed under composition (and of course 
contains all isomorphisms), and so we can use various results of section 3 of  [T] on F-
separated and F-compact morphisms for F = EffDes(C)#X. In particular we obtain 
 
Proposition 3.3. The class of strongly separable morphisms in C contains all 
isomorphisms and all trivial coverings, is closed under composition and pullback stable, 
and has the following cancellation property: if βα is strongly separable and β separable 
then α is separable. � 
 

It can also be proved that if βα is strongly separable, β separable, and I(α) an effective 
descent morphism (in C), then β is strongly separable. 

4. Locally stable factorization and main theorems  

Let (E,M) be the factorization system on C used above; that is 
 
          E = {eα | α : A → B in C} = {α | I(α) is an isomorphism},  
          M = {mα | α : A → B in C} = TrivCov(C). 
 
Note that according to the notation above, E#X is the class of all morphisms in C, and 
M#X = M. 
 
Definition 4.1. We say that a morphism α : A → B in C has 
 



 8 

(a) a stable factorization if it belongs to St(E)#X, i.e. if not just eα itself but every 
pullback of it is in E; 
 

(b) a locally stable factorization if it belongs to Loc(St(E)#X), i.e. there exists an 
effective descent morphism p : E → B in C such that the pullback pr1 : E×BA → E of α 
along p has a stable factorization. � 
 
As shown in [CJKP], the (Purely inseparable, Separable) factorization for finite 
dimensional field extensions and the (Monotone, Light) factorization for continuous maps 
of compact Hausdorff spaces are instances of factorization systems of the form 
(St(E),Loc(M)); the existence theorem for those factorization systems proved in [CJKP] 
can be formulated as 
 
Theorem 4.2. The following conditions are equivalent: 
 

(a) (St(E),Loc(M)) is a factorization system; 
 

(b) every morphism in C has a locally stable factorization. � 
 

In the next section we will prove a number of technical results in order to deduce 
 
Theorem 4.3. A strongly separable morphism is 
 

(a) a trivial covering if and only if it has a stable factorization; 
 

(b) a covering if and only if it has a locally stable factorization. 
 
And in particular obtain 
 
Corollary 4.4. If the equivalent conditions of Theorem 4.2 hold, then every strongly 
separable morphism in C is a covering. 
 
An example of a non-separable covering morphism is given in [JT1]; however in Section 
6 we will prove 
 
Theorem 4.5. In the situation considered in Example 2.5, every covering morphism is 
strongly separable. 

5. Proof of Theorem 4.3 

Lemma 5.1. In a commutative diagram of the form 
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                             q 
          D                                  A 
 
                  eδ                        eα 
                             q' 
       δ        D'                  A'         α                                                                                   (5.1) 
 
                  mδ                      mα 
 
          E                                  B 
                             p 
 
with mδ and q' jointly monic, the following implication holds for any pair d1, d2 of 
parallel morphisms with codomain D: 
 
          (δd1 = δd2 and ηAqd1 = ηAqd2) ⇒  (ηDd1 = ηDd2). 
 
Proof. As we see from diagram (3.1), for every pair v1, v2 of parallel morphisms with 
codomain A we have (αv1 = αv2 and ηAv1 = ηAv2) ⇔ (eαv1 = eαv2); similarly we have  
(δd1 = δd2 and ηDd1 = ηDd2) ⇔ (eδd1 = eδd2). After that we observe: 
 

(i) since αq = pδ, the equality δd1 = δd2 implies the equality αqd1 = αqd2; 
 

(ii) therefore assuming δd1 = δd2 and ηAqd1 = ηAqd2, we obtain eαqd1 = eαqd2; 
 

(iii) since q'eδ = eαq, this also gives q'eδd1 = q'eδd2; 
 

(iv) moreover, since δ = mδeδ and mδ and q' are jointly monic, (iii) tells us that our 
assumption implies eδd1 = eδd2; 
 

(v) since eδd1 = eδd2 implies ηDd1 = ηDd2, this completes the proof. � 
 

Lemma 5.2. If α : A → B is separable and has a stable factorization, then it is dissonant, 
i.e. eα is a monomorphism. 
 

Proof. Given a1, a2 : T → A with eαa1 = eαa2, consider the diagrams 
 
                           ai                           ηA 
             T                           A                           I(A) 
 

 〈ai,1T〉                          ∆α                                         I(∆α)                                                 (5.2)                               
                       

          A×BT                     A×BA                     I(A×BA), 
                        1Α×ai                      ηA×BA  
 
where A×BT is the pullback of α and αai (i = 1, 2). If we knew that 
 
          ηA×BA(1Α×a1) = ηA×BA(1Α×a2),                                                                               (5.3) 
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then, since both squares in (5.2) are pullbacks, we could conclude that 〈a1,1T〉 and 〈a2,1T〉 
represent the same subobject of A×BT and so a1 = a2 as desired. Therefore we only need 
to prove (5.3). But this follows from Lemma 5.1 applied to 
 

• E = A; 
• p = α; 
• D = A×BA with δ and q the pullback projections; 
• di = 1Α×ai : A×BT → A×BA (i = 1, 2), 

 
where δd1 = δd2 becomes trivial and ηAqd1 = ηAqd2 follows from our assumption  
eαa1 = eαa2; the fact that mδ and q' jointly monic follows from the stability of the 
factorization α = mαeα. �  
 
Now we are ready to complete the proof of Theorem 4.3: 
 

Since St(E) contains all isomorphisms, every trivial covering has a stable factorization 
and every covering has a locally stable factorization. That is, the "only if" parts of 4.3(a) 
and 4.3(b) are trivial.  
 

If α is strongly separable, then eα is an effective descent morphism, and so it is an 
isomorphism if (and only if) it is a monomorphism. Therefore 4.3(a) follows from 
Lemma 4.2. On the other hand since the class of strongly separable morphisms is 
pullback stable, 4.3(b) immediately follows from 4.3(a). 
 
Remark 5.3. Let us say that α has a weakly stable factorization, if for every morphism α' 
obtained from α by pulling back along any morphism p (with the same codomain), the 
canonical morphism from the domain of eα' to the domain of the pullback of eα along p is 
a monomorphism. As we see from the proof above, whose main ingredient was the 
assumption that mδ and q' are jointly monic in Lemma 5.1, we could also add to 4.3(a): 
“and if and only if it has a weakly stable factorization”. The same is of course true for 
4.3(b) with the obvious notion of locally weakly stable factorization. � 

6. Four lemmas on effective descent morphisms in lextensive categories 

In this section we assume that C is (infinitary) lextensive, i.e. it admits finite limits and 
arbitrary (small) coproducts, and for every family (Cλ)λ∈Λ of objects in C the coproduct 
functor 
 
          ∑ : ∏λ∈Λ(C↓Cλ) → (C↓∑λ∈ΛCλ)                                                                         (6.1) 
 
is a category equivalence. 
 
Lemma 6.1. Let pλ : Eλ → Bλ (λ∈Λ) be a family of morphisms in C. The morphism 
∑λ∈Λpλ : ∑λ∈ΛEλ → ∑λ∈ΛBλ is an effective descent morphisms if and only if so are all 
pλ's. 
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Proof. Just use the equivalence (6.1). � 
 
Lemma 6.2. Let pλ : Eλ → B (λ∈Λ) be a family of morphisms in C. If at least one of pλ's  
is an effective descent morphisms then the induced morphism ∑λ∈ΛEλ → B also is an 
effective descent morphism. 
 

Proof. Choose an index µ∈Λ for which pµ is an effective descent morphism, and let  
qλ : Eλ → Bλ (λ∈Λ) be the family of morphisms, in which qµ = pµ and qλ : Eλ → Bλ is the 
identity morphism of Eλ for all λ ≠ µ. Then ∑λ∈ΛEλ → B is the composite of  
∑λ∈Λqλ : ∑λ∈ΛEλ → ∑λ∈ΛBλ, which is an effective descent morphism by Lemma 6.1, and 
the split epimorphism ∑λ∈ΛBλ → B induced by the identity morphism of Bµ = B and all  
pλ : Bλ = Eλ → B (λ ≠ µ). Therefore ∑λ∈ΛEλ → B itself is an effective descent morphism. 
� 
 
Lemma 6.3. Let pλ : Eλ → B (λ = 1, 2) be two morphisms making the induced morphism 
p : E1 + E2 → B an effective descent morphism. If B is connected (=indecomposable into 
a non-trivial coproduct) and E1 ≠ 0 ≠ E2, then E1×BE2 ≠ 0. 
 

Proof. It is easy to see that if E1×BE2 = 0, then each of the coproduct injections  
Eλ → E1 + E2 determine a descent datum over p. Therefore, in that case, descending 
along p would give a coproduct decomposition for B, which is non-trivial since  
E1 ≠ 0 ≠ E2. � 
 
Lemma 6.4. Let  
 
                                q 
          D1 + D2                     A 
 

   δ1 + δ2                                    α                                                                                      (6.2)        
                       

           E1 + E2                     B 
                                p 
 
be a pullback diagram, in which p and δ1 are effective descent morphisms, B is 
connected, and E1 ≠ 0 ≠ E2. Then D2 ≠ 0. 
 

Proof. Consider the composite p(in1)(pr1) = p(in2)(pr2) of the pullback projection  
prλ : E1×BE2 → Eλ, coproduct injection inλ : Eλ → E1 + E2, and p (λ = 1, 2), and let α' be 
the pullback of α along that composite. Then: 
 

(i) since α' can be considered as the pullback of δ1, it is an effective descent morphism; 
 

(ii) since E1×BE2 ≠ 0 by Lemma 6.3, we conclude that α' has a non-zero domain; 
 

(iii) since α' can also be considered as the pullback of δ2, this gives D2 ≠ 0. � 
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7. Proof of Theorem 4.5 

In this section C = Fam(A), X = Sets, and I and H are as in Example 2.5(a). In particular 
C is lextensive. 
 

It is convenient to display the objects of C as A = (Ai)i∈I(A) (as e.g. in [BJ]); note that a 
morphism α : A → B in C is uniquely determined by the map I(α) and the family  
(αi : Ai → BI(α)(i))i∈I(A) (which can be any map from I(A) to I(B) and any family of 
morphisms Ai → BI(α)(i) defined for all i∈I(A)). In this notation the factorization α = mαeα 
displays as 
 
                                eα                                    mα 
          (Ai)i∈I(A)                     (BI(α)(i))i∈I(A)                     (Bi)i∈I(B), 
                                                                                                                                        (7.1) 
          I(eα) = 1I(A), (eα)i = αi, I(mα) = I(α), (mα)i = 1BI(α)(i), 
 
and we have 
 
          E = {α | I(α) is a bijection}, M = {α | each αi is an isomorphism }.                   (7.2) 
 
Lemma 5.1 gives 
 
Corollary 7.1. For any morphism α in C the following conditions are equivalent: 
 

(a) eα is an effective descent morphism; 
 

(b) each αi (i∈I(A)) considered as a morphism in C is an effective descent morphism. � 
 
Proposition 7.2. Let 
 
                      p 
          D                     A 
 

      δ                                 α                                                                                                (7.3)        
                       

          E                     B 
                      q 
 
be a pullback diagram with p an effective descent morphism. Then: 
 

(a) if eδ is an effective descent morphism then so is eα; 
 

(b) if δ is separable then so is α; 
 

(c) if δ is strongly separable then so is α. 
  

Proof. (a): The equivalence (5.1) and Corollary 7.1 tell us that without loss of generality 
we can assume that A and B are connected (i.e. I(A) and I(B) are one-element sets), and 
then we have to prove that α itself is an effective descent morphism. Since p and 
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(therefore also) q are effective descent morphisms, it suffices to prove that so is δ. On the 
other hand since eδ is an effective descent morphism, so is each δi (i∈I(D)), and then, as 
easily follows from Lemmas 6.1 and 6.2, it suffices to show that I(δ) is surjective. 
 

Let X be the image of I(δ) and Y its complement in I(E). We rewrite the diagram (7.3) as 
the diagram (6.2) with: 
 

• D1 = D, 
• D2 = 0, 
• E1 = (Ex)x∈X, 
• E2 = (Ey)y∈Y, 
• δ1 the same as δ but considered as a morphism from D1 = D to E1, 
• δ2 = the unique morphism from 0 to E2. 

      

Since D2 = 0 together with E1 ≠ 0 ≠ E2 would contradict to Lemma 6.4, we conclude that 
either E1 or E2 is 0, i.e. is the empty family. However, if E1 were 0, then so would be also 
D, which is not the case since p is an effective descent morphism and A is connected. 
Thus E2 = 0, and therefore I(δ) is surjective, as desired. 
 

(b) follows from the results of [CJ], and (c) follows from (a) and (b). 
 

Since every trivial covering morphism is strongly separable, Theorem 4.5 immediately 
follows from the assertion (c) of Proposition 7.2. 
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