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ABSTRACT. Categories of lax (T, V')-algebras are shown to have pullback-
stable coproducts if T" preserves inverse images. The general result not
only gives a common proof of this property in many topological cat-
egories but also shows that important topological categories, like the
category of uniform spaces, are not presentable as a category of lax
(T, V)-algebras, with T' preserving inverse images. Moreover, we show
that any such category of (T, V')-algebras has a concrete, coproduct pre-
serving functor into the category of topological spaces.

Universality of coproducts is a property that distinguishes Set-based topo-
logical categories: while in many “everyday” topological categories coprod-
ucts are stable under pullback (topological spaces, preordered sets, premetric
spaces, approach spaces), some others fail to enjoy the property (uniform
spaces, proximity spaces, nearness spaces, merotopic spaces, see [6]). All of
the topological categories in the first group happen to be presentable as cat-
egories of lax algebras, that is: they are of the form Alg(T, V'), for a suitable
extension 7" of a Set-monad Ty = (Tp,e,m) and a complete lattice V' that
comes with an associative and commutative binary operation ® preserv-
ing suprema in each variable, and a ®-neutral element k (distinct from the
bottom element L), [5]. In this note, we show that this observation is not
coincidental, that is: coproducts in Alg(T, V) are always stable under pull-
back, making Alg(7, V) in fact an (infinitely) extensive category, provided
that Ty preserves inverse images. This condition is weaker than preservation
of the Beck—Chevalley Property, as used by Clementino and Hofmann (see
[4]); for an example, see [7, Example 1.3(a)].

Of special importance are open morphisms of lax algebras, as defined
by Mobus [9] in the context of relational algebras in a category, and by
Clementino and Hofmann [4] in the context used in this paper. These gen-
eralize open morphisms in the category Top of topological space. We charac-
terize coproducts in Alg(T, V') by the fact that all injections of the underlying
Set-coproduct are open morphisms in Alg(T,V’). Moreover, we construct a
concrete functor Alg(T,V) — Top which preserves open embeddings and,
hence, coproducts. This result generalizes a construction of Manes [8].
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1. PRELIMINARIES

Recall that for sets X, Y, a V-relation (or V-matriz) r : X -» Y from X
to Y is a mapping r : X x Y — V' it gets composed with s : Y - Z via

(s7)(x,2) = \/ r(z,y) ® s(y, 2).

yey

The category Mat(V') of sets and V-matrices is, using the pointwise order
on the hom-sets, enriched over the monoidal closed category Sup of com-
plete lattices and suprema-preserving morphisms. That is, every hom-set
Mat(V)(X,Y) is a complete lattice, and the composition functions preserve
suprema in each variable:

S(\/TZ‘) :\/STZ', (\/ri)q:\/riq.

Every Set-map f : X — Y can be considered as a V-relation via f(z,y) =
kif f(z) =y, and f(x,y) = L else. We also use the converse V-relation f* :
Y -+ X with f*(y,z) = f(z,y) and take note of the inequalities 1x < f*f,
ff* <1y, which exhibit f* as right adjoint to f in the 2-category Mat(V).

Let Ty = (T, e,m) be a Set-monad such that Ty preserves inverse images;
that is: Tp preserves every Set-pullback

Bl —B
x——vy

when m is a monomorphism. In particular, Ty preserves monomorphisms.

Examples for inverse image-preserving monads abound; for instance, the
powerset monad, the filter monad, the ultrafilter monad, and the free-
monoid monad all preserve inverse images. But there are Set-monads (7p, e, m)
for which Ty does not preserve inverse images: consider, for example, the
trivial monad with To0) = @ and ToX = 1 for all X # 0.

We now consider a lax extension 7' : Mat(V) — Mat(V) of Ty to V-
relations, which respects the order of V-relations and satisfies the following
conditions

(0) Tof <Tf and (Tof)* <Tf*,
( ) eyr < (TT)C)(,

(2) my (T%r) < (Tr)mx,

(3) (T's)(T'r) <T(sr),
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forall f: X =Y, r: X »Y,s:Y - Z. On objects T coincides with Tj.
As noted in [10], these conditions suffice to derive the identities

(4) (Ts)(Tf) =T(sf) = (T's)(To f),
() (Tg")(Tr) = T(g*r) = (Tog)*(Tr)

with ¢ : Y — Z, which play a crucial role in [5]. Moreover, we assume that
(6) T(rg*) = (Tr)(Tog")

whenever g is a monomorphism.

2. GRAPHS AND LAX ALGEBRAS

The category Gph(T, V') of (T, V)-graphs has as objects sets X equipped
with a V-relation a : TX -» X satisfying 1x < aex; a morphism f :
(X,a) — (Y,b) is a Set-map f : X — Y satisfying fa < bTpf. The for-
getful functor Gph(7, V) — Set is topological: for a (possibly large) family
(Y, bi)ier of (T, V)-graphs and mappings f; : X — Y;, the so-called initial
structure a on X (see [1]) is given by

a= N\ fo(Tofi),
el
(see [5]). Hence Gph(T,V) is complete and cocomplete. In particular,
Gph(T, V) has pullbacks, and they are formed by putting the initial structure
with respect to the two projections on the Set-pullback.
Colimits in Gph(T', V') are formed as follows: given a diagram with vertices
(X, a;)1, first form the colimit (g; : X; — Y') of the underlying diagram in
Set, and then equip Y with the final structure

(1) b=\/ gia:(Togi)".
i€l

It is easy to see that 1y < bey is satisfied by virtue of (g;); being jointly
epic; equivalently, since \/; gig7 = 1y.

A (T,V)-graph (X, a) satisfies the inequality a < a(Ta)m%; it is called
a (laz) (T,V)-algebra if it satisfies the transitivity condition a(Ta)m% < a
or, equivalently, a(T'a) < amy. The full subcategory of Gph(7T,V') formed
by the algebras is denoted by Alg(T,V'). It is concretely reflective, with
the reflector defined as follows (see [3]): given a graph (X, a), form the
transfinite sequence of V-relations

(2> ap = a, Qa41 = aa(Taa)mﬁﬁ Ay = \/ ag
B<y

for all ordinals « and limit ordinals . One obtains an ascending chain of
V-relations, which has to become stationary at some g, we write L(X, a)
for (X, aq,). Then 1x : (X,a) — L(X, a) is the sought universal arrow.

Thus also Alg(T, V') is topological, limits in Alg(7, V') are formed like in
Gph(T, V), and colimits are formed by applying the reflector to the colimit
in Gph(T,V).
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3. COPRODUCTS

For any coproduct (t; : X; — X) in Set, we easily obtain tt; = 1x, and
tit; = L if ¢ # j as well as \/t;t = 1x. In fact, these equations make
(t; : X; — X) a biproduct in Mat V.

Consequently, for any coproduct (ti (X, a) — (X, c)) of graphs,

(3) tie =t \/ tja;(Tot))" = \/ titja;(Tot;)" = ai(Tot:)".
In other words, each injection ¢; : (X;,a;) — (X, c) is open in the sense of
[4]: a morphism f : (X,a) — (Y,b) is open if f*b = a(Tyf)*. Moreover,
t¥cTot; = a;(Toti)*Tot; = a; holds since T since preserves monomorphisms.
Therefore, each open injection is an embedding, i.e. its domain carries the
initial structure.

To study coproducts of (T, V')-algebras, we first note:

Lemma 1. If f: (X,a) — (Y,b) is an open injection from a (T,V)-algebra
into a (T,V)-graph, then f: (X,a) — L(Y,b) is also open.

Proof. It suffices to show that f*b, = a(Tpf)* holds for all ordinals a.
Indeed, the initial step is trivial, and for a successor ordinal we have:
ffbas1 = [Tbo(Tby)m5

= a(To f)" (Tba)my

= aT(f"ba)my

= aT'(a(Tof)")my

= a(Ta)(ToTo f) my

= a(Ta)mx (Tof)”

=a(Tof)"
In case  is a limit ordinal, we have f*bg = f* Va<ﬁ bo = Va<ﬁ f*by =
Vacga(Tof)" = a(Tof)" O

Theorem 2. Let (X, a;); be a family of (T, V')-algebras and (t; : X; — X)1
be a Set-coproduct. The following statements are equivalent for a (T,V)-
graph (X, a):
(1) (ti D (X, ai) — (X, a))l is a coproduct in Gph(T,V);
(2) (X,a) € Alg(T,V), and (t; : (Xi,a;) — (X,a)), is a coproduct in
Alg(T,V);
(3) each t; : (X;,a;) — (X, a) is open.

Proof. (1) implies (2): Let (X,c) denote the coproduct of the (Xj;,a;) in
Alg(T,V). By Lemma 1, each t; : (X;,a;) — (X,c) is open. Thus ¢ =
V titie = \/ tia;(Tot;)*, and this is, by hypothesis, precisely the final struc-
ture a with respect to the coproduct injections.

(2) implies (3): Lemma 1.
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(3) implies (1): From (3) one obtains a = \/t;tfa = \/ t;a;(Tot;)*, so that,
again, @ is the final structure with respect to the coproduct injections. [J

Lemma 3. The following statements are equivalent for a set-indexed family
(fi: (Xiya:) — (Y, b))[ of morphisms in Alg(T,V):

(1) each f; is open;
(2) the induced morphism f : [[;(Xi, a;) — (Y, b) is open.

Proof. (1) implies (2): Let (¢; : (X;,ai) — (X, a))l be a coproduct in
Alg(T, V). Using the easily verified formula f* = \/¢;f’, we obtain:

(TOf \/t’La’L T(]tz) TOf \/tzaz TOf’L \/t f b= f b
and thus f is open.

(2) implies (1): Follows from the closedness of open morphisms under com-
position. 0

In particular, open morphisms are closed under coproducts.
Lemma 4. Openness of embeddings is stable under pullback in Alg(T,V).
For the proof we recall two well-known properties of Mat V:

Remark 5. Set-pullbacks are Beck—Chevalley squares in MatV. That is,
given a set pullback

p

P——Y
q g
X —f> Z
f*g = qp* holds in Mat V.
Proof. Straightforward. U

Remark 6. MatV satisfies the following weak form of Freyd’s Modular
Law: Given V-matricesr : X - Z, s : Y - Z, and an injective function
m: X — Y, we have

(4) (r A sm)m* =rm* A s.

Proof. We assume m to be a subset-inclusion, and obtain:

. r(y,z) ifyeX,
m(y,2) = {L else

Thus the left-hand side as well as the right-hand side of (4) evaluate to L
for every (y, z) with y ¢ X. Obviously both evaluate to r(y, z) A s(y, z) for
all (y, z) such that y € X, and hence (4) holds. O
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Proof of Lemma 4. Suppose

(X7a) T> (Z7C)

is a pullback diagram in Alg(7,V) and f : (X,a) — (Z,¢) is an open em-
bedding. We have to show that also p : (P,d) — (Y,b) is open. Observe
that with f also Tpp is injective, and that the Tj image of the underlying
Set-pullback is still a pullback, hence a Beck—Chevalley square. Thus we

obtain ¢*a(Toq)(Top)* = q*a(Tof)*(Tog) = ¢" f*c(Tog) = p*g*c(Tvg), hence
d(Top)* = (p*b(Top) A q*a(Toq))(Top)*
=p"b A ¢"a(Tog)(Top)”
=p"b A p*g*c(Tog)
=p*(b A g*c(Tog))
= p*b.
O

Lemma 4, together with Theorem 2 and the fact that coproducts in Set
are universal, immediately yields:

Theorem 7. Coproducts in Alg(T, V') are universal; that is: coproducts are
stable under pullback.

Corollary 8. Alg(T,V) is (infinitely) extensive.
Proof. Coproducts in Alg(T, V') are trivially disjoint, and this property in
conjunction with universality gives extensitivity (see [2]). O

Since coproducts fail to be universal in Unif (see [6]), we also obtain:

Corollary 9. The category of uniform spaces is not presentable in the form
Alg(T, V') with Ty preserving inverse images.

Note, however, that Unif is a coreflective subcategory of a category of lax
(T, V)-proalgebras (see [5]).

4. THE TOPOLOGY OF A (T, V)-ALGEBRA

Lemma 10. gf open and f surjective implies g open.

Proof. Let f : (X,a) — (Y,b) and g : (Y,b) — (Z,¢) be morphisms such
that ¢gf is open and f is surjective; equivalently, ff* = 1y. It suffices to
show g*c < b(Tog)*: g*c = ff*g*c = fa(Tof)*(Tog)* holds since gf is open,
and thus, since f is a morphism, g*c < b(Tpg)*. O
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For a (T, V)-algebra (X, a), we write O(X, a) for the set of all open sub-
algebras of (X, a), that is,

O(X,a) ={ta: A X |14 is open w.r.t. the initial structure }.

Lemma 11. O(X, a) is closed under arbitrary suprema and finite infima in
the powerset PX of X.

Proof. Suprema in PX can be described as follows: given a family (v4, :
A; — X) of subset-inclusions, first form the induced morphism h = [14,] :
[T Ai — X, and then factor h = tp with ¢ a subset-inclusion and p surjective.
¢ is the sought supremum.

Now if each ¢4, is open, so is h by Lemma 3, and thus ¢ is open by Lemma
10.

By Lemma 4, the set O(X,a) is closed under binary intersections, and
since every isomorphism is open, this implies closedness under finite inter-
sections. ([

Hence O(X,a) is a topology on X. Moreover, since open embeddings are
stable under pullback in Alg(T, V), every lax morphism f : (X,a) — (Y,b)
gives rise to a continuous function f: O(X,a) — O(Y,b). Thus:

Theorem 12. There exists a concrete functor O : Alg(T, V') — Top, defined
by
(X,a) — (X,0(X,a)).

O preserves open embeddings and coproducts.

Proof. Clearly O is a concrete functor which preserves open embeddings.
Preservation of coproducts follows thus from the characterization of coprod-
ucts in Alg(7, V') (and hence in Top) given in Theorem 2. O
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