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Abstract. Categories of lax (T, V )-algebras are shown to have pullback-
stable coproducts if T preserves inverse images. The general result not
only gives a common proof of this property in many topological cat-
egories but also shows that important topological categories, like the
category of uniform spaces, are not presentable as a category of lax
(T, V )-algebras, with T preserving inverse images. Moreover, we show
that any such category of (T, V )-algebras has a concrete, coproduct pre-
serving functor into the category of topological spaces.

Universality of coproducts is a property that distinguishes Set-based topo-
logical categories: while in many “everyday” topological categories coprod-
ucts are stable under pullback (topological spaces, preordered sets, premetric
spaces, approach spaces), some others fail to enjoy the property (uniform
spaces, proximity spaces, nearness spaces, merotopic spaces, see [6]). All of
the topological categories in the first group happen to be presentable as cat-
egories of lax algebras, that is: they are of the form Alg(T, V ), for a suitable
extension T of a Set-monad T0 = (T0, e, m) and a complete lattice V that
comes with an associative and commutative binary operation ⊗ preserv-
ing suprema in each variable, and a ⊗-neutral element k (distinct from the
bottom element ⊥), [5]. In this note, we show that this observation is not
coincidental, that is: coproducts in Alg(T, V ) are always stable under pull-
back, making Alg(T, V ) in fact an (infinitely) extensive category, provided
that T0 preserves inverse images. This condition is weaker than preservation
of the Beck–Chevalley Property, as used by Clementino and Hofmann (see
[4]); for an example, see [7, Example 1.3(a)].

Of special importance are open morphisms of lax algebras, as defined
by Möbus [9] in the context of relational algebras in a category, and by
Clementino and Hofmann [4] in the context used in this paper. These gen-
eralize open morphisms in the category Top of topological space. We charac-
terize coproducts in Alg(T, V ) by the fact that all injections of the underlying
Set-coproduct are open morphisms in Alg(T, V ). Moreover, we construct a
concrete functor Alg(T, V ) → Top which preserves open embeddings and,
hence, coproducts. This result generalizes a construction of Manes [8].
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1. Preliminaries

Recall that for sets X, Y , a V -relation (or V -matrix) r : X ! Y from X
to Y is a mapping r : X × Y → V ; it gets composed with s : Y ! Z via

(sr)(x, z) =
∨

y∈Y

r(x, y) ⊗ s(y, z).

The category Mat(V ) of sets and V -matrices is, using the pointwise order
on the hom-sets, enriched over the monoidal closed category Sup of com-
plete lattices and suprema-preserving morphisms. That is, every hom-set
Mat(V )(X, Y ) is a complete lattice, and the composition functions preserve
suprema in each variable:

s
(

∨

ri

)

=
∨

sri,
(

∨

ri

)

q =
∨

riq.

Every Set-map f : X → Y can be considered as a V -relation via f(x, y) =
k if f(x) = y, and f(x, y) = ⊥ else. We also use the converse V -relation f∗ :
Y ! X with f∗(y, x) = f(x, y) and take note of the inequalities 1X ≤ f∗f ,
ff∗ ≤ 1Y , which exhibit f∗ as right adjoint to f in the 2-category Mat(V ).

Let T0 = (T0, e, m) be a Set-monad such that T0 preserves inverse images;
that is: T0 preserves every Set-pullback

f−1[B] !!

""

B

m

""

X
f

!! Y

when m is a monomorphism. In particular, T0 preserves monomorphisms.
Examples for inverse image-preserving monads abound; for instance, the

powerset monad, the filter monad, the ultrafilter monad, and the free-
monoid monad all preserve inverse images. But there are Set-monads (T0, e, m)
for which T0 does not preserve inverse images: consider, for example, the
trivial monad with T0∅ = ∅ and T0X = 1 for all X ≠ ∅.

We now consider a lax extension T : Mat(V ) → Mat(V ) of T0 to V -
relations, which respects the order of V -relations and satisfies the following
conditions

(0) T0f ≤ Tf and (T0f)∗ ≤ Tf∗,
(1) eY r ≤ (Tr)eX ,
(2) mY (T 2r) ≤ (Tr)mX ,
(3) (Ts)(Tr) ≤ T (sr),
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for all f : X → Y , r : X ! Y , s : Y ! Z. On objects T coincides with T0.
As noted in [10], these conditions suffice to derive the identities

(4) (Ts)(Tf) = T (sf) = (Ts)(T0f),
(5) (Tg∗)(Tr) = T (g∗r) = (T0g)∗(Tr)

with g : Y → Z, which play a crucial role in [5]. Moreover, we assume that

(6) T (rg∗) = (Tr)(T0g∗)

whenever g is a monomorphism.

2. Graphs and lax algebras

The category Gph(T, V ) of (T, V )-graphs has as objects sets X equipped
with a V -relation a : TX ! X satisfying 1X ≤ aeX ; a morphism f :
(X, a) → (Y, b) is a Set-map f : X → Y satisfying fa ≤ bT0f . The for-
getful functor Gph(T, V ) → Set is topological: for a (possibly large) family
(Yi, bi)i∈I of (T, V )-graphs and mappings fi : X → Yi, the so-called initial
structure a on X (see [1]) is given by

a =
∧

i∈I

f∗

i bi(T0fi),

(see [5]). Hence Gph(T, V ) is complete and cocomplete. In particular,
Gph(T, V ) has pullbacks, and they are formed by putting the initial structure
with respect to the two projections on the Set-pullback.

Colimits in Gph(T, V ) are formed as follows: given a diagram with vertices
(Xi, ai)I , first form the colimit (gi : Xi → Y ) of the underlying diagram in
Set, and then equip Y with the final structure

(1) b =
∨

i∈I

giai(T0gi)
∗.

It is easy to see that 1Y ≤ beY is satisfied by virtue of (gi)I being jointly
epic; equivalently, since

∨

I gig∗i = 1Y .
A (T, V )-graph (X, a) satisfies the inequality a ≤ a(Ta)m∗

X ; it is called
a (lax) (T, V )-algebra if it satisfies the transitivity condition a(Ta)m∗

X ≤ a
or, equivalently, a(Ta) ≤ amX . The full subcategory of Gph(T, V ) formed
by the algebras is denoted by Alg(T, V ). It is concretely reflective, with
the reflector defined as follows (see [3]): given a graph (X, a), form the
transfinite sequence of V -relations

(2) a0 = a, aα+1 = aα(Taα)m∗

X , aγ =
∨

β<γ

aβ

for all ordinals α and limit ordinals γ. One obtains an ascending chain of
V -relations, which has to become stationary at some α0, we write L(X, a)
for (X, aα0

). Then 1X : (X, a) → L(X, a) is the sought universal arrow.
Thus also Alg(T, V ) is topological, limits in Alg(T, V ) are formed like in

Gph(T, V ), and colimits are formed by applying the reflector to the colimit
in Gph(T, V ).
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3. Coproducts

For any coproduct (ti : Xi → X) in Set, we easily obtain t∗i ti = 1Xi
and

t∗i tj = ⊥ if i ≠ j as well as
∨

tit∗i = 1X . In fact, these equations make
(ti : Xi → X) a biproduct in Mat V .

Consequently, for any coproduct
(

ti : (Xi, ai) → (X, c)
)

of graphs,

(3) t∗i c = t∗i
∨

tjaj(T0tj)
∗ =

∨

t∗i tjaj(T0tj)
∗ = ai(T0ti)

∗.

In other words, each injection ti : (Xi, ai) → (X, c) is open in the sense of
[4]: a morphism f : (X, a) → (Y, b) is open if f∗b = a(T0f)∗. Moreover,
t∗i cT0ti = ai(T0ti)∗T0ti = ai holds since T0 since preserves monomorphisms.
Therefore, each open injection is an embedding, i.e. its domain carries the
initial structure.

To study coproducts of (T, V )-algebras, we first note:

Lemma 1. If f : (X, a) → (Y, b) is an open injection from a (T, V )-algebra
into a (T, V )-graph, then f : (X, a) → L(Y, b) is also open.

Proof. It suffices to show that f∗bα = a(T0f)∗ holds for all ordinals α.
Indeed, the initial step is trivial, and for a successor ordinal we have:

f∗bα+1 = f∗bα(Tbα)m∗

Y

= a(T0f)∗(Tbα)m∗

Y

= aT (f∗bα)m∗

Y

= aT (a(T0f)∗)m∗

Y

= a(Ta)(T0T0f)∗m∗

Y

= a(Ta)m∗

X(T0f)∗

= a(T0f)∗.

In case β is a limit ordinal, we have f∗bβ = f∗
∨

α<β bα =
∨

α<β f∗bα =
∨

α<β a(T0f)∗ = a(T0f)∗. !

Theorem 2. Let (Xi, ai)I be a family of (T, V )-algebras and (ti : Xi → X)I

be a Set-coproduct. The following statements are equivalent for a (T, V )-
graph (X, a):

(1)
(

ti : (Xi, ai) → (X, a)
)

I
is a coproduct in Gph(T, V );

(2) (X, a) ∈ Alg(T, V ), and
(

ti : (Xi, ai) → (X, a)
)

I
is a coproduct in

Alg(T, V );
(3) each ti : (Xi, ai) → (X, a) is open.

Proof. (1) implies (2): Let (X, c) denote the coproduct of the (Xi, ai) in
Alg(T, V ). By Lemma 1, each ti : (Xi, ai) → (X, c) is open. Thus c =
∨

tit∗i c =
∨

tiai(T0ti)∗, and this is, by hypothesis, precisely the final struc-
ture a with respect to the coproduct injections.

(2) implies (3): Lemma 1.
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(3) implies (1): From (3) one obtains a =
∨

tit∗i a =
∨

tiai(T0ti)∗, so that,
again, a is the final structure with respect to the coproduct injections. !

Lemma 3. The following statements are equivalent for a set-indexed family
(

fi : (Xi, ai) → (Y, b)
)

I
of morphisms in Alg(T, V ):

(1) each fi is open;
(2) the induced morphism f :

∐

I(Xi, ai) → (Y, b) is open.

Proof. (1) implies (2): Let
(

ti : (Xi, ai) → (X, a)
)

I
be a coproduct in

Alg(T, V ). Using the easily verified formula f∗ =
∨

tif∗

i , we obtain:

a(T0f)∗ =
∨

tiai(T0ti)
∗(T0f)∗ =

∨

tiai(T0fi)
∗ =

∨

tif
∗

i b = f∗b

and thus f is open.

(2) implies (1): Follows from the closedness of open morphisms under com-
position. !

In particular, open morphisms are closed under coproducts.

Lemma 4. Openness of embeddings is stable under pullback in Alg(T, V ).

For the proof we recall two well-known properties of Mat V :

Remark 5. Set-pullbacks are Beck–Chevalley squares in MatV . That is,
given a set pullback

P
p

!!

q

""

Y

g

""

X
f

!! Z

f∗g = qp∗ holds in MatV .

Proof. Straightforward. !

Remark 6. Mat V satisfies the following weak form of Freyd’s Modular
Law: Given V -matrices r : X ! Z, s : Y ! Z, and an injective function
m : X → Y , we have

(4) (r ∧ sm)m∗ = rm∗ ∧ s.

Proof. We assume m to be a subset-inclusion, and obtain:

rm∗(y, z) =

{

r(y, z) if y ∈ X,

⊥ else.

Thus the left-hand side as well as the right-hand side of (4) evaluate to ⊥
for every (y, z) with y /∈ X. Obviously both evaluate to r(y, z) ∧ s(y, z) for
all (y, z) such that y ∈ X, and hence (4) holds. !



6 MOJGAN MAHMOUDI, CHRISTOPH SCHUBERT, AND WALTER THOLEN

Proof of Lemma 4. Suppose

(P, d)
p

!!

q

""

(Y, b)

g

""

(X, a)
f

!! (Z, c)

is a pullback diagram in Alg(T, V ) and f : (X, a) → (Z, c) is an open em-
bedding. We have to show that also p : (P, d) → (Y, b) is open. Observe
that with f also T0p is injective, and that the T0 image of the underlying
Set-pullback is still a pullback, hence a Beck–Chevalley square. Thus we
obtain q∗a(T0q)(T0p)∗ = q∗a(T0f)∗(T0g) = q∗f∗c(T0g) = p∗g∗c(T0g), hence

d(T0p)∗ = (p∗b(T0p) ∧ q∗a(T0q))(T0p)∗

= p∗b ∧ q∗a(T0q)(T0p)∗

= p∗b ∧ p∗g∗c(T0g)

= p∗
(

b ∧ g∗c(T0g))

= p∗b.

!

Lemma 4, together with Theorem 2 and the fact that coproducts in Set
are universal, immediately yields:

Theorem 7. Coproducts in Alg(T, V ) are universal; that is: coproducts are
stable under pullback.

Corollary 8. Alg(T, V ) is (infinitely) extensive.

Proof. Coproducts in Alg(T, V ) are trivially disjoint, and this property in
conjunction with universality gives extensitivity (see [2]). !

Since coproducts fail to be universal in Unif (see [6]), we also obtain:

Corollary 9. The category of uniform spaces is not presentable in the form
Alg(T, V ) with T0 preserving inverse images.

Note, however, that Unif is a coreflective subcategory of a category of lax
(T, V )-proalgebras (see [5]).

4. The topology of a (T, V )-algebra

Lemma 10. gf open and f surjective implies g open.

Proof. Let f : (X, a) → (Y, b) and g : (Y, b) → (Z, c) be morphisms such
that gf is open and f is surjective; equivalently, ff∗ = 1Y . It suffices to
show g∗c ≤ b(T0g)∗: g∗c = ff∗g∗c = fa(T0f)∗(T0g)∗ holds since gf is open,
and thus, since f is a morphism, g∗c ≤ b(T0g)∗. !
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For a (T, V )-algebra (X, a), we write O(X, a) for the set of all open sub-
algebras of (X, a), that is,

O(X, a) = { ιA : A ↪→ X | ιA is open w.r.t. the initial structure }.

Lemma 11. O(X, a) is closed under arbitrary suprema and finite infima in
the powerset PX of X.

Proof. Suprema in PX can be described as follows: given a family (ιAi
:

Ai ↪→ X)I of subset-inclusions, first form the induced morphism h = [ιAi
] :

∐

Ai → X, and then factor h = ιp with ι a subset-inclusion and p surjective.
ι is the sought supremum.

Now if each ιAi
is open, so is h by Lemma 3, and thus ι is open by Lemma

10.
By Lemma 4, the set O(X, a) is closed under binary intersections, and

since every isomorphism is open, this implies closedness under finite inter-
sections. !

Hence O(X, a) is a topology on X. Moreover, since open embeddings are
stable under pullback in Alg(T, V ), every lax morphism f : (X, a) → (Y, b)
gives rise to a continuous function f : O(X, a) → O(Y, b). Thus:

Theorem 12. There exists a concrete functor O : Alg(T, V ) → Top, defined
by

(X, a) *→ (X,O(X, a)).

O preserves open embeddings and coproducts.

Proof. Clearly O is a concrete functor which preserves open embeddings.
Preservation of coproducts follows thus from the characterization of coprod-
ucts in Alg(T, V ) (and hence in Top) given in Theorem 2. !
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