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Abstract

For a quantale V, the category V-Top of V-valued topological spaces may be introduced as a full subcategory of those
V-valued closure spaces whose closure operation preserves finite joins. In generalization of Barr’s characterization
of topological spaces as the lax algebras of a lax extension of the ultrafilter monad from maps to relations of sets,
for V completely distributive, V-topological spaces have recently been shown to be characterizable by a lax extension
of the ultrafilter monad to V-valued relations. As a consequence, V-Top is seen to be a topological category over
Set, provided that V is completely distributive. In this paper we give a choice-free proof that V-Top is a topological
category over Set under the considerably milder provision that V be a spatial coframe. When V is a continuous lattice,
that provision yields complete distributivity of V in the constructive sense, hence also in the ordinary sense whenever
the axiom of choice is granted.
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1. Introduction

Trivially, the category Top of topological spaces may be considered as a full subcategory of the category Cls
of closure spaces, given by those closure spaces X for which the closure operation ¢ : PX — PX preserves finite
unions. Non-trivially, in [2], Barr showed that Top is isomorphic to the category of lax Eilenberg-Moore algebras of
the ultrafilter monad U, laxly extended from Set to the category Rel of sets and relations. In the language of monoidal
topology [11], this latter category is the category (U, 2)-Cat of small (U, 2)-enriched categories, with 2 denoting the
two-element chain, considered as a quantale, while Cls is the category (P, 2)-Cat, with P denoting the power set
monad, suitably extended from Set to Rel.

In [15] the authors replaced the quantale 2 by an arbitrary quantale V and considered the category V-Cls of V-
valued closure spaces and its full subcategory V-Top of V-valued topological spaces. For V the Lawvere quantale
[0, 00] (see [16]), V-valued topological spaces are exactly approach spaces as introduced by Lowen [17] in terms
of a point-set distance, and for V the quantale A of distance distribution functions, they are probabilistic approach
spaces, as considered recently in [13]; see also [3, 10]. The main result of [15] confirms that, when the quantale V is
completely distributive, the Barr representation of topological spaces remains valid at the V-level once the power set
monad and the ultrafilter monad are suitably extended from Set to the category V-Rel of sets and V-valued relations.
Briefly: the category V-Top, defined as the full subcategory of (P, V)-Cat given by those V-valued closure spaces
whose structure preserves finite joins, is isomorphic to (U, V)-Cat — provided that V is completely distributive.
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Since (T, V)-Cat is easily seen to be a topological category (in the sense of [1]) over Set, for any laxly extended
Set-monad T (see[11]), as a byproduct of the equivalence result of [15] one obtains that V-Top is topological over Set
whenever V is completely distributive. The question was posed by Dexue Zhang and Lili Shen whether topologicity
may be confirmed without the provision of complete distributivity. In this paper we give a partial answer to this
question, and we do so without invoking the Axiom of Choice, by showing that V-Top lies bicoreflectively in the
topological category V-Cls and, hence, is topological itself — provided that every element in V is the join of a set of
coprime elements. This provision is equivalent to the complete lattice V being a spatial coframe, i.e., being isomorphic
to the lattice of closed sets of some topological space (see [14]); in particular, binary joins must distribute over arbitrary
infima in V. In the presence of the Axiom of Choice one can show that complete distributivity of a complete lattice V
is equivalent to V being continuous and a spatial coframe (see [9]).

In the next section we recall the definitions and main examples of V-valued closure spaces and V-valued topolog-
ical spaces, with a novel take on the transitivity/idempotency axiom for a V-valued closure operation that turns out to
be useful in what follows. Section 3 recalls some known facts on spatial coframes vis-d-vis complete distributivity,
but we do so being careful to avoid the Axiom of Choice to the extent possible. The main result of the paper is
given in Section 4, where we establish the coreflector of V-Cls onto V-Top, by mimicking the construction of the
additive core of a categorical closure operator, as given in [7]. Finally, in Section 5, we show that the structure of a
V-valued closure space and, hence, also the structure of a V-valued topological space, may be equationally defined
within the category V-Cat of V-categories, which is somewhat surprising in light of the fact that the axioms governing
reflexivity/extensitivity and transitivity/idempotency are given in terms of inequalities rooted in the order of V.

2. V-valued topological spaces

Throughout the paper, let V = (V,®,k) be a (unital, but not necessarily commutative) quantale, i.e., a complete
lattice with a monoid structure whose binary operation ® preserves suprema in each variable. We make no additional
provisions for the tensor-neutral element K vis-a-vis the bottom and top elements in V; in particular, we exclude neither
the case k = L (so that [V| = 1, i.e., V may be trivial), nor k < T (i.e., V may fail to be integral). PX denotes the power
set of the set X, and VX is the set of maps X — V.

We use the following simplification of the key definition of [15]:

Definition 2.1. A V-valued closure space is a set X equipped with a map ¢ : PX — V¥ satisfying the reflexivity and
transitivity conditions

R) VxeACX: k< (cA)(),
(T) VA,BCX,xeX: (Aes(cAY)) ® (cB)(x) < (cA)(x).

(X, ¢) is a V-valued topological space if, in addition, ¢ : PX — VX is finitely additive, i.e., preserves finite joins:
(A) VABCX,xeX: (c0)(x)=L and c(AUB)(x)=(cA)x)V (cB)(x).

A map f: X —Y of V-closure spaces (X, ¢), (¥, d) is continuous (or, depending on context, contractive) if
©) VACX, xeX: (cAx) <d(fA)(fx).

We obtain the category V-Cls of V-valued closure spaces and its full subcategory V-Top of V-valued topological
spaces, and their continuous maps.

Remark 2.2. A V-valued closure space structure ¢ on X satisfies the monotonicity condition (0 # BC A C X —
¢B < cA). If V is integral (so that k = T), or if ¢ is finitely additive, then the restriction B # @ is, of course, not needed.

Example 2.3. (1) For the terminal quantale 1 one has 1-Cls = 1-Top = Set.

(2) For the two-element chain 2 = {1 < T}, considered as a quantale (2, A, T), under the identification 2X = PX
conditions (R) and (T) read respectively as A C cA and (B C cA = ¢B C cA), for all A, B C X, where, in the presence
of (R), condition (T) breaks down to the conjunction of the monotonicity and idempotency conditions (B C A = ¢B C
cA) and ccA C cA, for all A, B € X. With (A) and (C) translating to c@ = 0, c(A U B) = cA U ¢B and f(cA) C c(fA)
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for all A, B C X, one obtains respectively 2-Cls = Cls and 2-Top = Top, i.e., the standard categories of closure spaces
and of topological spaces, as described by closure operations.

(3) For any (multiplicatively written) monoid M with neutral element 1, we consider the quantale freely gener-
ated by M; it is given by the power set PM, ordered by inclusion and provided with the tensor product that extends
the multiplication of M to its subsets: AB = {e¢f8|a € A, B € B}. Note that, since {5} is neutral in PM, this quan-
tale is integral (so that {n} is its top element) only if M is trivial, and it is commutative only if M is. Since maps
PX — (PM)* = (PX)M correspond to maps PX x M — PX, defining

xeA -a: = ae(cA)x)

forall x € X, A C X, @ € M, we can rewrite a V-valued closure space structure ¢ on X as a lax right action - of the
monoid M on the ordered set PX. Indeed, conditions (R) and (T) read as

ACA-n and (BCA-a= B-BCA-(af))

or, equivalently, as
ACA-n, A-a)-BCA-(af) and (BCA=B-BCA-p),

forall A,B C X, «,8 € M. Continuity of a map f : X —Y of PM-valued closure spaces amounts to lax preservation
of the lax right action: f(A - @) C (fA) - a, forall A C X, @ € M. For a PM-valued topological space, all translations
(=) - @ : PX— PX must preserve finite unions.

Note that, since A — A - 7 is a closure operation on X, one has a functor PM-Cls — Cls that restricts to
PM-Top — Top.

(4) For the Lawvere quantale (([0, 0], >), +, 0), using the point-set-distance function ¢ : X X PX — [0, co] with
o(x,A) = (cA)(x), we may re-state the above conditions as

R) VxeACX: &xA)=0,

(T) VxeX,ABCX: &(xA)<sup, 6y A)+dx,B),

(A) VxeX,ABCX: 6x0 =00 and 6(x,AU B)=min{d(x,A),5(x,B)),
(C) VxeX,ACX: &(fx, fA) <d(x,A).

The resulting category [0, co]-Top is the category App of approach spaces as introduced by Lowen [17, 18].

(5) Let & be a commutative monoid operation on [0, 1] with its natural order, preserving suprema in each variable
(also known as a left-continuous t-norm on [0,1]), and having 1 as its neutral element — such as the ordinary multipli-
cation X of real numbers, the Lukasiewicz operation & = max{a+£—1, 0}, or the frame operation & = min{a, 5}.
For the quantale [0, 1] = (([0, 1], <), &, 1) we may then consider its coproduct Ag with the Lawvere quantale [0, co]
in the category of commutative quantales and their homomorphisms (= sup-preserving homomorphisms of monoids),
which may described as follows (see [19, 8, 15]). (Of course, [0, 1] is isomorphic to [0, c0].) The underlying set
A of Ag = (A, 0, k) of all distance distribution functions ¢ : [0, co] — [0, 1], required to satisfy the left-continuity
condition ¢(8) = sup, <ﬁgo(a/) for all B € [0, o], inherits its order from [0, 1], and its monoid structure is given by the
commutative convolution product

(P O YY) = SUP,.4pe, P(O)E&Y(B).

The ®-neutral function « satisfies k(0) = 0 and «(a) = 1 for all @ > 0. We note that k = T in Ag (S0 Ag is integral),
while the bottom element in Ag has constant value 0; we write L = 0. With the quantale homomorphisms o :
[0, 00]—=Ag and 7 : [0, 1] —>Ag, defined by o(@)(y) = 0if vy < @, and 1 otherwise, and T(u)(y) = u if y > 0, and 0
otherwise, every ¢ € A has a presentation

p=\/ c@otp@)=\/ c@orww),
a€l0,00] @€(0,00)

which then shows that o, 7 serve as the coproduct injections of Ag. In terms of a point-set-distance-distribution
function ¢ : X X PX — A, the relevant conditions describing the category Ag-Top = ProbAppy, of &-probabilistic
approach spaces [12, 13] read as

R) VYxeACX: 6xA)=x,



(T) VxeX, A,BCX:inf,epd(y,A) ®(x, B) < 6(x, A),
(A) VxeX,ABCX: 6x0=0 and &(x,AU B)=max{é(x,A),d(x,B)},
(C) VxeX,ACX: &(x,A) <d(fx, fA).

In the next section it will be convenient to use the following notation for any map ¢ : PX—=V*: forall A C X, x €
X and v € V we put

@A (x) = v Ve c(cA)(x),

veV

with ¢"A = {z € X|v < (cA)(2)}. The map ¢ plays the role of the “composite of ¢ with itself”’; indeed, we can
reformulate (T), as follows:

Lemma 2.4. Let ¢ : PX — VX be monotone. Then ¢ < T if ¢ satisfies (R), and c satisfies (T) if, and only if, ¢ < c.
Furthermore, for any map d : PX —= VX with d < c one has d < C.

Proof. With the monotonicity of ¢ one obtains from (R)
(cA)(x) < k® c(c*A)(x) < \/ v® c(c"A)(x) = (cA)(x),
veV
forall A C X, x € X. If ¢ satisfies (T), for every v € V one considers B := ¢"A, so that v < (cA)(y) for all y € B. Then
ve® (cB)(x) < ( /\(cA)(y)) ® (cB)(x) < (cA)(x),
yeB

and (cA)(x) < (cA)(x) follows. Conversely, assuming ¢ < ¢, for A, B, x as in (T) one considers v := A ,cg(cA)(y). Then
B C ¢"A, and with the monotonicity of ¢ one concludes

VR (cB)(x) < v®c(c"A)(x) < (cA)(x) < (cA)(x),

that is: (T). Finally, for d < ¢ one trivially has d"A C ¢"A for all v € V and, hence,

(dA)(x) = v v® d(d'A)(x) < v v® c(d A)(x) < v V® c(c"A)(x) = (CA)(x).

veV veV veV

O

Recall that an element p in a poset L is coprime when p < \/ F with F C L finite always gives some x € F' with
p < x; that is: when p > 1 and, for all u,v € V, one has p < u Vvonlyif p < uor p <v. The poset L is said to
be sup-generated by its coprime elements if every element is the supremum of a set of coprime elements in V. We
will shed light on the status of this property in the next section. Here we just use it to prove the following lemma and
proposition.

Lemma 2.5. If'V is sup-generated by its coprime elements and c is monotone, then
W= \/ red’Hm
peV coprime

forall AC X, xeX.
Proof. By hypothesis, every v € V can be written as v = \/ <, coprime P> and with the monotonicity one obtains
v c(c"A)(x) = \/ p®c(c’A)(x) < \/ p ® c(c’A)(x),
p<v coprime peV coprime

which shows “ < 7 of the desired equality; “ > ” holds trivially. U

Let us use the following auxiliary notion and call (X, ¢) a V-valued pretopological space if the map ¢ : PX —= VX
satisfies (R) and (A). With Lemma 2.5 one easily sees that these properties survive the passage from c to ¢, as follows.
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Proposition 2.6. For a V-valued pretopological space (X, ¢), when V is sup-generated by its coprime elements, (X, ¢)
is also a V-valued pretopological space.

Proof. (R) follows from Lemma 2.4, and for (A) we first note

(€0)(x) = \/ V® (" 0)(x) = v vel=1

veV veV

for all x € X. Furthermore, since for p € V coprime one obviously has ¢”(A U B) = (c?A) U (¢’ B) whenever A, B C X,
we obtain with Lemma 2.5

CAUB)) = \/ p@c(c”(AU B)(x)
P

- \/ P ® (c(cPA)(x) V c(c? B)(x))
P

=(\/ peceMH) v (\/ p&ccB)(x)
p p

= (CA)(x) V (€B)(x).

O

Remark 2.7. (1) For V = 2, V-valued pretopological spaces are precisely the usual pretopological spaces, and for
V = [0, oo] they are known as pre-approach spaces.

(2) In [15], various alternative, but equivalent descriptions of V-valued closure spaces and topological spaces are
provided. First of all, a V-valued closure space structure ¢ on X gives a family of maps (¢” : PX —PX),cy satisfying

(CO) if BC A, then ¢"B C c"A,

(C1) if v < Ve uy, then (g7 A C YA,
(C2) A C A,

(C3) c"c"A C ™A,

forall A,B € X and u,v,u; € V (i € I). Conversely, for any family of maps ¢” : PX — PX (v € V) satisfying the
conditions (C0)—(C3), putting
(cA)(x) 1= \/{v eV]xedAl (ACX, xeX)

makes (X, ¢) a V-valued closure space, and the two processes are inverse to each other. Under this bijection, when V
is completely distributive so that, in particular, V is generated by its coprime elements (see [9]), V-valued topological
structures are characterized by
c’0=0and ¢’ (AU B) =c’PAU "B
for all coprime elements in V and A, B C X.
(3) Next, V-valued closure spaces are equivalently presented as (P, V)-categories in the sense of [11], with the
powerset monad [P on Set laxly extended to the category V-Rel of sets and V-valued relations by

Pria, )= N\ '\/ rxy),
yeB xeA

for all V-relations r : X - Y, A, B C X. Furthermore, when V is completely distributive, V-valued topological spaces
are equivalently presented as (U, V)-categories, with U denoting the ultrafilter monad on Set, laxly extended to V-Rel

by
Ur(x,n) = A \/ r(x,y),

Aex,Bey xeA,yeB

forallr: X - Y, x € UX,y € UY : see [15] for details. Of course, these bijective correspondences pertain also to the
relevant morphisms and therefore give isomorphisms of categories that commute with the underlying Set functors.

5



3. Some known properties of spatial coframes and continuous lattices

Since in the following section we will heavily rely on the property encountered in Lemma 2.5 and Proposition 2.6,
in this section we recall some well-known facts on lattices that are sup-generated by their coprime elements.

Remark 3.1. The following two statements are immediate consequences of the definition of coprimality:
(1) For every element p in a poset L, the characteristic map

Xp:L—2={0<1}

of the up-set Tp, defined by (y,(x) = 1 &= p < x) forall x € L, preserves all (existing) infima. The map y,
preserves finite suprema if, and only if, p is coprime.

(2) Let X be any subset of the poset L. Then every element in L is a supremum of elements in X if, and only if, the
following condition holds for all x,y € L:

VpeX(p<x=>p<y) = x<y;
equivalently, x £ y only if for some p € X one has p < x, but p £ y.

Proposition 3.2. If a complete lattice L is sup-generated by its coprime elements, then it is a coframe, that is: finite
suprema distribute over arbitrary infima in L.

Proof. (See Theorem 1-3.15 of [9]; the fact that in [9] the bottom element is considered coprime has no bearing on
the validity of the statement.) By Remark 3.1(1), the map

xil— ] 2 x0 00,

peL coprime

preserves arbitrary infima and finite suprema. Furthermore, by Remark 3.1(2), it is an injective map. Consequently, L
is isomorphic to a subcoframe of a power of the coframe 2. U

Rewriting the codomain of the map y as the powerset of X = {p € L|p coprime}, under the hypothesis of the
Proposition we can re-interpret L as the lattice of closed sets of a topology on X. In the language of (co)locale theory
(see [14]), this means precisely that L is a spatial coframe. Explicitly then, let us re-state (the dual of) Exercise 1.5 in
[14], as follows:

Corollary 3.3. A complete lattice is sup-generated by its coprime elements if, and only if, it is a spatial coframe.

Proof. For the “if” part, let us just note that a spatial coframe L can be thought of as the set of closed sets of a
topological space X. To see then that every A € L is the join of coprime elements, that is

A= U{P € L| P coprime, P C A},

it suffices to note that for every x € A, the set {x} is coprime in L. O

Since complete lattices that are sup-generated by their coprime elements have the distributivity property of a
coframe, it is natural to ask when such lattices may be completely distributive; more precisely, since so far we were
able to avoid any use of the Axiom of Choice, we would like to know when they are constructively completely
distributive (ccd) (see [20]). Recall that a complete lattice L is ccd if every element a € L is the join of all elements
X < a (“x totally below a”); here x < a means that, whenever a < \/ B for B C L, then x < b for some b € B. For
ccd complete lattices to be completely distributivity (cd) in the classical sense, one needs the Axiom of Choice (AC);
in fact the validity of (AC) is equivalent to ((ccd)< (cd)) holding for all complete lattices: see [20].

To answer the question raised, recall that L (which, in general, may just be a poset) is continuous if every element
a € L is the directed join of all elements x < a (“x way below @”); here x < a means that, whenever a < \/ D with
D C L directed, then x < d for some d € D. Without reference to (AC) one may still state the following Proposition:
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Proposition 3.4. If the complete lattice L is continuous and sup-generated by its coprime elements, then L is con-
structively completely distributive.

Proof. Every a € L is the (directed) join of all x < a, with each x being the join of all coprime elements p < x;
hence, a = \/{p € L|p coprime, x (p < x < a)}. It suffices to note now that each such p is totally below a. Indeed,
ifa <\/ B,since \/ B=\/{\/ F|F C B finite} is a directed join, one first has x < \/ F for some finite F C B, and then
p < b for some b € F, by coprimality of p. O

It is well known that, with (AC) now granted, the sufficient condition for (ccd) of Proposition 3.4 is also necessary:
Theorem 3.5. A complete lattice is completely distributive if, and only if, it is a continuous spatial coframe.

Proof. For the part of the proof not yet covered by Proposition 3.4 and Corollary 3.3, we refer to Theorem 1-3.16 in
[9]. O

We do not know whether there is a “constructive version” of this theorem, that is: whether one can prove without
invoking AC the converse statement of Proposition 3.4, so that a complete ccd lattice is a continuous spatial coframe.

4. V-Top as a topological category

From the presentation 2.7(3) we know that the forgetful functor |-| : V-Cls — Set is topological (see [11]), a fact
that may easily be checked also directly, as follows.

Lemma 4.1. For a family (of any size) of maps f; : X —=Y; from a set X into V-valued closure spaces (Y;,d;), (i € I),
the |-|-initial structure ¢ on X is given by

(cA)x) = /\ di(FiA)(fix)
iel

forallxe X, ACX.
Proof. (R) holds trivially, and for (T) we note that, for all x € X and A, B C X,

(Ao e B = (\ )\ difidfane /\ dfB)fx)

YEB yeB i€l i€l
< N\ dilFid(f) ® di(fiB)fix)
i€l yeB

< N\ dilhid)fin) = (A ).

iel
U

In order for us to conclude that the full subcategory V-Top of V-Cls is topological over Set as well, it suffices
to show that it is bicoreflective (=coreflective, with all coreflections being bimorphisms, i.e., both epic and monic) in
V-ClIs. To this end, for a subset A of X, let FinCov(A) denote the set of finite covers of A, i.e., of strings (M4, ..., M,;)
with M; U ... U M,,, = A; here m = 0 (the empty string () is permitted when A = (. With the usual “finer” relation

My, ...M,) < (Ny,...N,) & VYiell,.,mjdje{l,...,n} (M; CN)),

FinCov(A) becomes a down-directed preordered set, i.e., a preordered set in which finite sets have lower bounds. For
_)
a V-valued closure space structure ¢ on X and M = (M, ..., M,;,) € FinCov(A), x € X, let us write

(cﬁ)(x) =(cM)(x) V...V (cM,)(x)

and define the finitely additive core c* of ¢ by

@Hw= N (.

N
MeFinCov(A)
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Theorem 4.2. Let the quantale NI be generated by its coprime elements. Then (X,c) — (X, c") describes a right
adjoint functor of V-Top — V-Cls which commutes with the underlying Set-functors and has its counits mapping
identically.

Proof. Trivially, for x € X, A C X, since (A) € FinCov(A), one has (c*A)(x) < (cA)(x). Also, for all 1\_)/[ =
(M, ..., M,,) € FinCov(A), x € A implies x € M, for some i and, hence, kK < (cM;)(x) < (cA_}I)(x), which shows
that ¢* is reflexive: k < (¢tA)(x).

To verify that ¢* is finitely additive, first note that, since the empty string covers the empty set, we have 1 =

ﬁ

(c0)(x) = (c*0)(x) for all x € X. Furthermore, for A, B C X and (M, .., M,,) € FinCov(A), (Ni, ..., N,)) € FinCov(B),
one has (M4, ..., M,,, Ny, ..., N,) € FinCov(A U B). Consequently, since V is a coframe by Proposition 3.2, with the
repeated application of the corresponding distributivity property (but exploited only for down-directed infima), one
obtains

FAUBM < /\ /\(@M)x) v (eN))

M N
A M) v (/\ N)@))
W 7

= (/\(M)@) v (" B)x)
7
= (c"A)(x) V (c"B)(x).

The reverse inequality holds since ¢* obviously inherits the monotonicity from ¢ (even when V is not integral).

The crucial argument of the proof, namely the verification of (T) for ¢*, can be given very compactly, as follows.
From ¢* < ¢ we conclude d := ¢* < ¢ < ¢ with Lemma 2.4. Since, by Proposition 2.6, d is finitely additive, d < ¢
trivially implies d < ¢* (as outlined more generally just below). This, by Lemma 2.4 again, means that c* is transitive.

Finally, to verify the adjunction, we must show that, for (Y, d) € V-Top, every continuous map g : (¥,d) — (X, ¢)
is also continuous as a map (Y,d) — (X, c¢"). But for C C Y and all (M4, ..., M,;) € FinCov(gC) one trivially has
(g'MnC,...,g7'M,, N C) € FinCov(C) and therefore, by the finite additivity of d, for every y € Y,

dC)(y) <d(g™ "M V ... Vd(g™ M,)(y)
<c(gg ' MY V ... V c(gg™ ' M,)(gy)
= (eM1)(gy) V ... V (cM,,)(gy).

Consequently, (dC)(y) < ¢*(gC)(gy) follows, as desired. O

Corollary 4.3. Let V be a spatial coframe. Then the forgetful functor V-Top—sSet is topological, with initial liftings
to be formed by coreflecting the initial lifting with respect to V-Cls — Set into V-Top. Accordingly, limits in V-Top
are formed by applying the coreflector to the corresponding limits formed in V-Cls.

Remark 4.4. As topological functors, the underlying Set-functors of V-Cls and V-Top have both, a full and faithful
left adjoint and a full and faithful right adjoint, given by the discrete and indiscrete structures, respectively. But these
are available without any extra provisions on V. The discrete V-valued closure structure on a set X is given by the
characteristic map

X: PX — VX, (xA)(x) =k if x € A, and L otherwise,

which is already finitely additive. The indiscrete V-valued closure space structure 7 maps A € X to the constant
function with value T, but has to be corrected in case A = @ to the constant function L in order to give the indiscrete
V-valued topological structure on X.



5. A V-categorical presentation of V-valued closure and topological spaces

Recall that a (small) V-category is given by a set X of objects and a “hom map” homy = a : X X X—V satisfying
the conditions k < a(x, x) and a(y, z) ® a(x,y) < a(x,z) for all x,y,z € X. A V-functor f : (X,a) — (Y, D) is a map
f: X—Y with a(x,y) < b(fx, fy) for all x,y € X. The resulting category is V-Cat, which is topological over Set.
There are three particular V-categories that will be used in what follows:

1. V itself becomes a V-category with its hom-map [—, —], characterized by

uywl] & u®v<w

for all u,v,w €V, so that every [v, —] is right adjoint to (=) ® v : V—V (as monotone maps).
2. For every set X, VX is the X-th power of V in V-Cat when provided with the V-category structure

o] = /\[O')C, 7x] (o,7TE€ VX).

xeX
We note that, of course, X — VX gives a functor Set® —V-Cat when one assigns to amap f : X —Y the V-functor
Vv —= VX o of

3. For every set X, the power set PX becomes a V-category when provided with the initial structure induced by
the map y : PX — VX of Remark 4.4 (with respect to the underlying Set-functor of V-Cat), so that

hompy(A, B) = [yA,xB] (A, BC X).

Proposition 5.1. The following conditions are equivalent for a map ¢ : PX —V*:

(1) c is V-closure space structure on X;
(i) YA < cA and [yB,cA] < [cB,cA), forall A,B C X;
(iii) [xB,cA] = [¢B,cA], forall A,B C X.

Proof. (1)&(ii): By definition of yA, (R) is equivalent to (YA)(x) < (cA)(x) for all x € X. (T) may be equivalently
written as
A\ < B, A,
yeB xeX
Since [L,w] = T and [k, w] = w for all w € V, the left-hand side of this inequality equals A ,cx[(xB)(x), (cA)(x)], so
that (T) then becomes equivalent to the second inequality of (ii).
(i1)=(iii): yB < ¢B gives [yB, cA] > [cB, cA], since [—, w] reverses the order for all w € V.
(iii)=(i): Since (k < [v,w] & v <w)forall v,w € V, from [yA, cA] = [cA, cA] > k one obtains yA < cA. O

Corollary 5.2. Every V-valued closure space structure ¢ on a set X gives a \-functor ¢ : PX — VX,

Proof. Since [v, —] is monotone for all v € V, Proposition 5.1 gives [yB, yA] < [xB,cA] < [¢B,cA], for all A,B C
X. O

For every V-category X = (X, a), one has the Yoneda V-functor
yx : X—= VX, x > homy(—, x) = a(-, x).
‘We can now state:

Corollary 5.3. For a set X, a map ¢ : PX —= VX is a V-valued closure space structure on X if, and only if,

Yvx X' Yvx

(PX —> VX W VPX) = (PX —> VX VAR 2

in V-Cat or, equivalently, in Set. The map ¢ makes X a V-valued topological space if, and only if, it preserves finite
suprema.



Proof. The equality of the two composite maps simply rephrases condition (iii) of Proposition 5.1. O

Remark 5.4. Since, by the Yoneda Lemma, or by an easy direct inspection, [y{x}, o] = o(x) for all o € VX xe X, so
that ({=} - x)' - yyx = idyx, the map ¢ may be recovered from the composite map of Corollary 5.3, as

X' -

Yyx

¢ = (PX -S> VX vV VPX VY,

with {-} : X — PX.

In conclusion of this section, we see that the syntax needed to define V-valued closure spaces and V-valued

topological spaces can be seen as living in V-Cat, and that the axioms defining them are equational. Hence, when
we consider these objects together with closure preserving maps as their morphisms (so that the inequality of the
continuity condition (C) becomes an equality), we obtain categories that are equationally defined within the V-Cat
environment. In particular, topological spaces with closed continuous maps as their morphisms form a category that
is equationally defined within the realm of Ord, the category of preordered sets and monotone maps.
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