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Abstract

Weak factorization systems, important in homotopy theory, are related to
injective objects in comma—categories. Our main result is that full functors
and topological functors form a weak factorization system in the category of
small categories, and that this is not cofibrantly generated. We also present a
weak factorization system on the category of posets which is not cofibrantly
generated. No such weak factorization systems were known until recently.
This answers an open problem posed by M. Hovey.

Mathematics Subject Classifications (2000): 18A22, 18A32, 18G05,
18B35.
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Introduction

Whereas factorization systems for morphisms in categories are one of the most stud-
ied categorical concepts, weak factorization systems have been rather neglected, al-
though they play an important role in homotopy theory. Part of the reason may
be that the basic examples, such as (Mono, Epi) in the category of sets, are rather
surprising for anybody accustomed to factorization systems proper. An explana-
tion of such examples is that they are closely connected to the existence of enough
injectives in comma-—categories.

We analyze this relationship between weak factorization systems and injectives
in comma—categories in greater detail and we provide new examples of weak factor-
ization systems. In particular,
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(a) we show that (full functors, topological functors) form a weak factorization sys-
tem in the category Cat of small categories, and

(b) we describe a weak factorization system (£, R) in the category Pos of posets,
where L is the class of embeddings (= regular monos).

These weak factorization systems are not cofibrantly generated.

1 Weak Factorization Systems

The concept of weak factorization systems plays a central role in homotopy the-
ory, in particular in the basic definition of Quillen model categories (see 3.6 below).
Formally, this notion generalizes factorization systems by weakening the unique—
diagonalization property to the diagonalization property without uniqueness. How-
ever, the basic examples of weak factorization systems are fundamentally different
from the basic examples of factorization systems.

Notation 1.1 We denote by [ the relation diagonalization property on the class of
all morphisms of a category: given morphisms [: A — B and r: C'— D then

[dr

means that in every commutative square

A C
7
v
s
/
l d/ r
s
s
v
s
B D

there exists a diagonal d: B — (' rendering both triangles commutative. In this
case [ is also said to have the left lifting property with respect to r (and r to have
the right lifting property with respect to [).

Let H be a class of morphisms. We denote by

HY  (right box of H)
the class of all morphisms r with

hOr forall heH

and, dually, by
S (left box of H)

the class of all morphisms [ with

[Oh forall h € H.



Definition 1.2 (see, e.g., [6] and [8]) A weak factorization system in a category is
a pair (£, R) of morphism classes such that

1. every morphism has a factorization as an L£-morphism followed by an R—
morphism

and

2. R=L"and L = "R.

Observation 1.3 (see [1]) In the presence of the above condition (1), the above
condition (2) is equivalent to the conjunction of the following two (this is called the
“retract argument”; cf. [16] and [18]):

(2a) LOR, ie.,l0r foralll € £ and r € R.

and

(2b) as full subcategories of the arrow—category K=, both £ and R are closed under
the formation of retracts.

Moreover, in the presence of conditions (1) and (2a), condition (2b) can be
replaced by the (formally weaker) condition

(2b) (a) sofelL=feLl
for any section (= split monomorphism) s, and

(B) foreR=feR
for any retraction (= split epimorphism) 7.

[To see that (2b')(«) implies "R C L, consider f € "R. Let f =rol bea
(L, R)-factorization, and let s be a diagonal for the commutative square

Then so f =1 € £ and s is a section. Thus, by (2b')(«), f € L.
Dually, (2b”) (8) implies L= C R.]

If we replace in (2) “00” by “1”, where L is defined via the unique diagonalization
property (i.e., by insisting that there exists precisely one diagonal), we arrive at the
familiar notion of a factorization system in a category (cf. [2, 14.1]). Note that
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in this case we may replace “retracts” by “isomorphisms” in 2 (b). Factorization
systems are weak factorization systems, see [2, 14.6 (3)].

However, in view of the principal examples it would be misleading to think of
weak factorization systems merely as generalized factorization systems. If (Epi, Mono)
in Set is the “prototype of all factorization systems”, then (Mono, Epi) in Set is the
“prototype of all weak factorization systems” (cf. [1, IIL.5 (3)]).

Recall that, for any class H of morphisms in a category K an object K is H-
injective if for each h: X — Y in ‘H and each morphism f: X — K there exists
a morphism ¢: Y — K with goh = f

X heH : v

v

K

Equivalently, in case K has a terminal object 1, K is H—-injective iff the unique
morphism K — 1 belongs to #~. More generally:

Remark 1.4 A morphism g: C — D belongs to H iff the object (C, g) of K/D is
‘H p—injective, where H, denotes the class of all K/D—morphisms whose underlying
K-morphism belongs to H (see [16, 12.4.2]).

Let us denote by H-Inj the full subcategory of H—-injective objects in K. K is
said to have enough H—injectives if for every object A of K there is a morphism
A — C in H with C' € H-1Inj.

Lemma 1.5 Let H be a class of K-morphisms closed under retracts in K=. Then
the following conditions are equivalent:

1. (H,HP) is a weak factorization system;

2. for all objects B of K, K/B has enough Hpg—injectives.

The proof follows immediately from the characterization of weak factorization
systems via (1), (2a), and (2b).

The lemma simplifies if H is left cancellable, i.e., if go f € H implies f € H:

Proposition 1.6 Let K be a category with finite products and H a left cancellable
class of morphisms containing all i.somorphisms. Then the following conditions are
equivalent:

1. (H,HP) is a weak factorization system;
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2. K has enough H—injectives.

Proof: Assume 2. and consider a morphism f: A — B. Let h: A — C be an
‘H—morphism with H—injective codomain C'. Then

ALp = A owB™ B

is the desired factorization of f. In fact, (h, f) € H, since m o (h,f) = h € H.
Moreover, 7, € H", since for any commutative square

X e . CxB
g T2
Y B

l

with ¢ € H a diagonal is given by (t,1): Y — C x B where t is obtained via
‘H-injectivity of C":

X mek C
t .
g
Y
Closure of H under retracts in I follows from left cancellability. <&

Corollary 1.7 Let K be a category with finite products. Then the following condi-
tions are equivalent:

1. (Mono, Mono®) is a weak factorization system.
2. K has enough injectives.

Examples 1.8 (i) In an abelian category with enough injectives, (Mono, Mono")
is a weak factorization system. Moreover, Mono" consists of all epimorphisms
having an injective kernel. Since this seems to be a new result, below we
present a proof, using the technique of [18, 2.2.9]. The reader is also referred
to the paper [11] by B. Eckmann and H. Kleisli, who introduced similar struc-
tures in order to study higher homotopy groups in a fairly general categorical
context.

Proof: Any epimorphism g: C' — D with an injective kernel splits; choose
s with go s = 1p. Consider a commutative square with monomorphic f:



B

D

v

Consider k = u—sogou. Then gok = 0. Thus there exists a morphism ¢ with
k = ker(g) ot. Since the domain of ker(g) is injective and f is mono, there
exists a morphism r with ¢ = r o f. Then the morphism d = sov + ker(g) or
is a diagonal as required.

Conversely, any g € Mono" is a retraction in view of the commutative square:

0

C

D

D

1p

Moreover, ker(g): E — C has injective domain E, because for any monomor-
phism f: A — B and any morphism k: A — E we have a diagonal d

ker(g)ok

A c
f d g
B- D

0

which induces a morphism ¢: B — E with d = ker(g)ot. Thus ker(g)oto f =
do f =ker(g) ok. Hence, to f = k. &

(ii) Any topos has enough injectives and therefore (Mono, Mono") is a weak fac-
torization system. The class Mono" is much less transparent here. In the
special case of simplicial sets, Mono" is the class of trivial fibrations. This
weak factorization system is important in homotopy theory (see [18]). In Set
we have Mono® = Epi (see [1, 111 5(3)]).

(iii) Any variety V of algebras has enough regular projectives . Hence, (Y RegEpi,
RegFEpi) is a weak factorization system. (Regular epimorphisms are the sur-
jective homomorphisms, hence right cancellable.) If V is abelian, then Epi =
RegEpi, and " Epi consists of monomorphisms with projective cokernels.



(iv) Let Pos be the category of partially ordered sets (and isotone maps) and
Emb the class of all embeddings (= regular monomorphisms) in Pos. Then
the Emb —injectives are precisely the complete lattices; and Pos has enough
Emb-injectives [4]. Since Emb is left cancellable, (Emb, EmbY) is a weak
factorization system. In the next Section we will describe Emb".

2 Topological Functors

Notation 2.1 Cat is the category of small categories and functors.
Catyg, is the category of small categories and faithful, amnestic* functors.

Full (resp. Fullys,) is the class of those morphisms in Cat (resp. Catg,) that are
full.

Top is the class of those morphisms G: A — X in Cat that are topological,
(i.e., each G-structured source (X LN GA;)ier has a unique G-initial® lift®

(A L5 A))icr (cf. [2, Definition 21.1]).

Remark 2.2 (1) Topological functors have been considered (as a natural abstrac-
tion of the forgetful functors from the categories Top, Unif, Prox and others
to Set) independently and with slight conceptual variations since 1964 by a
number of authors. For details concerning the history of the concept see [14],
for a systematic treatment see [2, Sections 21-22].

(2) Some known results about topological functors which concern us here are the
following:

(a) Topological functors are faithful and amnestic. See [17] or [2, 21.3 and
21.5].

(b) Top = Fullf, in Catg,. See [2, 21.21] resp. [9] and [22], [21] for a partial
generalization to Cat.

(c) Every morphism G in Catg, has a factorization G = T o F' with F' full
and T topological. See [13].

4A functor G: A — X is called amnestic provided that an A-isomorphism f is an identity
whenever G f is an identity.

A source (A ELN Ay)ier in A is called G—initial provided that for each source (B 5 A;)ier
in A and each X-—morphism GB Ly GA with Gg; = Gf; o h for each i € I there exists a unique
A-morphism B 2y Ain A with Gh = h and gi = fiohforeach i€ I. Cf [2,10.57, 10.41 and
10.58 (1)].

6A source (A EL Ai)ier lifts a G—structured source (X EL GA;)ier provided that G f; = f;
for each ¢ € I.



Theorem 2.3 (Full,Top) is a weak factorization system in Cat.

Proof:
(1) Existence of (Full, Top) factorizations.
Let A % X be a morphism in Cat. Then G has a (full, faithful) factorization
ASX = ALBILX,

e.g., the canonical factorization of G through the quotient B = A/._ of A
obtained by the congruence relation

[~ g [dom (f) = dom (g),cod (f) = cod (g) and G(f) = G(g)].
The faithful functor F} has a (full, faithful amnestic) factorization

Fy

B4 X = BL2cx,
see, e.g., [2, Prop. 5.33].

The faithful amnestic functor F» has a (full, topological) factorization
cBx =c®%bpBx,
see Remark 2.2 (2c) above.

O‘/QOVI

Hence A 5 X = A B p % X iga (Full, Top)—factorization of G.

(2) FullOTop.
Consider a commutative square

A C
|4 T
B————D

in Cat with V full and T topological. Then a diagonal B D, C can be
obtained (precisely as in the faithful case, see, e.g., [2, Theorem 21.21]) as
follows: for each B-object B consider the V-structured source, consisting of all

V—structured morphisms f;: B — V' A; (i € I) with domain B. Application

of G yields a T—structured source (GB N T(FA;));er, which has a unique

T-initial lift (Dp 25 FA;)ie;. If D: B — C is the unique functor with
D(B) = Dg for each B-object B and G =T o D, then F=DoV. So D is a
diagonal.

Hence Full C "Top and Top C Full".
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(3) To show that STop C Full, it suffices to verify that £ = Full satisfies the
condition (2b’) («) of 1.3. Let A B, B-% C and C &5 B be small

functors such that S o F is full and Ro S = idg. If FA Ly P4 is B-
morphism, then there exits an A-morphism A -5 A’ with S o F(g) = Sf.
Thus Fg=RoSoF(g9)=RoS(f)=1.

(4) To show that Full® C Top, it suffices to verify that R = Top satisfies the
condition (2b)(8) of 1.3. Let A - B, C - A and A 25 C be small

functors such that RoF is topological and RoS = ida. If & = (B L) FA)er
is an F'-structured source, then the F' o R-structured source

(B 25 FoR(SA))icr

has a unique F' o R-initial lift (C SN SA;)ier. A straightforward computation

reveals that (RC LN A)ier is an F-initial lift of &. Uniqueness follows

immediately from the fact that F' inherits faithfulness and amnesticity from
FoR.

&
Remark 2.4 We consider the category Pos of posets and isotone maps as a full

subcategory of Cat, in fact of Catg,, as usual. It is easy to see that an isotone map
f: A — X between partially ordered sets is, when considered as functor,

(a) always faithful and amnestic,
(b) full iff it is an order-embedding,

(c) topological iff, for each subset B of A and each lower bound z of f[B], the
set of all lower bounds a of B with f(a) < x has a largest element ay which
satisfies f(ag) = x.

Another characterization of “topological morphisms” in Pos is the following

Proposition 2.5 An isotone map P Iy X between posets, considered as a functor,
15 topological iff the following conditions are satisfied:

(1) f is adjoint and coadjoint,

(2) f is convex, i.e., for any p preceding q in P, every x between f(p) and f(q)
in X can be lifted to an element between p and q in P,

(3) f-fibres f~'(x) are complete lattices,

(4) the embeddings of f—fibres into P preserve all non—empty joins and meets.



Proof: First: let f be topological.

Then (1) and (3) are known to hold for topological functors in general, see [2, 21.11
and 21.12]. Moreover, (4) follows immediately from the fact that topological functors
lift limits and colimits, thus meets and joins. For convexity, consider p,q and x as
in condition (2). If a — ¢ is the initial lift of the f-structured arrow x — f(q),
then a has the desired properties.

Second: let f satisfy the conditions (1) — (4). Consider an f-structured source
S = (x — f(a;))ier. Condition (1) implies that the fibre f~!(z) has a smallest
element 0, and a largest element 1,. The set A of all lower bounds of {a; | i € I}
that belong to f~'(z) is non—empty, since 0, € A. By (3), A has a join a in f~!(x)
which, by (4), is a join in P. Thus (a — a;);er is a lift of S. If I = (), then a = 1,
and (1, — a;);er is f-initial. If I # (), consider a lower bound b of {a; | i € I}
with f(b) < x. Then convexity of f implies that for each i € I there exists some
b; in f~'(z) with b < b; < a;. By (3), the set {b; | i € I} has a meet ¢ in f~!(x)
which, by (4) is a meet in P. Thus b < ¢ and ¢ < a (since ¢ < q; for each i € I),
hence b < a. Consequently (@ — a;);c; is f—initial. O

Remark 2.6 It is easy to see that the four conditions of Proposition 2.5 are inde-
pendent, i.e., none follows from the conjunction of the other three.

In particular the following example demonstrates that condition (4) is not implied
by the conjunction of conditions (1) — (3):

SN L
O

Corollary 2.7 The category Pos has a weak factorization system (Emb, Top), where:

Emb is the class of order—embeddings and
Top is the class of topological isotone maps.
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Proof: Let A % X be a morphism in Pos. Then, by Theorem 2.3, G' considered
as a morphism in Cat has a (Full, Top) factorization A Yex=aA"B L X,
Since X belongs to Pos and T is topological, thus faithful and amnestic, it follows
that B belongs to Pos. Hence G = T o F is an (Emb, Top)—factorization of G in
Pos.

The rest is an easy consequence of 2.3. &

3 Cofibrantly generated weak factorization
systems

If (£,R) is a weak factorization system in a cocomplete category K, then L is
cofibrantly closed in the following sense:

Definition 3.1 A class £ of morphisms in a cocomplete category K is called cofi-
brantly closed provided that L is

(i) closed under retracts in comma—categories A\K,
(ii) stable under pushouts,
)
(iii) closed under composition and contains all isomorphisms

(iv) closed under transfinite compositions, i.e., given a chain of morphisms from L,
then a colimit cocone consists of morphisms from L.

Definition 3.2 A weak factorization system (£, R) in a cocomplete category K is
said to be cofibrantly generated provided that there exists a set H of morphisms such
that L is the smallest cofibrantly closed class containing .

Beke [6] calls such weak factorization systems small. Examples of cofibrantly
generated factorization systems include all weak factorization—systems in a locally
presentable category K of the form (B(CP),CY) where C is any set of morphisms,
see [6], or [1].

Example 3.3 In a Grothendieck category, (Mono, Mono") is cofibrantly generated
(see [6]).

Proposition 3.4 The weak factorization system (Emb, Top) in Pos is not cofi-
brantly generated.

Proof: Whenever (£, R) is a cofibrantly generated weak factorization system then
L-Inj is a small-injectivity class in the sense of [3, 4.1]. In fact, whenever £ = cof (C)
for a set C, then £ =" (C”) and thus £-Inj = C-Inj. Any small-injectivity class
in a locally presentable category is closed under \filtered colimits for some regular
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cardinal A (see [3, 4.7]). But the full subcategory Emb-Inj of complete lattices is
not closed in Pos under Afiltered colimits for any cardinal A. (For instance, A + 1,
i.e., the ordered set of all ordinals less than A + 1, is not complete but a Afiltered
colimit of its complete sublattices.) &

Corollary 3.5 The weak factorization system (Full,Top) in Cat is not cofibrantly
generated.

Proof: Assume that Full is cofibrantly generated by a set C. Let F': Cat — Pos
be a left adjoint to the inclusion Pos — Cat. Since F' preserves colimits, Emb =
F(Full) is cofibrantly generated by F(C), a contradiction. &

Remark 3.6 Recall that a Quillen model category K is a complete and cocomplete
category K together with three classes of morphisms, F (”fibrations”), C (”cofibra-
tions”), and W (”weak equivalences”) such that

(1) W has the 2-out—of-3 property, i.e., with any two of f, g, g o f belonging to
W also the third morphism belongs to W, and W is closed under retracts,

and

(2) (C,Fy) and (Coy, F) are weak factorization systems, where Fy = F N W is the
class of "trivial fibrations” and Cy = CNW is the class of ”trivial cofibrations”.

It immediately follows from 1.3 that our definition is equivalent to the standard
one given, e.g., in [18].

Quillen model categories provide a framework for abstract homotopy theory (see
[20], [16] or [18]). We have mentioned a part of a Quillen structure in simplicial sets
in our Example 1.8 (ii). A Quillen model category is called cofibrantly generated
provided that both weak factorization systems (C,Fy) and (Cy, F) are cofibrantly
generated. M. Hovey asks in [19] for an example of a Quillen model category that
can be proven to be not cofibrantly generated.

Example 3.7 If (£, R) is a weak factorization system in a category K with finite
limits and colimits, then F = R, C = £ and W = MorK is a Quillen model
category. Hence 3.4 and 3.5 provide examples of Quillen model categories which are
not cofibrantly generated.

M. Hovey has informed us that recently there have been found other examples
of non—cofibrantly generated Quillen model categories.
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