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Celebrating Dikran Dikranjan’s sixtieth birthday

Abstract. We combine two research directions of the past decade, namely the development of a

lax-algebraic framework for categories of interest to topologists and analysts, and the exploration

of key topological concepts, like separation and compactness, in an abstract category which comes

equipped with an axiomatic notion “closed” or “proper” map. Hence, we present various candidates

for such notions in the context of the category of lax ,V -algebras, with a Set-monad T, e,m

laxly extended to the category of sets and V-valued relations, for a quantale V. Suitable categories

of ordered sets, metric spaces, topological spaces, closure spaces, and approach spaces all fit into

this framework and allow for applications of the the general theory.

1. Introduction

Combining the Manes-Barr presentation of topological spaces as the relational algebras with re-

spect to the ultrafilter monad (extended to relations of sets; see [Manes, 1969; Barr, 1970]) with

Lawvere’s interpretation of metric spaces as small categories enriched over the extended non-negative

real half-line ([Lawvere, 1973]), Clementino and the authors of this paper developed a general lax-

algebraic framework which turned out to be especially suitable for categories of interest to topol-

ogists and analysts ([Clementino and Hofmann, 2003; Clementino and Tholen, 2003; Clementino

et al., 2004b]). At various levels of generality, the lax-algebraic setting was shown in particular to

allow for an e�cient treatment of special types of maps, such as proper maps, open maps, descent

maps, e↵ective descent maps, triqotient maps, exponential maps, etc. ([Janelidze and Sobral, 2002;

Clementino and Hofmann, 2002; Clementino et al., 2005]).

Parallel to these developments one can trace back proposals for the treatment of the topolog-

ical concepts of separation and compactness in a category endowed with some notion of closure

or closedness, early instances of which were given by Penon [Penon, 1972], Manes [Manes, 1974]

(extensively recalled in [Manes, 2010]), and Herrlich, Salicrup and Strecker [Herrlich et al., 1987].

However, once the appropriate categorical notion of closure operator had been coined by Dikranjan

and Giuli [Dikranjan and Giuli, 1987] it became immediately clear that such an operator provides

a convenient structure on a category in order to pursue topological concepts; see, in particular,

[Dikranjan and Giuli, 1989], [Clementino and Tholen, 1996], [Clementino et al., 1996]. However,
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the paper [Tholen, 1999] showed that most of the essential results may be obtained in Penon’s

original setting, and it led to a rather comprehensive categorical presentation of the compactness-

separation theme in [Clementino et al., 2004a], for a category equipped with a proper factorisation

system and a distinguished class F of “closed” morphisms, from which one obtains a class P of

“proper” morphisms through stabilisation under pullback.

In this article we merge the two developments just described and present candidates P which,

based on various equivalent lax-algebraic characterisations of morphisms, o↵er themselves naturally,

in the same way as compact Hausdor↵ spaces distinguish themselves as the strict algebras amongst

lax, and this approach leads to the intended classes in the role model Top.

Hence, in Section 2 we carefully recall the lax-algebraic setting as given by Seal [Seal, 2005],

paying particular attention to the role of (bi)modules of lax algebras. We then give an outline

of notions of compactness and separation in a category which comes equipped with a topology (a

term which we hope the reader can accept despite the presence of Grothendieck’s more famous and

important notion!), i.e., with a class of morphisms playing the role of proper maps, which is only

required to contain the isomorphisms and be closed under composition and stable under pullback.

Unlike the approaches taken in [Clementino et al., 1996] and [Clementino et al., 2004a], the setting

of Section 3 does not require the presence of a factorisation system. Finally in Sections 4 and 5 we

discuss in some detail the candidates for notions of proper map which arise naturally from Section

2, first at the general level, and then in terms of examples, from order, topology, metric spaces and

approach spaces. In particular, we introduce a Dikranjan-Giuli closure operator which helps us to

conveniently characterise some important types of morphisms.

2. Lax algebra

By “algebra” (in the strict sense) we refer to the study of varieties of general algebras in the

sense of Birkho↵, except that we allow operations to be infinitary, but we do require the existence

of free algebras. It is known since the late 1960s that such varieties are equivalently described as

the Eilenberg–Moore categories with respect to a monad T, e,m on the category Set of sets.

Recall that the Eilenberg–Moore category Set has as objects -algebras, i.e., sets X which come

with a single (generalised) “operation” a : TX X satisfying two basic laws:

1X a eX and a Ta a mX ; (ALG)

morphisms are -homomorphisms f : X, a Y, b , i.e., maps f : X Y which satisfy

f a b Tf. (HOM)

“Algebra” becomes “lax algebra” (as used in this paper) when we replace “ ” by “ ” in (ALG)

and (HOM). But for “ ” to make sense, we replace mappings of sets by relations, in fact, by

V-relations, for a suitable lattice V.

Hence, we let V be a unital quantale, i.e., a complete lattice with a binary associative operation

and a -neutral element k such that preserves suprema in each variable. The category V-Rel

has as objects sets, and a morphism r : X Y is a V-relation given by a map r : X Y V; its
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composition with s : Y Z is defined by

s r x, z

y Y

s y, z r x, y .

The hom-sets of V-Rel are ordered pointwise (r r x X y Y : r x, y r x, y ) such

that V-Rel becomes a quantaloid, i.e., all hom-sets have suprema that are preserved by composition

from either side. Considering the monoid V, , k as a one-object quantaloid and interpreting v V

as v : 1 1 (with a singleton set 1), one obtains a full and faithful homomorphism V V-Rel of

quantaloids, i.e., a functor that preserves suprema. More importantly, there is a functor

Set V-Rel, f : X Y f : X Y ,

with f x, y k if f x y and f x, y (the bottom element of V) else. This functor is

faithful if, and only if, k or, equivalently, V 1; in this case we may safely write f instead of

f . The V-relation f has a right adjoint f : Y X in the 2-categorical sense (so that 1X f f

and f f 1Y ), given by f y, x f x, y . Hence, there is also a functor

Set
op

V-Rel, f f .

Of course, not just f but every V-relation r : X Y has a converse r : Y X, but note that

one obtains an involution : V-Rel op
V-Rel only if V is commutative.

Next we consider a lax extension ˆ T̂ , e,m of the monad to V-Rel (see [Seal, 2005]), i.e.,

a lax functor T̂ : V-Rel V-Rel which coincides with T on objects, so that

(0) T̂X TX,

(1) r r T̂ r T̂ r ,

(2) T̂ s T̂ r T̂ s r ,

and which satisfies

(3) Tf T̂ f , Tf T̂ f ,

(4) eY r T̂ r eX ,

(5) mY T̂ T̂ r T̂ r mX ,

for all r, r , s, f as above. Of course, (4) and (5) mean that e : 1V-Rel T̂ and m : T̂ T̂ T̂ become

op-lax transformations (in the 2-categorical sense), while (3) makes the diagrams

V-Rel
T̂
// V-Rel

Set

OO

T
// Set

OO

V-Rel
T̂
// V-Rel

Set
op

OO

T op
// Set

op

OO

commute laxly ; they commute strictly if, and only if, the lax extension is flat, that is, if T̂1X
T1X 1TX . This fact is easily seen once one has established the identities

(6) T̂ s f T̂ s T̂ f T̂ s Tf and T̂ f r T̂ f T̂ r Tf T̂ r

that hold for any lax extension, for all f : X Y , r : X Z, s : Y Z (see [Seal, 2005]). For

future reference we record from [Tholen, 2009] also the following identity:

(7) T̂1X T̂ eX mX .
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Although a monad may have distinct lax extensions, in what follows we always assume to

come with a fixed lax extension ˆ which we consider as a part of the syntax privided by and V.

A lax ,V -algebra, also called a ,V -category, is a set X with a V-relation a : TX X with

1X a eX and a T̂a a mX . (alg)

A morphism f : X, a Y, b of lax ,V -algebras, also called a ,V -functor, is a map

f : X Y with

f a b Tf. (hom)

By (6), since b T̂ f b T̂1X Tf b T̂ b TeX Tf b mX TeX Tf b Tf b T̂ f one

sees easily that (hom) is equivalent to f a b T̂ f . In this paper we are interested in a number of

other equivalent formulations of (hom), and for that it is useful to recall the notion of (bi)module

(also called distributor or profunctor) as follows.

Given ,V -categories X X, a and Y Y, b , a ,V -module from X to Y is a V-relation

' : TX Y with

' T̂ a ' mX and b T̂' ' mX ; (mod)

we write ' : X Y in this case. Clearly, a : X X is a ,V -module. With the Kleisli

composition

 ' :  T̂' mX

for any V-relations ' : TX Y ,  : TY X, we can rewrite (mod) equivalently as

' a ' and b ' '. (mod )

Since

' ' 1TX ' T̂1X ' T̂ eX mX ' eX ' a,

' ' 1TX ' eTX mX eY T̂' mX eY ' b ',

condition (mod) can in fact be written equivalently as

' a ' and b ' '.

In particular, we may rewrite condition (alg) as

eX a and a a a, (alg )

or even as

1#X a and a a a

where 1#X : eX T̂1X is the discrete ,V -structure on the set X. (In fact, X X, 1#X is left

adjoint to the forgetful functor ,V -Cat Set.) To wit, eX a implies 1#X a T̂ eX mX

a T̂a mX a a a.

Remark 2.1. For future reference we remark that from the adjunctions f f and Tf Tf

one trivially obtains the equivalence of each of the following conditions, with (i)=(hom):

(i) f a b Tf ,

(ii) a Tf f b,
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(iii) a f b Tf ,

(iv) f a Tf b.

Since the Kleisli composition may neither be associative nor return a ,V -module  ' when

 and ' are ,V -modules, it is important to collect the following assertions which show that

,V -functors act on ,V -modules from either side. (For an axiomatisation, see [Wood, 1982].)

Proposition 2.2. Consider ,V -functors f, g, h, j and a ,V -module  as in

U
g

X
f

Y
 
/Z

h
W

j
R

Then, with Y Y, b ,

f : b Tf : X Y, f : f b : Y X

are ,V -modules with 1X 1X a (where X X, a ) and

f g f g , f g g f .

More generally,

 f  Tf : X Z, h  h  : Y W

are ,V -modules, such that  1Y  1Z  and

 f g  f g , j h  j h  , h  f h  f .

Proof. With Z Z, c and W W,d we show the assertions about  f and h  ; the

remaining statements follow easily. First,

 f  T̂ b Tf mX  T̂ b TTf mX  T̂ b mY Tf  b Tf  Tf

 Tf T̂1X  Tf T̂ eX mX  T̂ f eX mX

 T̂ f a mX  T̂ b Tf mX  f .

Since also

 Tf T̂a  T̂ f a  T̂ b Tf  T̂ b TTf  mY TTf  Tf mX ,

c T̂  Tf c T̂ TTf  mY TTf  Tf mX ,

 f  Tf is a ,V -module. Second, quite easily one has

h  h c T̂ mY h c  h  ,

h  T̂ b h  mY ,

d T̂ h  d Th T̂ h c T̂ h  mY ,

which confirms that h  h  is a ,V -module. ⇤

Remark 2.3. We note that, as mere V-relations, f and f are defined already when f : X Y

Y, b is just a mapping of sets. For future reference we record the inequalities

f ' b eY f ' b Tf eX ' b Tf T̂' eTX b Tf T̂' mX f ',

' Tg ' Tg TeZ mZ ' Tg T̂ c mZ ' T̂ g c mZ ' g ,
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where g : W Z Z, c is a mapping and ' : TW X a V-relation. We also note the useful

identity

f f f b Tf,

which follows form Proposition 2.2: f f f Tf f b Tf . Finally, if we are also given

h : Z W W, d and j : Y X, a , then

j ' g j ' g , f ' h f ' h ,

the proof of which is quite straightforward.

Corollary 2.4. A ,V -functor f : X Y satisfies

1X f f and f f 1Y .

Proof. The first inequality means 1X a f b Tf , which is equivalent to (hom) (see Remark

2.1), while the second inequality holds for any map f :

f f b Tf T̂ f b mY b Tf Tf T̂ b mY b T̂ b mY b b b 1Y . ⇤

Not only in Corollary 2.4, but also in Proposition 2.2, whenever we used (hom), it was necessary

to do so:

Corollary 2.5. For lax ,V -algebras X X, a , Y Y, b and any mapping f : X Y , in

addition to (i)-(iv) of Remark 2.1, each of the following inequalities is equivalent to (hom):

(v) f T̂ a f mX ,

(vi) a T̂ f f mY ,

(vii) f a f ,

(viii) a f f .

Proof. That (hom) implies (vii) and (viii) follows from Proposition 2.2, and the equivalences (v)

(vii) and (vi) (viii) follow trivially from the adjunctions mX mX and mY mY .

Finally, from Remark 2.3 one has

f a f a and a Tf a f ,

which shows (vii) (i) and (viii) (ii) of Remark 2.1, respectively. ⇤

Corollary 2.6. In the setting of Corollary 2.5, the following statements are equivalent: f is a

,V -functor; f is a ,V -module; f is a ,V -module; 1X f f & f f 1Y .

Finally we mention that the hom-sets of ,V -Cat inherit the order of ,V -modules via

f f : f f ,

for f, f : X, a Y, b , which makes ,V -Cat a 2-category. (Compatibility with composition is

guaranteed by Proposition 2.2.)
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Remark 2.7. For the proof of the following equivalences one may apply the (in)equalities of Remark

2.3, the details of which must be left to the reader:

f f f f 1X f f f f 1Y

x X, y TY : b y, f x b y, f x

x TX, y Y : b Tf x , y b Tf x , y

x X : k b eY f x , f x .

In the 2-category ,V -Cat there is now a notion of adjunction: a ,V -functor g : Y X is

right adjoint if there is a ,V -functor f : X Y with 1X g f and f g 1Y ; one writes f g

in this case. From Proposition 2.2 and Remark 2.3 one obtains:

f g 1X f g & g f 1Y

g f (since 1X f f & f f 1Y )

x TX, y Y : a x, g y b Tf x , y .

In what follows we are interested in those ,V -functors which satisfy any of (i)-(vi) of Remark

2.1 and Corollary 2.5, with “ ” replaced by “ ”. We put

Pi : f : X, a Y, b f a b Tf ,

Pii : f : X, a Y, b a Tf f b ,

etc.

Essential stability properties of these classes will be shown in Section 4. (We note that there

is no point in studying the analogously-defined classes Pvii and Pviii: since every ,V -functor f

satisfies f a f and a f f , these are the classes of all ,V -functors.)

3. Separation and compactness in a category

Throughout this section we consider a finitely-complete category X and call a class P of morphisms

in X a topology on X if

P contains all isomorphisms,

P is closed under composition,

P is stable under pullback.

For another topology S on X which satisfies the right cancellation condition

p s S, s S p S,

we call the topology P an S-topology on X if the cancellation condition

p s P, s S p P

holds. Every topology P is an IsoX-topology (with IsoX the class of all isomorphisms), and the

hypothesis on S means precisely that S is an S-topology.

The role model of this setting is the class P of proper ( stably closed closed with compact

fibres) maps, which is an S-topology on the category Top of topological spaces for S the class of

surjective maps in Top. Other important examples of topologies on Top are given by the classes of

open or of exponentiable maps.
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In the setting of [Clementino et al., 2004a] where one is axiomatically given a class of F of “closed”

morphisms in a finitely-complete category X endowed with a proper factorisation system E ,M ,

one may choose P and S to contain those morphisms that belong stably to F and E , respectively,

and obtain an S-topology P on X. In particular, if as in [Clementino et al., 1996] X comes with

a closure operator c, one lets F be the class of morphisms for which taking images preserves the

closure operator c, provided that c is weakly hereditary.

For a topology P on X we refer to the morphisms of P also as the P-proper morphisms of X. An

object X in X is P-compact if X 1 ( the terminal object in X) is in P. A morphism f : X Y

is P-separated if the morphism �f 1X , 1X : X X Y X is in P, and an object X is P-separated

if X 1 is P-separated; equivalently, if �X : X X X lies in P. Morphisms that are P-proper

and P-seperated are called P-perfect.

We note that when P is an S-topology on X, ⌃ 1
B P is a ⌃ 1

B S-topology on X B X B ,

the comma category of morphisms with codomain B, with SigmaB the forgetful functor to X. A

morphism f : X Y in X is P-proper (P-separated) if and only if f (as an object in X Y ) is

⌃ 1
B P-compact (⌃ 1

B P-separated).

Proposition 3.1. For a topology P and an object X, the following conditions are equivalent:

(i) X is P-compact;

(ii) every morphism f : X Y with Y P-separated is P-proper;

(iii) there is a P-proper morphism f : X Y with Y P-compact;

(iv) the projection X Y Y is P-proper for all objects Y ;

(v) X Y is P-compact for every P-compact object Y .

Furthermore, if P is an S-topology, the following condition is also equivalent to (i):

(vi) for every morphism f : X Y in S, Y is P-compact.

Proof. (i) (ii): In the graph factorisation

X Y

p

##

X

1X ,f
;;

f
// Y

1X , f is in P as a pullback of �Y , and p is in P as a pullback of X 1.

(ii) (iii): Consider Y 1.

(iii) (i): X 1 X
f

Y 1 .

(i) (iv): p is a pullback of X 1.

(iv) (v): X Y 1 X Y Y 1 .

(v) (i): Consider Y 1.

(i) (vi): See (iii) (i).

(vi) (i): Consider f 1X . ⇤

Corollary 3.2. For a topology P, let the composite morphism q p be P-proper. Then, if q is

P-separated, also p is P-proper.
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Proof. Apply Proposition 3.1 (i) (ii) to the morphism p : q p q in X Z (if q : Y Z in

X). ⇤

Lemma 3.3. For a topology P on X,

P : f f is P-separated

is a topology which contains all monomorphisms of X and satisfies g f P f P . Moreover,

if P is an S-topology, then P is a P S -topology on X.

Proof. See Proposition 4.2 of [Clementino et al., 2004a]. ⇤

Corollary 3.4. For a topology P and an object X, the following conditions are equivalent:

(i) X is P-separated;

(ii) every morphism f : X Y is P-separated;

(iii) there is a P-separated morphism f : X Y with Y P-separated;

(iv) the projection X Y Y is P-separated for all objects Y ;

(v) X Y is P-separated for every P-separated object Y .

Furthermore, if P is an S-topology, the following condition is also equivalent to (i):

(vi) for every P-proper morphism f : X Y in S, Y is P-separated.

Proof. Apply Proposition 3.1 to P in lieu of P, observing that “P -proper” means “P-separated”

and “P -compact” means “P-separated”, and that all objects and morphisms are P -separated. ⇤

Remark 3.5. We may augment the list of equivalent conditions in Corollary 3.4 by

(vii) for every equaliser diagram E
u

Z X, u is P-proper.

Indeed, such equalisers u are precisely the pullbacks of �X : X X X.

Corollary 3.6. For a topology P on X, the full subcategory of P-Sep of P-separated objects and

P-CompSep of P-compact P-separated objects are closed under finite limits in X. When f : X Y

is a monomorphism in X, or just P-separated, then Y P-Sep implies X P-Sep, and when f is

also P-proper, then Y P-CompSep implies X P-CompSep. ⇤

In what follows, let P and S be topologies on X, with S satisfying the right cancellation condition.

We call a morphism d in X P,S -dense if in every factorisation d p f with p P one has

p S, and we denote by D DP,S the class of P,S -dense morphisms in X. Trivially, one has

d g D d D . Furthermore, for composable morphisms

s S, d D s d D. ( )

Indeed, if s d p f with p P, consider the diagram

p

��g
//

d
))

f
55

s

??

p

��

pullback

s

??
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Since p P, d D, one obtains p S and s p p s S, hence p S. As a consequence of ( )

one has the equivalences

S D IsoX D every retraction that lies in P is also in S.

For a morphism f : X Y in X let f : X Y X X denote the pullback functor.

Definition 3.7. A morphism f : X Y in X is P,S -open if, for every pullback g : U V of f ,

g preserves P,S -density; that is, if for all pullback diagrams

//

d
✏✏

d
✏✏

U
g
//

✏✏

V

✏✏

X
f
// Y

d D implies d g d D. Let O OP,S denote the class of all P,S -open morphisms in X.

Lemma 3.8. If P is an S-topology, so is O.

Proof. Clearly, O is a topology. Since any pullback of f s with s S is of the form f s with

s S, it su�ces to show that f preserves P,S -density when f s does. But for the pullback

diagrams

s
//

d
✏✏

f
//

d
✏✏

d
✏✏

s
//

f
//

d D implies d D, which gives s d d s D by ( ) and, hence, d D. ⇤

In the role model X Top, P proper , S surjective , D is the class of dense maps (those

continuous f : X Y with f X Y ), and O is the class of open maps (preservation of openess

for subsets). O-separated maps are the locally injective maps f : X Y (so that every x X has

a neighbourhood U with f U injective), which are local homeomorphism when they are also open.

Every space is O-compact, and O-separated spaces are precisely the discrete ones.

In general, we call morphisms in O OP,S locally P,S -injective, and those in O O

local P,S -homeomorphism. Objects in O-Sep are called P,S -discrete, and O-compact objects

S-inhabited. This last terminology is motivated by the following:

Remarks 3.9. (1) Assume that for di D DP,S also any small-indexed coproduct i di exists

and is in D, and let X be an object such that, for all objects U , the morphism

sU :
x:1 X

U X U
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whose x-th restriction to U is x, 1U : U X U , lies in S. Then X is O-compact.

Indeed, considering the diagram

x U

sU
✏✏

x d
//

i V

sV
✏✏

X U
1X d

// X V

one obtains for d D first sV x d 1X d sU D, and then 1X d X 1 d D.

(2) D is closed under the formation of coproducts if S is, and if X is extensive (see [Carboni

et al., 1993]), in the infinitary sense). Indeed, considering d i di with all di : Ui Vi in D, and

assuming d p f with p P we can build the diagram

Ui

✏✏

fi
// Wi

✏✏

pi
// Vi

✏✏

i Ui
f
// W

p
//

pullback

i Vi

with pi fi di and pi P for all i. Hence, pi S since di D, and p i pi S by extensivity

and hypothesis on S.

Corollary 3.10. For an S-topology P on X, the following conditions are equivalent:

(i) X is P,S -discrete;

(ii) every morphism f : X Y is locally P,S -injective;

(iii) there is a locally P,S -injective morphism f : X Y with Y P,S -discrete;

(iv) the projection X Y Y is locally P,S -injective for all objects Y ;

(v) X Y is P,S -discrete for every P,S -discrete object Y ;

(vi) for every P,S -open morphism f : X Y in S, Y is P,S -discrete.

Proof. Apply Corollary 3.4 with O in lieu of P. ⇤

Similarly, one may obtain characteristic properties of S-inhabited objects from Proposition 3.1.

In order for us to define notions of “Tychono↵” and “local compactness” in our setting, we should

have a suitable notion of “subobject”. Calling a morphism m S-extremal if m does not factor as

m f s with s S unless s is an isomorphism, we let M MS be the class of all morphisms that

are stably S-extremal. Trivially, g m M m M and S M IsoX; for “ ” one needs

split monomorphisms in S to be isomorphisms. Furthermore, M is closed under composition if S

satisfies the strong cancellation condition s t S s S . Finally, if every regular epimorphism

lies in S and X has coequalisers of kernel pairs, then every morphism in M is a monomorphism

and, in particular, P-separated.

We call morphisms in the class P P M P,S -Tychono↵, and morphisms in the class

P P O M locally P,S -perfect. Hence, f : X Y is P,S -Tychono↵ (locally P,S -

perfect) if it is the restriction of a P-perfect morphism p : Z Y along a ( P,S -open) morphism

m : X Z in M: f p m. We denote by P,S -Tych the full subcategory of X of objects X for

which X 1 is P,S -Tychono↵, and by P,S -LocCompSep the full subcategory of X of those X

with X 1 locally P,S -perfect. Hence, X P,S -Tych if X is presentable as m : X K with
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K P-CompSep and m M, while X P,S -LocCompSep means that m can be chosen to be in

O M.

We note that P P M and P P O M are both stable under pullback. Although they

may not enjoy the other required properties of an S-topology, we are able to prove propositions

about them in the style of Proposition 3.1.

Proposition 3.11. Let P and S be topologies on X, with S satisfying the strong cancellation

condition s t S s S . Then the following conditions are equivalent for an object X:

(i) X P,S -Tych;

(ii) every morphism f : X Y is P,S -Tychono↵;

(iii) there is a P,S -Tychono↵ morphism f : X Y with Y P-CompSep;

(iv) the projection X Y Y is P,S -Tychono↵ for all objects Y ;

(v) X Y P,S -Tych for all Y P,S -Tych.

Proof. (i) (ii): With m : X K in M and K P-CompSep, we consider the diagram

X

f

ww

f,m
✏✏

m

((

Y Y K
p1

oo

p2
// K

Since p2 f,m M also f,m M, and since K P-CompSep, p1 P P by Proposition 3.1

and Corollary 3.4.

(ii) (iii): Choose Y 1.

(iii) (i): By hypothesis, f p m with m M and p : Z Y in P P . But since Y P-CompSep,

also Z P-CompSep.

(i) (iv): X Y Y is a pullback of X 1.

(i) (v): If m : X K, n : Y L in M with K,L P-CompSep, then also m n m 1L
1X n in M and K L P-CompSep.

(iv) (i),(v) (i): Y 1. ⇤

In Top, a locally closed set A in a space X is the intersection of an open set O and a closed set F

in X. Hence, the inclusion map A O X can be rewritten as A F X, which switches the

order of open and closed maps. The “rewriting hypothesis” of the following proposition formulates

this observation in general and is crucial for the validity of the proposition.

Proposition 3.12. Let P and S be as in Proposition 3.11, and assume that every composite mor-

phism m p with p P P M and m O M is locally P,S -perfect. Then the following

conditions are equivalent for X:

(i) X P,S -LocCompSep;

(ii) every morphism f : X Y with Y P-Sep is locally P,S -perfect;

(iii) there is a locally P,S -perfect morphism f : X Y with Y P-CompSep;

(iv) the projection X Y Y is locally P,S -perfect for all objects Y ;

(v) X Y P,S -LocCompSep for all Y P,S -LocCompSep.
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Proof. (i) (ii): Proceeding as in Proposition 3.11 (i) (ii), one decomposes f,m M as

X
f,1X

Y X
1Y m

Y K.

Then f, 1X M, and f, 1X P P as a pullback of �Y ; furthermore, 1 m O M as a

pullback of m O M. By hypothesis then, f,m is locally P,S -perfect, and so is f p1 f,m

since p1 : Y K Y lies in P P .

All other steps can be taken as in Proposition 3.11. ⇤

Corollary 3.13. Under the hypothesis of Proposition 3.11, if the composite morphism q p is locally

P,S -perfect with q P-separated, then p is locally P,S -perfect.

Proof. Apply Proposition 3.12 (i) (ii) to the comma categories of X. ⇤

4. Topological structures on categories of lax algebras

With and V as in Section 2 we explore candidates for topologies P on the category ,V -Cat.

Throughout this section we let S denote the class of surjective ,V -functors (which is an S-

topology). We start by collecting some easy-to-prove and well-known facts that are being used

in the sequel. Then M (as defined after Corollary 3.10) is the class of embeddings, i.e. injective

,V -functors f : X, a Y, b with a f b Tf .

Remarks 4.1. (1) A map f : X Y of sets is injective if and only if f f 1X , and f

is surjective if and only if f f 1Y (in V-Rel); the latter statement requires V 1, which

we assume henceforth. We also make use of the Axiom of Choice which makes surjections split

epimorphisms in Set and therefore being preserved by T .

(2) The following conditions are equivalent:

(i) V is a frame, i.e. v iwi i v wi, for v, wi V;

(ii) the left Frobenius law f ' f  f '  holds in V-Rel, for all f : X Y , ' : Z X,

 : Z Y ;

(iii) the right left Frobenius law '  f f ' f  holds in V-Rel, for all f : X Y ,

' : X Z,  : Y Z.

(3) A pullback diagram in ,V -Cat

P, d
q
//

p

✏✏

Y, b

g

✏✏

X, a
f
// Z, c

( )

is constructed at the level of Set, with d p a Tp q b Tq .

(4) For any commutative diagram

P
q
//

p
✏✏

Y

g
✏✏

X
f
// Z

( )
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in Set one has q p g f . Diagram ( ) is a Beck-Chevalley square (or BC-square) if g f q p ;

equivalently, if ( ) is a weak pullback diagram, that is, if P
p,q

X Z Y is surjective. T satisfies

the Beck-Chevalley condition (BC) if T preserves (BC)-squares; equivalently, if T maps (weak)

pullback diagrams to weak pullback diagrams.

Proposition 4.2. Let V be a frame. Then

Pi f : X, a Y, b f a b Tf

is an S-topology on ,V -Cat, and so is

Pii f : X, a Y, b a Tf f b ,

provided that T satisfies (BC).

Proof. The following calculations show that if f Pi (Pii) in diagram ( ), then also q Pi (Pii,

respectively):

b Tq b b Tq q b q b b

g c Tg b Tq q g c Tg b

g c Tg Tq b Tq q g c Tg q b

g c Tf Tp b Tq p f c Tg q b

g f a Tp b Tq p a Tf Tg q b

q p a Tp b Tq p a Tp Tq q b

q p a Tp q b Tq p a Tp q b Tq Tq

q d, d Tq .

All other verifications are straightforward (and don’t require the additional hypotheses). ⇤

In what follows we try to describe the morphisms in Pi and Pii using a Dikranjan-Giuli closure

operator. For simplicity, throughout we assume that V is a frame and T satisfies (BC). Since a

,V -functor f : X, a Y, b belongs to Pi whenever b Tf f a, we can state its characteristic

property as

x TX, y Y : b Tf x , y

x f 1 y

a x, x .

In particular, for a ,V -category X X, a and a subset M (structured by the restriction of a),

the inclusion map i : M X is in Pi if and only if

x TM, x X : a T i x , x x M.

This description motivates the introduction of a closure operator on X, where we put

x M : x TM : a T i x , x

for every M X and every x X. Certainly one has M M , (M N M N), and every

,V -functor preserves this closure in the sense that x M implies f x f M . However, we

note that is in general not idempotent. In terms of this closure operator, i : M X is in Pi

if and only if M M , and it is now not hard to see that i : M X is Pi-dense if and only if
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clM X (where cl is the idempotent hull of ). Let us call a ,V -functor f : X, a Y, b

pseudo-open if

x X, y TY : b y, f x x TX : Tf x y & a x, x .

The following proposition collects some easily-established facts:

Proposition 4.3. Let V be a frame and T satisfy (BC), and let f : X, a Y, b be a ,V -

functor.

(1) If f is in Pi, then f M f M for all M X.

(2) If f is in Pii, then f is pseudo-open, with the converse holding if V 2 .

(3) If f is pseudo-open, then f
1
N f 1 N for all N Y .

Proof. We restrict our attention to (3) and show f
1
N f 1 N and consider the pullback

diagram

f
1
N

i
✏✏

f
// N

j
✏✏

X
f

// Y

Let x X with x f
1
N . Hence, there is some y TN with b T j y , f x , and since f

is pseudo-open there is some x TX with Tf x Tj y and a x, x . Since T satisfies (BC),

there is some x T f
1
N with T i x x and Tf x y, which implies x f 1 N . ⇤

Remark 4.4. By transfinite induction, Proposition 4.3 remains true when is substituted by its

idempotent hull.

Lemma 4.5. The class of pseudo-open ,V -functors is pullback stable provided that T satisfies

(BC) and the frame V satisfies

u, v V : u v (u or v ). ( )

Proof. Let

P, d

g
✏✏

f
// Z, c

g

✏✏

X, a
f
// Y, b

be a pullback diagram in ,V -Cat where f is pseudo-open. Let x, z P and z TZ with

c z, z . Then b Tg z , g z f x as well and, hence, there exists some x TX with

Tf x Tg z and a x, x . Since T satisfies (BC), there is some p TP with Tf p z and

Tg p x, and therefore d w, x, z a x, x c z, z . ⇤

Proposition 4.6. If T satisfies (BC) and the frame V satisfies ( ), then every pseudo-open map is

Pi-open. If, in addition, is the identity monad (identically extended to V-Rel) and V satisfies

u, v V : u v (u or v ), (§)

then also the converse is true.
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Note that when k then u v u v, so that (§) implies ( ) in this case.

Proof. The first statement follows directly from Proposition 4.3 and Lemma 4.5. Regarding the

second statement, note first that the condition (§) ensures that the closure is idempotent. Let

f : X, a Y, b be a Pi-open ,V -functor, and let x X and y Y with b y , f x . Then

y is dense in y , f x , hence, since f : f 1
y , f x y , f x reflects denseness, f 1

y is

dense in f
1
y , f x . Therefore there exists some x X with f x y and a x , x . ⇤

Remarks 4.7. (1) Recall that the monad morphism e : (where is the identity monad on

Set, identically extended to V-Rel) induces a functor

,V -Cat V-Cat : ,V -Cat, X, a X, a eX .

Hence, a ,V -functor f : X, a Y, b becomes a V-functor ( ,V -functor) f : X, a eX

Y, b eX , which in turn induces V-modules ( ,V -modules)

X, a eX

f
,,

Y, b eX

f

ll

and the conditions (i), (ii) of Remark 2.1 may now be equivalently rewritten as

(i ) f a b Tf ,

(ii ) a Tf f b.

Since a : TX, T̂1X X, a eX is a V-module, and so are Tf T̂ f and Tf T̂ f

where Tf : TX, T̂1X TY, T̂1Y , these inequalities live in the category V-Mod of V-categories

and V-modules. (Note that the Kleisli composition for V-modules is simply the composition of

V-relations.) We consider the classes (see Proposition 2.2)

Pi f : X, a Y, b f a b Tf f : X, a Y, b b eY f a b Tf ,

Pii f : X, a Y, b a Tf f b f : X, a Y, b a T̂ f f b .

Since f a f a and a Tf a T̂ f , one has Pi Pi , Pii Pii ; and Pi (Pii ) contains

all isomorphisms, is closed under composition, and satisfies f s Pi , s S f Pi , and

analogously for Pii . Hence, the class of morphisms that are stably in Pi (respectively Pii ) is an

S-topology on ,V -Cat.

(2) The structure a of a lax ,V -algebra X may also be interpreted as a ,V -module a :

X, 1#X X, a (for 1#X , see Section 2). With f#, f# denoting the ,V -modules induced by

f : X, 1#X Y, 1#Y , while f , f continue to be as in Proposition 2.2, one can now rewrite (i),

(ii) equivalently as:

(i ) f a b f#,

(ii ) a f
#

f b.

But since b f# b Tf f (by Proposition 2.2), (i ) (vii) of Corollary 2.5; and since f b

f b f b and a f
#

a Tf T̂ 1#Y mY a Tf T̂ 1Y a T̂ f , (ii ) (ii ).

Remarks 4.8. (1) Piii : f : X, a Y, b a f b Tf is an S-topology on ,V -Cat. In

fact, this is the class of U -initial morphisms with respect to the forgetful functor U : ,V -Cat
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Set which is topological. Since the structure of the terminal object 1 in ,V -Cat has constant value

one sees immediately that the Piii-compact objects are precisely the indiscrete ,V -algebras,

i.e. those X, a with a x, x constantly. Furthermore, every morphism (and object) is Piii-

separated, and Piii-dense morphisms are already surjective. Consequently, every morphism is also

Piii-open, and Piii-LocCompSep Piii-CompSep.

(2) Piv : f : X, a Y, b f a Tf b satisfies all requirements for an S-topology

except pullback stability. However, if V is a frame and T satisfies (BC), the pullback of a morphism

in Piv along a morphism in Piii is again in Piv. Still, failure of pullback stability leads us to not

pursue this class further in the general context.

(3) In terms of their general properties, the situation is even worse for the classes

Pv f : X, a Y, b f T̂ a f mX

Pvi f : X, a Y, b a T̂ f f mY

which may even fail to contain all isomorphisms. However, it is interesting to note that the equivalent

statements

1X Pv , 1X Pvi , a T̂ a a mX ,

describe precisely those ,V -algebras X X, a which satisfy the lax “associative law” strictly,

and they form an important full subcategory of ,V -Cat.

5. Applications to order, metric, topology, and approach structure

5.1. Ordered sets as , 2 -categories. Probably the simplest structure appearing as a lax ,V -

algebra is an ordered set, which in this paper is a set X equipped with a relation : X X subject

to

x x, x y & y z x z ,

for all x, y, z X. Note that we do not insist on anti-symmetry here, so that our orders ar in fact

only preorders. Quite directly one has that ordered sets are precisely the , 2 -categories, where

2 denotes the two-element ordered set false true which is a quantale with & (and neutral

element k true), and monotone maps are precisely the , 2 -functors. That is, Ord , 2 -Cat.

For a monotone map f : X Y one has

f Pi x X, y Y : f x y x X : x x & f x y

x X :
Y
f x f

X
x

A X :
Y
f A f

X
A

y A : f 1
Y
y

X
f

1
y

B Y : f 1
Y
B

X
f

1
B ,

with
X
A x X x A : x x the up-closure of A in X,

X
A

XopA. Consequently, f is

Pi,S -dense precisely when
X
f X Y , hence Pi,S -open precisely when f

op : X, Y,

is in Pi, that is, f 1
Y
B

X
f

1
B for all B Y . The Pi-separated maps f are characterised

by

f x1 f x2 & z X : z x1 & z x2 x1 x2
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for all x1, x2 X. Consequently, only discrete objects are Pi-separated while every object is Pi-

compact.

Since

f Pii f
op

Pi f Pi,S -open

the corresponding statements for Pii are obtained from Pi by dualisation. In particular,

X Pi,S -discrete X Pii-separated X X
op discrete.

For Piii we can refer to Remarks 4.8 (1), and we mention here also Piv since it is pullback stable:

f Piv means that f f : X X Y Y maps the orders surjectively: f f X Y . Every

monotone map is Piv,S -open, and all Piv-separated maps are injective. Every non-empty object

is Piv-compact, while Piv-separated objects have only at most one point.

5.2. Ordered sets as , 2 -categories. Another presentation of Ord as a catgory of lax ,V -

algebras uses the powerset monad P, e,m on Set, extended to Rel by putting

A P̂r B : x A y B : x r y,

for r : X Y in Rel, A X and B Y . Then, as shown in [Seal, 2005], the category , 2 -Cat

is isomorphic to Ord: X, is to be considered as a lax , 2 -algebra X, via

A y x A : x y

for A X, y X. (Note that X eX P̂ X , with eX : X PX, x x .) Now, with this

presentation of Ord and

X
A x A A x ,

a monotone map f : X Y lies in Pi precisely when
Y
f A f

X
A for all A X. Such

maps are necessarily surjective (consider A ?) and preserve the up-closure
X

(i.e., lie in the

class Pi of Subsection 5.1; consider A x ), but not vice versa. Every monotone map is Pi-open

but only injective ones are Pi-separated. X is Pi-compact precisely when X has a top-element, but

Pi-separatedness requires X 1.

While the current description of Ord changes the class Pi (compared to Subsection 5.1), the class

Pii stays as in 5.1, moreover, one also has Pii Pii .

We wish to characterise the morphisms in Pi of Remarks 4.7 (1) and claim for f : X Y (using

the Axiom of Choice)

f Pi f is left adjoint

g : Y X : x X, y Y : f x y x g y .

Indeed, the defining condition for f Pi reads in elementwise notation as

A X, y Y : f A y x̃ X : A x̃ & f x̃ y

which, given y Y , we may exploit for A : x X f x y to obtain g y x̃ with A x̃ and

f x̃ y, and that means precisely that g is right adjoint to f .
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5.3. Closure spaces as , 2 -categories. A di↵erent way to extend the powerset monad to Rel

uses

A P̂r B y B x A : x r y,

for all r : X Y , A X and B Y . With respect to this extension, the two axioms

x ax, A P̂ a A & Aax A a x A PX,A X, x X

of a , 2 -category X, a can be equivalently rewritten as the defining conditions of an abstract

consequence relation : a on the set X (of formulas):

(1) if x A, then A x,

(2) if A x and A B, then B x, and

(3) if A y for all y B and B x, then A x;

or we can think of a as a closure operator (x A : Aax) since in this notation the axioms

above read as

(1) A A,

(2) A B implies A B, and

(3) A A.

With this interpretation, the maps in Pi are precisely the closure-preserving maps f : X Y (that

is, f A f A for all A X), while f Pii means equivalently that f
1 commutes with the

closure (that is, f 1 B f
1
B for all B Y ) and that f is surjective, unless X ?. However,

the maps in f Pii are precisely the maps f for which f
1 commutes with the closure. A typical

example of a morphism in Pii is the inclusion ci : Xi X of Xi into the coproduct X i I Xi,

where the closure on X is defined by (for A X and x X)

x A : x A Xi where x Xi.

5.4. Topological spaces as lax algebras. The principal result of [Barr, 1970] states that Top is

isomorphic to , 2 -Cat, where the ultrafilter monad �, e,m gets extended to Rel via

x �̂r y : A x, B y x A, y B : x r y,

for all relations r : X Y and ultrafilters x �X, y �Y . We recall that the ultrafilter functor

� : Set Set sends every set X to the set �X of its ultrafilters, and �f x B Y f
1
B x

for f : X Y and x �X, equivalently, �f x is the filter generated by f A A x . Furthermore,

eX : X �X sends x to the principal filter A X x A generated by x, and mX : ��X �X

sends X ��X to mX X A X A
# X where A

# x �X A x .

The isomorphism between Top and , 2 -Cat is realised by thinking of a topological space X in

terms of ultrafilter convergence: a relation x x between ultrafilters and points of a set X is the

convergence relation of a unique topology on X if and only if

eX x x and X x & x x mX X x,

for all x X, x �X and X ��X; and a map f : X Y between topological spaces is continuous

precisely when f preserves convergence, i.e. x x implies �f x f x . We also remark that the

extension �̂ : Rel Rel is flat (i.e. �f �̂f for every map f : X Y ) and preserves composition,
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that is, �̂ is a functor. Moreover, m : �̂�̂ �̂ is a natural transformation rather then just op-lax,

so that ˆ fails to be a monad on Rel only because e : 1 �̂ is not a natural transformation.

A continuous map f : X Y belongs to Pi precisely when, for every ultrafilter x �X and every

y Y with �f x y, there is some x X with x x and f x y. Then X 1 lies in Pi if and

only if every ultrafilter of X converges if and only if X is compact, and �X : X X X is in Pi if

and only if every ultrafilter of X has at most one limit point, that is, if X is Hausdor↵.

It is known that a continuous map f lies in Pi if and only if f is proper, that is, closed with

compact fibres, or, equivalently, stably closed (see [Bourbaki, 1942], for instance). To explain this,

we find it convenient to introduce the functor

M : Top Ord

which sends a topological space X to the ordered set MX : �X where x x whenever every

closed set A x belongs to x , equivalently, every open set A x belongs to x. We note that this

order relation on �X contains all information about the topology of X since x eX x precisely

when x x. With respect to this order, Mf : �f becomes a monotone map Mf : MX MY . It

is worthwhile to note that the order �X �X on �X is given by �̂ mX for every topological

space X with convergence . Using this fact, together with the functoriality of �̂ and the naturality

of m, one verifies that Mf Pi (in the sense of Subsection 5.1) for every continuous map f Pi.

In fact, one has:

Lemma 5.1. Let f : X Y in Top. Then Mf Pi if and only if f is closed.

Proof. Assume first Mf Pi. Let A X be closed and y f A . Hence, there is some y �Y

with y y (which is equivalent to y eY y ) and f A y, and therefore there is some x �X

with �f x y and A x. By hypothesis, there exists some x �X with x x and �f x eY y .

Therefore f 1
y x and A x , hence y f x for some x X. Assume now that f is closed. Let

x �X and y �Y with �f x y. Hence, f A y for every closed set A x, and therefore there

exists some x �X wich contains all closed sets A x and such that �f x y. ⇤

Proposition 5.2. The following assertions are equivalent, for f : X Y in Top:

(i) f Pi;

(ii) f is stably closed;

(iii) f is closed with compact fibres.

Proof. Certainly, every f Pi is closed and hence stably closed. Furthermore, for f : X Y

stably closed and y Y , the projection p2 : f 1
y Z Z is closed, for every space Z, since it

is the pullback of f along the constant map cy : Z Y, z y. Hence, by the Kuratowski-Mrówka

Theorem (see [Clementino et al., 2004a, Theorem 3.4] or [Escardó, 2004, Theorem 9.15]), f 1
y

is compact. Finally, assume that f is closed with compact fibres, and let x �X and y Y with

x y. Since y eY y , there exists some x �X with x x and f
1
y x , and compactness of

f
1
y implies that there is some x f

1
y with x x, hence x x. ⇤

A continuous map f : X Y lies in Pii if and only if, for all x X and y �Y with y f x ,

there exist some x �X with �f x y and x x. Then every topological space X is Pii-compact,

whereby the Pii-separated spaces are precisely the discrete spaces. Furthermore, one easily verifies:
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Lemma 5.3. Let f : X Y in Top. Then the following assertions are equivalent:

(i) f Pii;

(ii) Mf Pii (in the sense of Subsection 5.1);

(iii) f is open.

Topological spaces can also be represented via filter convergence, and it is shown in [Seal, 2005]

that Top , 2 -Cat with the extension of the filter functor F : Set Set to Rel given by

f F̂ r g : B g A f x A y B : x r y.

With regard to this presentation of Top, maps in Pi must be surjective since the “all-filter” converges

to every point. The class Pii stays the same as for the ultrafilter presentation and consists precisely

of the open maps; moreover, Pii Pii . A continuous map f : X Y lies in Pi precisely when,

for every filter f FX and y Y , there exists some x X with f x and x y (where

x y : eX x y). Similar to what happened in Subsection 5.1, the morphisms in Pi are

precisely the left adjoint morphisms in Top. To see this, take y Y and let f g Ff g y .

Then for x X one has f x & f x y if and only if

g x Ff g y

for all g FX, which means that the map g : Y X, y x, is continuous (since g f , see

Corollary 2.6) and indeed a right adjoint of f in Top.

5.5. Metric spaces as lax algebras. Ametric space (in the generalised sense of [Lawvere, 1973]) is

precisely a , 0, -category, that is, a set X together with a distance function a : X X 0,

such that

0 a x, x and a x, y a y, z d x, z ,

for all x, y, z X. Here we consider 0, as a quantale with order and operation , which has 0

as neutral element. Note that the order is the opposite of the natural one, hence 0 is the top-element

and the bottom element of 0, , and is given by inf. A , 0, -functor f : X, a Y, b

is a map satisfying a x, x b f x , f x for all x, x X, that is, f is non-expansive, and we

write Met for the category of metric spaces and non-expansive maps.

A non-expansive map f : X, a Y, b belongs to Pi precisely when

b f x , y inf a x, x x X, f x y

for all x X and y Y . As in Subsection 5.1, every metric space is Pi-compact, while the Pi-

separated metric spaces are precisely the discrete ones. Note that the hypothesis of Proposition 4.6

is satisfied here, hence the associated closure operator is idempotent and therefore f : X, a Y, b

is Pi,S -dense precisely when every y Y is at finite distance b f x , y from some f x with

x X, and f is Pi,S -open if and only if f is pseudo-open.

5.6. Approach spaces as lax algebras. An approach space (see [Lowen, 1997]) is a pair X, �

consisting of a set X and an approach distance � on X, that is, a function � : X PX 0,

satisfying

(1) � x, x 0,
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(2) � x, ,

(3) � x,A B min � x,A , � x,B ,

(4) � x,A � x,A
u

u, where A
u

x X � x,A u ,

for all A,B X, x X and u 0, . A map f : X Y between approach spaces X, � and

Y, � is called non-expansive if � x,A � f x , f A for all A X and x X; equivalently,

f A
u

f A
u for all A X and u 0, . The category of approach spaces and non-expansive

maps is denoted by App.

In [Clementino and Hofmann, 2003] it is shown that App , 0, -Cat. Here a , 0, -

category is a set X together with a function a : �X X 0, satisfying

0 a eX x , x and �̂a X, x a x, x a mX X , x ,

where X ��X, x �X, x X and

�̂a X, x sup
A X,A x

inf
a A,x A

a a, x .

The extension �̂ : 0, -Rel 0, -Rel defined by the formula above is even a functor, and

m : �̂�̂ �̂ is a natural transformation. Under the equivalence App , 0, -Cat, an approach

distance � : X PX 0, on X corresponds to

a : �X X 0, , a x, x sup
A x

� x,A ,

and vice versa, every a : �X X 0, corresponds to the approach distance

� : X PX 0, , � x,A inf
A x

a x, x .

Furthermore, f : X Y is a non-expansive map f : X, � Y, � if and only if a x, x

b �f x , f x (where b : �Y Y 0, is induced by � ), for all x �X and x X.

By definition, a non-expansive map ( , 0, -functor) f : X, a Y, b lies in Pi if and

only if, for all x �X and y Y ,

b �f x , y inf a x, x x X, f x y .

An approach space X X, a is Pi-compact if X is 0-compact, that is, if infx X a x, x 0 for all

x �X. Furthermore, the diagonal X X X lies in Pi precisely when every ultrafilter x �X

has at most one “finite convergence point”, that is, a x, x and a x, x imply x x .

Consequently, Pi-CompSep is the category of compact Hausdor↵ spaces and continuous maps.

As for topological spaces, there is a tight connection between maps in Pi and closed maps which

is essentially shown in [Colebunders et al., 2005]. Here a non-expansive map f : X, � Y, � is

called closed if

� y, f A inf � x,A x X, f x y

for all A X and y Y , which can equivalently be written as

f A
u

v u

f A
v
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for all A X and u 0, . For an approach space X X, a , the 0, -relation d : �̂a mX :

�X �X is actually a metric on the set �X, which in terms of the approach distance � of X can

be written as

d x, x inf u 0, A x : A u x .

This construction defines a functor

M : App Met, f : X, a Y, b �f : �X, d �Y, d

(where d denotes the metric d �̂b mY on �Y ). As in Subsection 5.4, M sends maps in Pi to

maps in Pi.

Lemma 5.4. Let f : X Y be in App. Then f is closed if and only if Mf lies in Pi (in the sense

of Subsection 5.5).

Proof. We write �, � for the approach distance on X and Y respectively, a : �X X 0, and

b : �Y Y 0, denote the corresponding ultrafilter convergence structures, and d is the metric

�̂a mX on �X and d the metric �̂b mY on �Y . Assume first that f is closed. Let x �X, y �Y

and u 0, with u d �f x , y . Hence, for all A x, f A
u y and consequently f A

v y

for all v u. Therefore there exists some x �X with

�f x y and A x : A v x ,

hence d x, x v. Assume now Mf Pi, and let A X and u, v 0, with v u. Let

y f A
u . Then there is some y �Y with f A y and v b y, y d y, eY y . By hypothesis,

there is some x �X with �f x eY y and d x, x v, hence f
1
y A

v ?. ⇤

Proposition 5.5. The following assertions are equivalent, for f : X Y in App:

(i) f Pi;

(ii) f is stably closed;

(iii) f is closed with 0-compact fibres.

Proof. As in Proposition 5.2, where for the implication (ii) (iii) now one uses the Kuratowski-

Mrówka Theorem for approach spaces (see [Colebunders et al., 2005], and [Hofmann, 2007] for a

,V -version of this result). ⇤
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Homology Theory, ETH Zürich 1966/67, Lect. Notes Math. 80, 91-118 (1969).

Manes, E. G. (1974), Compact Hausdor↵ objects, General Topology and Appl. 4, 341–360.

Manes, E. G. (2010), Monads in topology, Topology Appl. 157 (5), 961–989.

Penon, J. (1972), Sur les objets séparés et les objets compacts, in Esquisses mathématiques, No. 17, pages

iv+111, Fac. Sci. Univ. Paris VII, Paris, thèse 3ème cycle, Specialité: Mathématiques, Université de Paris
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