
A TOPOLOGIST’S VIEW OF CHU SPACES

ERALDO GIULI AND WALTER THOLEN†

Abstract. For a symmetric monoidal-closed category X and any object K, the cat-
egory of K-Chu spaces is small-topological over X and small cotopological over X op.
Its full subcategory of M-extensive K-Chu spaces is topological over X when X is M-
complete, for any morphism class M. Often this subcategory may be presented as a
full coreflective subcategory of Diers’ category of a±ne K-spaces. Hence, in addition to
their roots in the theory of pairs of topological vector spaces (Barr) and their connec-
tions with linear logic (Seely), the Dialectica categories (Hyland, de Paiva), and with
the study of event structures for modeling concurrent processes (Pratt), Chu spaces
seem to have a less explored link with algebraic geometry. We use the Zariski closure
operator to describe the objects of the §-autonomous category of M-extensive and M-
coextensive K-Chu spaces in terms of Zariski separation and to identify its important
subcategory of complete objects.

1. Introduction

For a symmetric monoidal-closed category X and any object K of X , in an appendix to
Barr’s [B1], Chu [C] described a §-autonomous category, whose objects became known
as K-Chu spaces. The motivation and the historical roots of the construction from
the theory of pairs of topological vector spaces are described in [B4], where the Chu
construction is treated more generally in the non-symmetric case. The paper gives also
the key references to the use of Boolean Chu spaces in theoretical computer science and
in concrete duality theory, as developed primarily by Pratt [Pr]. For the connection of
the Chu construction with linear logic and the Hyland–de Paiva Dialectica construction,
we refer the reader to [B2], [Pa], [Pc].

This paper’s first objective is to make explicit the topological nature of the Chu con-
struction in the symmetric case, and to link it concretely to categories studied by Diers
[D1, D2]. Hence, under mild hypotheses we show that the category ChuK(X ) “lives”
over X and X op as a small-topological and small-cotopological category, respectively,
a fact that, inter alia, facilitates the well-known computation of limits and colimits in
ChuK(X ) (Section 2).

Relative to a well-behaved class M of morphisms in X we consider the subcategory
ExtK,M(X ) of M-extensive K-Chu spaces (see [B2], [B5]), which turns out to actually
be topological over X and which may be coreflectively embedded into Diers’ topological
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category AÆK(X ) of a±ne X -objects over K. This embedding makes M-extensive K-
Chu spaces look like internal a±ne X -objects over K (Sections 3 and 4). In Section 5 we
give the “internal version” of our previous studies [G1], [G3] of Zariski separation and
completion, showing in particular that a crucial tool for these notions in ExtK,M(X ),
the Zariski closure, may actually be computed in AÆK(X ). We give a brief description
of the monoidal structure of ChuK(X ) and its restriction to ExtK,M(X ) in Section 6 and
present the key part of this paper, namely a necessary and su±cient condition for the
self-dual category of M-extensive and M-coextensive K-Chu spaces to coincide with
the category of Zariski-separated M-extensive K-Chu spaces.

We note that M-coextensive Chu spaces were called M-separated in [B3]. Luckily,
our results show that, subject to some conditions, Barr’s notion of separation coincides
with that of Diers in the context of M-extensive K-Chu spaces. Hence, the main part of
this paper gives a new description of the category of Barr-separated M-extensive K-Chu
spaces which, under mild conditions was shown to be §-autonomous in [B2],[B5].

Although at the end of this paper we illustrate the general theory in terms of the
classical Pontrjagin duality, a more elaborate list of examples will only be presented in
the forthcoming paper [DGT]. We must also leave it to future work to make explicit the
connections of this work with Sambin’s formal topology (see [S]) which has many similar
features, as well as with the studies on lax algebras (see [CT] and [Pa]).

2. Chu spaces over symmetrically tensored categories

2.1. Definition. Let X be a category that comes equipped with a symmetric tensor prod-
uct ≠ and a fixed object K. Hence, ≠ : X £X °! X is a functor equipped with natural
isomorphisms æX,Y : X ≠ Y °! Y ≠X satisfying æ°1

X,Y = æY,X . The category

ChuK(X )

of K-Chu spaces over X has as its objects triples (X, r,A) with X -objects X, A and an
X -morphism r : X ≠ A °! K; its morphisms

(f, ') : (X, r,A) °! (Y, s, B)

are given by X -morphisms f : X °! Y and ' : B °! A that make the diagram

(1) X ≠B
f≠B

//

X≠'
≤≤

Y ≠B

s

≤≤

X ≠ A
r

// K

commutative. Since ≠ is functorial, composition can be defined componentwise.
Symmetry of ≠ makes ChuK(X ) self-dual: associating with r : X ≠ A °! K the

morphism r± = (A≠X
ª°! X ≠ A °! K) defines an involution

(X, r,A) 7°! (A, r±, X), (f, ') 7°! (', f)

of ChuK(X ). We write (X, r,A)§ = (A, r±, X), (f, ')§ = (', f).
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2.2. Example. The most basic example is X = Set, ≠ = £ cartesian product, and K =
2 = { 0, 1 }, which gives the category Chu2(Set) of Boolean Chu spaces (as considered
in [Pr]). Here morphisms r : X £ A °! 2 may be considered as relations r : X °!7 A
from X to A, or as 0-1-valued matrices whose rows and columns are labeled by X and
A, respectively. Commutativity of (1) amounts to the condition

r(x,'(b)) = s (f(x), b)

for all x 2 X, b 2 B (so that the (x,'(b))-entry of the matrix r coincides with (f(x), b)-
entry of the matrix s), making f and ' look like “adjoint operators”. Using relational
composition, one may express the commutativity of (1) equivalently by the commuta-
tivity of

(2) X
f

//

r_

≤≤

Y

s_

≤≤

A
'±¬

// B

(Here we interpret maps as relations in the usual way.) The elements of X are often
called points (or objects) of the Chu space (X, r,A), while the elements of A are referred
to as attributes. We let this terminology prevail also in the general case (see Thm. 2.5).

2.3. Example. Let k be a commutative ring and X the category Modk of k-modules,
equipped with its tensor product, and let K be some k-module. Then ChuK(Modk) is
the (symmetric version of the) category considered by [B1] and many other authors,
under various levels of generalization (see, for example, [B4], [K]).

We recall the following definition for the reader’s convenience.

2.4. Definition. Let U : A °! X be a functor. A cone ([M], also natural source
[AHS]) Æ : ¢A °! D with base D : J °! A in A is U-cartesian (or U-initial) if for
every cone ∞ : ¢C °! D in A and every X morphism x : UC °! UA there is exactly
one A-morphism h : C °! A with Uh = u and Æ · ¢h = ∞. A U-cartesian lifting of
a cone ª : ¢X °! UD in X with base D in A is a U -cartesian cone Æ : ¢A °! D
with UA = X and UÆ = ª. The functor U is (small-)topological if U -cartesian liftings
exist for all cones ª : ¢X °! UD in X with (small) base D in A. The dual notions
are U-cocartesian (or U-final) lifting and (small-)cotopological functor. Note that the
cases J = 1 (when cones are just morphisms) and J = ; (when cones are just objects)
show that a small-topological functor is a fibration with full and faithful right-adjoint
functor. Also note that topological functors are necessarily faithful and cotopological
(see [AHS]), a statement that fails to be true for small-topological functors. That is why
one may define topological functors using just discrete bases of arbitrary size. We tend
to use the initial/final terminology predominantly when U is faithful.

2.5. Theorem. Let X have small colimits preserved by ≠ (in each variable). Then the
domain and codomain functors

pt : ChuK(X ) °! X
(X, r,A) 7°! X

and
at : ChuK(X ) °! X op

(X, r,A) 7°! A

are small-topological and small-cotopological, respectively.
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Proof. For a small diagram D : J °! ChuK(X ) consider a cone ¢X °! pt D in X ,
given by X -morphisms fi : X °! Yi endowed with Chu-structures Di = (Yi, si, Bi) and
Chu-morphisms D± : (ti,j, øi,j) : Di °! Dj for all ± : i °! j in J . We must find a
Chu-space (X, r,A) and a cone Æ : ¢(X, r,A) °! D which is a pt-cartesian lifting of
the given data. For that one forms

A = colim pt D with injections 'i : Bi °! A (i 2 obJ )

and, using preservation of this colimit by X≠(°), defines r by the commutative diagrams

(3) X ≠Bi
fi≠Bi

//

X≠'i

≤≤

Yi ≠Bi

si

≤≤

X ≠ A
r

// K

This is legitimate since the morphisms si(fi ≠ Bi) (i 2 obJ ) form a cocone over X ≠
(at D): for ± : i °! j in J one has

si(fi ≠Bi)(X ≠ øi,j) = si(Yi ≠ øi,j)(fi ≠Bj) (functoriality of ≠)

= sj(ti,j ≠Bj)(fi ≠Bj) (D± is a Chu-morphism)

= sj(fj ≠Bj) (¢X °! pt D is a cone).

It is clear that Æi = (fi,'i) defines a cone. It remains to be shown that it is pt-
cartesian. In fact, for any cone ∞ : ¢(Z, t, C) °! D and any morphism x : Z °! X
with UÆ ·¢x = ∞, writing ∞i = (gi,√i) we may consider the cubes

(4) Z ≠Bi

Z≠'i

≤≤

h≠Bi
//

1

yyssssssssss
X ≠Bi

X≠'i

≤≤

fi≠Bi

yyrrrrrrrrrr

Z ≠Bi

Z≠√i

≤≤

gi≠Bi

// Yi ≠Bi

si

≤≤

Z ≠ A
h≠A

//

Z≠¬
yyrrrrrrrrrr

X ≠ A

r
xxrrrrrrrrrrr

Z ≠ C
t

// K

Here ¬ : A °! C is the X -morphism with ¬'i = √i for all i 2 obJ , hence, it makes the
left faces of (4) commute. The right faces commute by (3), and the top- and back-faces
do so by functoriality of ≠. The front faces commute since each ∞i is a Chu-morphism.
Since the family (Z ≠ 'i)i2obJ is (as a colimit cocone) epic, also the bottom face of (4)
must commute, so that (h,¬) : (Z, t, C) °! (X, r,A) is indeed a Chu-morphism. It is
obviously the only morphism “over h” with Æ ·¢(h,¬) = ∞.

The assertion about at follows from the self-duality of ChuK(X ), since

(5) ChuK(X )
(°)§

//

pt
$$

II
II

II
II

II
ChuK(X )op

atop
yyssssssssss

X
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commutes. §
For any functor U : A °! X , the U -cartesian lifting of a limit cone in X is a limit

cone in A. Consequently, the proof of 2.5 yields immediately:

2.6. Corollary ([B2]). If X has all limits and colimits of a given type J , and if the
colimits are preserved by ≠ (in each variable), then ChuK(X ) has also all limits and
colimits of type J . More precisely, the limit cone

(X, r,A)
(fi,'i)°°°! Di (i 2 obJ )

of a diagram D : J °! ChuK(X ) with Di = (Yi, si, Bi) is formed by X = lim Yi with
projections fi in X , A = colim Bi with injections 'i in X , and with r determined by
diagram (3). Its colimit cocone

Di
(ki,∏i)°°°! (Z, t, C) (i 2 obJ )

is obtained as Z = colim Yi with injections ki in X , C = lim Bi with projections ∏i in
X , and t determined by

t±(C ≠ ki) = s±i (∏i ≠ Yi)

for all i 2 obJ . §

2.7. Corollary. The functor pt of 2.5 is a fibration while at is a cofibration. A mor-
phism (f,') : (X, r,A) °! (Y, s, B) in ChuK(X ) is pt-cartesian if, and only if, ' is an
isomorphism in X , and it is at-cocartesian if, and only if, f is an isomorphism in X . §

Finally, for J = ; one obtains from the proof of 2.5:

2.8. Corollary. Let X have an initial object 0, with X ≠ 0 ª= 0 for all X 2 obX .
Then pt of 2.5 has a full and faithful right adjoint, while at has a full and faithful
left adjoint. Via X 7°! (X, 0 ! K, 0) X is reflectively embedded into ChuK(X ), while
A 7°! (0, 0 ! K, A) embeds X op coreflectively into ChuK(X ). §

2.9. Definition. One calls the object K of X ≠-exponentiating if, for all X in X , the
functor X≠ (°) : X ! X admits a couniversal arrow for K; that is, if there is an object
KX and a morphism

eX : X ≠KX ! K

such that every morphism r : X ≠ A ! K factors as

eX(X ≠ ř) = r

with a unique morphism ř : A ! KX . (Of course, when X is closed with respect to
its tensor product, so that all objects are ≠-exponentiating, in particular K has this
property.) Since ≠ is symmetric, we therefore have natural bijective correspondences

X ≠ A
r°! K

A
ř°! KX

X
r̂°! KA.
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The defining diagram (1) for a Chu morphism (f, ') : (X, r,A) ! (Y, s, B) takes the
equivalent forms

(6) A

ř
≤≤

B
'

oo

š
≤≤

X
f

//

r̂
≤≤

Y

ŝ
≤≤

KX KYKf
oo KA K'

// KB

2.10. Proposition. The following conditions are equivalent:

(i) K is ≠-exponentiating;
(ii) pt has a full and faithful left adjoint;
(iii) at has a full and faithful right adjoint.

Proof. (i) =) (ii): Given f : X ! Y in X and (Y, s, B) in ChuK(X ), there is a unique
morphism ' : B ! KX with

eX(X ≠ ') = s(f ≠B)

Hence, 1X : X ! pt(X, eX , KX) is pt-universal for X in X .
(ii) =) (i) Without loss of generality, assume the pt-universal arrow for X in X to be
1X , and exploit its universal property for 1X : X ! pt(X, r,A).
(i) () (iii) follows dually, with (5). §

2.11. Corollary. Let K be ≠-exponentiating. Then X is coreflectively embedded into
ChuK(X ) via X 7! (X, eX , KX), while A 7! (KA, eeA, A) (with eeA : KA ≠ A

ª°!
A≠KA eA°! K) embeds X op reflectively into ChuK(X ).

3. Extensive Chu spaces

3.1. Definition. In addition to X , ≠, K as in 2.1, we now consider a class M of
morphisms in X containing all isomorphisms and being closed under composition with
them. We always assume K to be ≠-exponentiating, and we keep the notation of 2.9. A
K-Chu space (X, r,A) is called M-extensive if (ř : A ! KX) 2M , and M-coextensive
if (r̂ : X ! KA) 2M. For M = MonoX , the prefix M is omitted. Barr ([B2], [B5])
calls M-coextensive K-Chu spaces M-separated, a terminology that will receive a new
justification in Section 6 below.

3.2. Examples.

(1) A Boolean Chu space (X, r,A), whose structure is given by a 0-1-valued X £A-
matrix, is (co)extensive if columns (rows) with distinct labels have distinct values.

(2) A k-Chu space (X, r,A) over Modk is extensive if

(8x 2 X : r(x≠ a) = 0) =) a = 0

for all a 2 A, and coextensive if

(8a 2 A : r(x≠ a) = 0) =) x = 0

for all x 2 X. For example, for K = R, every Euclidean space (= R-vector space
that comes with a scalar product) can be naturally considered as an extensive
and coextensive R-Chu space.
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We denote by X 2 = (X # X ) the category of morphisms of X and consider M as a full
subcategory of X 2. Recall that M is part of an orthogonal (E ,M)-factorization system
(for morphisms of X ) if, and only if, M is reflective in X 2 and closed under composition
in X . In that case, Barr [B5] showed coreflectivity of ExtK,M(X ) in ChuK(X ); his proof
shows that, slightly more generally one has:

3.3. Proposition. If M is reflective in X 2 (in particular, when M is part of an or-
thogonal (E ,M)-factorization system for morphisms of X ), then the M-extensive K-Chu
spaces form a full coreflective subcategory ExtK,M(X ) of ChuK(X ).

Proof. In order to construct the M-extensive coreflection of a K-Chu space (X, r,A)
over X , we consider the reflection of ř : A °! KX (as an object of X 2) into M, i.e.,
a locally orthogonal M-factorization of ř = m · e, with m : C °! KX in M (see [T]),
which defines an M-extensive K-Chu space (X, t, C) with ť = m and a Chu morphism

(1X , e) : (X, t, C) °! (X, r,A).

Any other morphism (g,√) : (Y, s, B) °! (X, r,A) with (Y, s, B) 2 ExtK,M(X ) leads to
the solid-line commutative diagram

(7) A
√

//

e
≤≤

B

š2M

≤≤

C

¬

<<x
x

x
x

x

m
≤≤

KX Kg
// KY

with the unique fill-in arrow ¬. Hence, (g, √) factors uniquely as (g, √) = (1X , e)(g, ¬),
with (g, ¬) : (Y, s, B) °! (X, t, C). §
3.4. Corollary. If M is reflective in X 2, then the full subcategory CxtK,M(X ) of M-
coextensive K-Chu spaces is reflective in ChuK(X ).

Proof. By 3.3, CxtK,M(X )op is coreflective in ChuK(X )op, since the diagram

(8) ExtK,M(X )
(°)§

ª
//

_ƒ

≤≤

CxtK,M(X )op

_ƒ

≤≤

ChuK(X )
(°)§

ª
// ChuK(X )op

commutes. §
3.5. Definition. Recall that X is called M-complete (see [T]) if pullbacks of M-
morphisms (along arbitrary morphisms) exist and belong to M, and if every family
(of any size) of M-morphisms with common codomain has an intersection (= general-
ized pullback) belonging to M. M-completeness of X means equivalently that sinks (=
arbitrary families of morphisms with common codomain) have locally orthogonal M-
factorizations. Hence, M-completeness implies reflectivity ofM in X 2, i.e., the existence
of locally orthogonal M-factorizations for morphisms. Notice that M-completeness im-
plies M µ MonoX (see [BT]). Furthermore, M is part of an orthogonal factorization
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system (E,M) for sinks if, and only if, X is M-complete and M is closed under com-
position in X .

3.6. Theorem. If X is M-complete, then the restrictions ept : ExtK,M(X ) °! X and
eat : CxtK,M(X ) ! X op of pt and at, respectively, are topological functors, hence also
cotopological. In particular, they are faithful, and both functors have full and faithful
left- and right adjoints.

Proof. We must find a ept-initial lifting for every family fi : X °! Yi of X -morphisms
with (M-extensive) K-Chu structures (Yi, si, Bi), i 2 I. For that one considers a locally
orthogonal M-factorization of the family of morphisms Kfi · ši:

(9) A

M3m
≤≤

Bi
ei

oo

ši

≤≤

KX KYi
Kfi

oo

Hence, we obtain an M-extensive K-Chu space (X, r,A) with ř = m and morphisms
(fi, ei) : (X, r,A) °! (Yi, si, Bi). Given any other family (gi,√i) : (Z, t, C) °!
(Yi, si, Bi) (i 2 I) with an M-extensive K-Chu space (Z, t, C) and an X -morphism
x : Z °! X with fix = gi for all i 2 I, we may consider the commutative solid-arrow
diagram

(10) Bi

ei

≤≤

√i
// C

ť

≤≤

A

¬

<<y
y

y
y

y

m=ř
≤≤

KX Kx
// KZ

and the unique fill-in arrow ¬, yielding a unique Chu morphism (x,¬) : (Z, t, C) °!
(X, r,A) with the desired properties.

The assertion for at follows dually with diagram (8). §

3.7. Remarks.

(1) As we saw in 2.10, pt : ChuK(X ) °! X has a full and faithful left adjoint
E : X 7°! (X, eX , KX), with ěX = 1KX . Since, without any hypothesis on M,
E takes its values in ExtK,M(X ), one has always that ept : ExtK,M(X ) °! X has
a full and faithful left adjoint. Likewise, eat : CxtK,M(X ) °! X op has always a
full and faithful right adjoint.

(2) There are two distinct ways of constructing the limit of a diagram D : J °!
ExtK,M(X ). One way is to consider it as a diagram in ChuK(X ) and to form its
pt-cartesian lifting (see 2.6) and then its coreflection into ExtK,M(X ) (see 3.3),
the needed su±cient conditions granted. The other is to form the ept-initial lifting
according to Theorem 3.6. To form the colimit of D, one just considers D as a
diagram in ChuK(X ) and forms its colimit, which must already lie in ExtK,M(X ).
Dual statements apply to CxtK,M(X ).
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(3) Here is an important general case when M is not part of an orthogonal (E ,M)-
factorization system, but 3.3, 3.4 and 3.6 are still applicable: take M to be the
class of regular monomorphisms, in a category X that has cokernel pairs and
their equalizers. Then M is reflective in X 2, and X is even M-complete when
X admits all intersections of (regular) monomorphisms. Still, M may fail to be
closed under composition, as the categories of commutative rings (or k-algebras)
and of all (small) categories show.

From the proof of 3.6 we also obtain:

3.8. Corollary. If M is part of an orthogonal (E ,M)-factorization system, then the
ept-initial morphisms are those morphisms (f, ') with ' in E, and the eat-cocartesian
morphisms are those morphisms (f, ') with f 2 E. If M is part of an orthogonal (E,M)-
factorization system for sinks, then ept-initial cones and eat-final cocones are characterized
analogously.

We note that 3.8 entails 2.7 since, for M = MorX , we have E = IsoX , and

ChuK(X ) = ExtK,M(X ) = CxtK,M(X ).

It is not surprising that ExtK,M(X ) (and, analogously, CxtK,M(X )) inherits a factoriza-
tion system from X . With

M = { (f,') | f 2M, ' 2 E }
denoting the class of ept-initial morphisms in ExtK,M(X ) with underlying M-morphisms,
one obtains:

3.9. Corollary. If M is part of an orthogonal factorization system of X , then M is
part of an orthogonal factorization system of ExtK,M(X ).

Explicitly, the factorization

(11) (Z, t, C)
(m,¥)

&&

LLLLLLLLLL

(X, r,A)

(e,±)
88rrrrrrrrrr

(f,')
// (Y, s, B)

is obtained by (E ,M)-factoring f = me, by defining t such that ť¥ is an (E ,M)-
factorization of Km · š, and by letting ± be the induced morphism rendering the following
diagram commutative:

(12) A

ř
≤≤

C
±

oo

ť
≤≤

B¥
oo

š
≤≤

EDGF '

≤≤

KX KZ
Ke

oo KY
Km

oo BC@A
Kf

OO

Hence, the companion eE of M contains precisely those morphisms (f,') with f in E ,
the companion of M.
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3.10. Remarks.

(1) The presentation of eE may be somewhat surprising, since there is no restriction
on ' when (f, ') 2 eE . A more symmetric picture arises when we consider
factorizations in ChuK(X ), rather than in ExtK,M(X ): without proof we state
that when (E ,M) is an orthogonal factorization system of X , then (E ,M) is an
orthogonal factorization system of ChuK(X ) with

E = {(f, ') | f 2 E ,' 2M},

provided that for all e : X ! Y and ¥ : A ! B in E the diagrams

X ≠ A
e≠A

//

X≠¥
≤≤

Y ≠ A

Y≠¥
≤≤

X ≠B
e≠B

// Y ≠B

are pushout diagrams.
(2) Note that, without any supplementary conditions, 2.7 gives two further (but less

interesting) orthogonal factorization systems for ChuK(X ): both, the pt-cartesian
liftings of M-morphisms and the at-cocartesian liftings of E-morphisms are part
of orthogonal factorization systems in ChuK(X ) when (E ,M) is an orthogonal
factorization system of X .

4. Extensive Chu spaces as affine X -objects

4.1. Definition. Recall that, for any category X and an X -object K, the category
AÆK(X ) of a±ne X -objects over K has as objects pairs (X,A) with X 2 X and A µ
X (X, K). A morphism f : (X,A) °! (Y,B) is an X -morphism with bf 2 A for all
b 2 B. Clearly, AÆK(X ) is a topological category over X : given any family fi : X °! Yi

with AÆK(X )-structures Bi on Yi (i 2 I), the U -initial structure on X (with respect to
U : AÆK(X ) °! X ) is A = { bfi | i 2 I, b 2 Bi }.

Let us now assume that, with M closed under composition, X is an M-complete,
symmetric monoidal category, with tensor product ≠ and ≠-neutral element k, and let
K be a ≠-exponentiating object. For an object A of X , we consider the morphisms
k °! A as generalized elements of A and define a functor

ExtK,M(X )
J°! AÆK(X ),

as follows: J(X, r,A) = (X, {Æ# | Æ : k °! A }), with Æ# : X °! K corresponding to
Æ via

k
Æ°! A

ř°! KX

X ≠ k °! K

X
Æ#

°! K

hence, Æ# = (X
ª°! X ≠ k

X≠Æ°! X ≠ A
r°! K). For (f,') : (X, r,A) °! (Y, s, B),

J(f, ') = f . We must show that f is indeed a morphism in AÆK(X ): for every Ø : k °!
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B, we have correspondences

k
Ø°! B

'°! A
ř°! KX

k
Ø°! B

š°! KY Kf

°! KX

X
f°! Y

Ø#

°! K,

which shows Ø#f = (Ø')# for all Ø : k °! B. Note that J is faithful since M µ
MonoX .

4.2. Proposition. J has a right adjoint.

Proof. Given (X,A) 2 AÆK(X ), for every a : X °! K in A let paq correspond to a via

X
a°! K

X ≠ k °! K

k
paq°! KX .

Obtain A and r from an (E,M)-factorization (see 3.5) of the family (paq)a2A:

(13) A
ř

!!

BB
BB

BB
BB

k

¥a

@@°°°°°°°° paq
// KX

Since, for all a 2 A, (¥a)# = a, we have a morphism

1X : J(X, r,A) °! (X,A)

in AÆK(X ), which acts as the co-unit of the adjunction, as we will show next. Indeed,
given g : J(Y, s, B) °! (X,A) in AÆK(X ), for every a : X °! K in A we have
Øa : k °! B with Ø#

a = ag. The (E,M)-diagonalization property applied to the
commutative diagrams

(14) k
Øa

//

¥a

≤≤

B

š
≤≤

A
ř

// KX Kg
// KY

gives a unique morphism √ : A °! B with š√ = Kgř (and √¥a = Øa for all a 2 A),
making (g,√) : (Y, s, B) °! (X, r,A) the unique ExtK,M(X )-morphism with J(g, √) =
g. §

Recall that an object G in X is an E-generator of X if for all X 2 X , the family
of all morphisms G °! X in X lies in E. G is E-projective if, for all (ei : Xi °!
Y )i2I in E, every morphism G °! Y is of the form eix, for some i 2 I and x :
G °! Xi. Note that every E-projective object is E-projective, with E = E \ MorX
containing the singleton families in E, but not conversely. (For example, in Set with
E = {jointly epic families}, a singleton set is E-projective, while a two-element set is
E-projective but not E-projective.)
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4.3. Theorem. If k is an E-generator of X , then ExtK,M(X ) is equivalent to a full
coreflective subcategory of AÆK(X ) given by its image under J . If k is E-projective, then
J preserves initial structures, i.e., J maps ept-initial families to U-initial families.

Proof. For the first part of the Theorem, it su±ces to show that J is full when k is an E-
generator. Hence, consider f : J(X, r,A) °! J(Y, s, B) in AÆK(X ). For all Ø : k °! B
one has ÆØ : k °! A with Ø#f = Æ#

Ø , that is, the solid arrow diagram

(15) k

Ø
≤≤

ÆØ
// A

ř
≤≤

B

'

66mmmmmmmmm š
// KY Kf

// KX

commutes for all Ø. By hypothesis, X (k, B) 2 E, so that there is a unique diagonal fill-in
morphism ', rendering the desired ExtK,M(X )-morphism (f, ') : (X, r,A) °! (Y, s, B).

Next, consider a ept-initial family (fi,'i) : (X, r,A) °! (Yi, si, Bi) (i 2 I) in ExtK,M(X );
hence, ('i)i2I 2 E. By hypothesis, every Æ : k °! A is of the form 'iØ, for some i 2 I
and Ø : k °! Bi. Hence,

{Æ# | Æ : k °! A } = { Ø#fi | i 2 I, Ø : k °! Bi },
which shows that (J(fi,'i))i2I is U -initial. §

4.4. Remarks.

(1) The K-a±ne structure A that J puts on X (for a given object (X, r,A) 2
ExtK,M(X )) may be equivalently described as the hom-set

A = ChuK(X )
°
(X, r,A), (K, %K , k)

¢
,

with the natural isomorphism %K : K≠k °! K given by the monoidal structure
of X .

(2) For X = Set (with ≠ = £, K = 2, as in 2.2) and M = MonoX , the cate-
gories ExtK,M(X ) and AÆK(X ) are obviously equivalent. Its objects are most
conveniently described as “generalized spaces” (X,A) with A µ PX, with “con-
tinuous” morphisms f : (X,A) ! (Y,B) : f°1(B) 2 A for all B 2 B. The
papers [D1], [D2], [G1], [G2] consider a class ≠ of operations Kn! ! K (! 2 ≠)
of operations (of arbitrary arity) on K and study the full subcategory of AÆK(X )
formed by those (X,A) whereA is a subalgebra of KX (which may be done in any
category X with powers of the object K). For example, in this way one retrieves
the category Top of topological spaces as a hereditary coreflective subcategory of
AÆ2(Set), considering the operations

max
i<n

ai and min
j<m

aj

for arbitrary cardinals n and finite m, with the order taken in 2 = {0 < 1}.
(3) In our more prototypical example X = Modk (see 2.3) with M = MonoX ,

ExtK,M(X ) is (equivalent to) the category whose objects (X,A) are given by a
k-module X and a submodule A of homk(X, K), while objects (X,A) in AÆK(X )
require A to be just a subset of homk(X, K). The right adjoint to the full
embedding J : ExtK,M(X ) ! AÆK(X ) sends (X,A) to (X,A) where A is the
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submodule generated by A µ homk(X,K). We note that ExtK,M(X ) is not only
coreflective but also hereditary in AÆK(X ). While J maps ept-initial morphisms
to U -initial morphisms, this is no longer true for families. Hence, the requirement
of (the second part of) 4.3 that k be E-projective is essential. Indeed, while k is
an E-projective E-generator, k trivially fails to be E-projective: the fact that k2

is spanned by the two principal axes does not prevent it from containing other
one-dimensional submodules.

5. Separated Chu spaces and Zariski closure

In this section we assume X to be a complete, symmetric monoidal category with a
proper orthogonal (E ,M)-factorization system for morphisms, such that X has intersec-
tions of any-size families of M-subobjects, and let K be ≠-exponentiating. Hence, X
is M-complete and has, in fact, an orthogonal (E,M)-factorization system for sinks,
with E = E \ MorX . We assume also that the K-Chu space (K, %K , k) (see 4.4) is
M-extensive; that is: we assume that %̌K : k °! KK lies in M. (In our prototypical
example 2.3/4.4(3), for a field k the latter hypothesis prevents us only from making the
bad choice K = 0. But for a ring k, such as k = Z, the hypothesis is somewhat re-
strictive; for example, obviously K may not be chosen to be finite. However, the choice
K = k is always possible.)

5.1. Definition. An M-extensive K-Chu space (X, r,A) is (Zariski-) separated if every
ept-initial morphism (f, ') : (X, r,A) °! (Y, s, B) in ExtK,M(X ) renders X as an M-
subobject of Y , that is: f 2M whenever ' 2 E .

5.2. Proposition. If k is E-projective, then K = (K, %K , k) is separated. Moreover,
every M-subobject of a power of K in ExtK,M(X ) is separated.

Proof. For every morphism (g, √) : K °! (Y, s, B) in ExtK,M(X ) with √ : B °! k in
E , we obtain Ø : k °! B with √Ø = 1k, since k is E-projective. Now the commutative
diagram below shows that g is split monic and, therefore, in M (since E µ EpiX ):

(16) K
g

//

%°1
K

≤≤

Y

%°1
Y

≤≤

K ≠ k
g≠k

//

K≠Ø
≤≤

Y ≠ k

Y≠Ø
≤≤

K ≠B
g≠B

//

K≠√
≤≤

Y ≠B

s

≤≤

K ≠ k %K

ª
// K

Let now (ai,Æi) : (X, r,A) °! K (i 2 I) be ept-initial in ExtK,M(X ), such that the
induced morphism m = (ai)i2I : X °!

Q
i2I K lies in M, and let (f,') : (X, r,A) °!

(Y, s, B) be pt-initial. E-projectivity of k gives, for every i 2 I, a morphism Øi : k °! B
with 'Øi = Æi. The morphisms bi = Ø#

i : Y °! K satisfy bif = ai for all i 2 I, so that
f factors through m, which makes f lie in M as well (since E µ EpiX ). §
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5.3. Theorem. If k is an E-projective E-generator of X , then the full subcategory
SepK,M(X ) of separated objects is eE-reflective in ExtK,M(X ) (with eE as in 3.9), M-

cogenerated by K (so that every separated object is an M-subobject of a power of K).
Moreover, K is M-injective in ExtK,M(X ), in particular in SepK,M(X ).

Proof. For every M-extensive K-Chu space (X, r,A), let

(gX , ∞X) : (X, r,A) °!
Y

Æ2X (k,A)

K

be the canonical morphism induced by all morphisms (Æ#,Æ) : (X, r,A) °! K. The eE-
part of an (eE ,M)-factorization of this morphism is easily seen to be the desired reflection
of (X, r,A): this is an immediate consequence of the (eE ,M)-diagonalization property,
of the naturality of the morphisms (gX , ∞X), and of the fact that, for (X, r,A) separated,
(gX , ∞X) lies in M. For the last claim one just observes that, since k is an E-generator,
the family of all morphisms (Æ#,Æ) : (X, r,A) °! K is ept-initial, so that the induced
morphism (gX , ∞X) is also ept-initial, and then in M, since (X, r,A) is separated.

To show M-injectivity for K, let (m, ¥) : (X, r,A) °! (Y, s, B) be in M, and consider
any morphism (Æ#,Æ) : (X, r,A) °! K. By the E-projectivity of k, Æ factors as Æ = ¥Ø,
with Ø : k °! B, which makes (Æ#,Æ) factor as (Æ#,Æ) = (Ø#, Ø)(m, ¥). §

For the remainder of this section, we let k be an E-projective E-generator of X .

5.4. Definition. Recall that, for an M-subobject M
m°! X of (X,A) 2 AÆK(X ), one

defines the Zariski closure of M in (X,A) by

z(X,A)(M) =
^
{ equ(a, b) | a, b 2 A, am = bm }.

One easily shows (see [G3]) that z is an idempotent and hereditary closure operator of
AÆK(X ) in the sense of [DG]. We may now restrict this closure operator to ExtK,M(X )
(along the functor J of 4.1) and define the Zariski closure of M in (X, r,A) 2 ExtK,M(X )
by

≥(X,r,A)(M) = zJ(X,r,A)(M) =
^
{ equ(Æ#, Ø#) | Æ, Ø 2 X (k, A), Æ#m = Ø#m }.

Since k is E-projective, J maps ept-initial morphisms to U -initial morphisms (see 4.3),
hence, J preserves the natural subobject structure. Therefore, ≥ is, like z, idempotent
and hereditary. In particular (see [DG], [DT]):

5.5. Proposition. (≥-dense morphisms, ≥-closed M-subobjects) form an orthogonal
factorization system of ExtK,M(X ).

Since SepK,M(X ) is M-cogenerated by K, ≥ is simply the regular closure operator
of SepK,M(X ) in ExtK,M(X ). Hence, the restriction of the factorization system 5.5 to
SepK,M(X ) gives:

5.6. Corollary. Every morphism in SepK,M(X ) factors (epi, regular mono) = (≥-dense,

≥-closed M-subobject).
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5.7. Definition ([D1], [G3] ). A separated K-Chu space (X, r,A) is complete (or abso-
lutely ≥-closed) if every morphism (f,') : (X, r,A) °! (Y, s, B) in M with codomain in
SepK,M(X ) is ≥-closed. We denote the full subcategory of complete objects in SepK,M(X )

by CplK,M(X ) and put D = M \ { ≥-dense } = M \ Epi (SepK,M(X )).

5.8. Theorem. A separated K-Chu space is complete if, and only if, it is D-injective.
CplK,M(X ) is D-reflective in SepK,M(X ) and D-cogenerated by K. Any morphism
(X, r,A) °! (Y, s, B) 2 CplK,M(X ) in D serves as a reflection of (X, r,A) into CplK,M(X ).

Proof. (Prop. 5 in [G3]) Let the separated K-Chu spce (X, r,A) be complete. As ob-
served in the proof of 5.3, the canonical morphism (gX , ∞X) lies in M, with its codomainQ
X (k,A) K being separated. Hence, (X, r,A) is ≥-closed in a power of K which, like K, is

D-injective. Consequently, when we consider any (Y, s, B) ,! (Z, t, C) in D, every mor-
phism (Y, s, B) ! (X, r,A) extends to a morphism (Z, t, C) !

Q
X (k,A) K, which must

actually factor through (X, r,A) by the (≥-dense, ≥-closed M)-diagonalization property.
Hence, (X, r,A) is D-injective. Conversely, assuming (X, r,A) to be D-injective, we can
factor a given (X, r,A) ,! (Y, s, B) in M according to 5.6. The resulting morphism
(X, r,A) ! (Z, t, C) in D has a retraction. Being epic in SepK(X ) it must actually be
an isomorphism, which shows that (X, r,A) is ≥-closed in (Y, s, B). §
5.9. Remarks.

(1) Assume not only that k is an E-projective E-generator, but also that every mor-
phism in ExtK,M(X ), with respect to which k is projective, lies in E ; hence,

' : A °! B in E () 8Ø : k °! B 9Æ : k °! A ('Æ = Ø),

for every morphism ' in X . Then J not only preserves initial morphisms (see
4.3), but also reflects them. As a consequence one obtains that an object in
ExtK,M(X ) is separated (complete, respectively) if, and only if, its J-image is
separated (complete, respectively) in AÆK(X ), as defined in [G3].

(2) As far as the notions of separatedness and completeness are concerned, one may
explore them in an arbitrary full, hereditary and coreflective subcategory of
AÆK(X ), in lieu of ExtK(X ), or in lieu of a subcategory defined by algebraic
operations on K (see 4.4(2)). Here we restrict ourselves to illustrating them in
terms of the basic examples 4.4(2),(3)).

5.10. Example. The separated objects of Chu2(Set) (with M = Mono, see 4.4(2)) may
be described as those 2-a±ne sets (X,A µ PX) with

8x, y 2 X(Ax = Ay =) x = y)

where Ax = {A 2 A | x 2 A}. For an M-subobject (X,A) ,! (Y,B) one has A =
{B \X | B 2 B}, and a point y 2 Y lies in ≥Y (X) = zY (X) precisely when

8B, C 2 B(B \X = C \X =) B \ {y} = C \ {y}).
Let us prove in detail now (see also [G2]) that a separated Boolean Chu space (X,A) is
complete if, and only if, every subset C µ A is of the form C = Ax for some x 2 X.

To prove the su±ciency of the condition, consider (X,A) ,! (Y,B) in M with (Y,B)
separated, and let y 2 ≥Y (X). Then C := {B \X | B 2 By} may be written as C = Ax
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for some x 2 X. But then By = Bx: the inclusion ”µ” is trivial, and for ”∂” one
observes that for B 2 Bx one has B \ X 2 Ax = C, so that B \ X = C \ X for some
C 2 By. Since y 2 ≥Y (X), y 2 B follows, and then B 2 By. Separatedness of (Y,B)
gives y = x 2 X, as desired.

Conversely, assume (X,A) to be complete, but that there is C µ A not of the form
C = Ax for any x 2 X. Then one considers Y = X [ {§} (with § not in X) and let
B = (A \ C) [ {A [ {§} | A 2 C}. Then A = {B \X | B 2 B}, so that (X,A) ,! (Y,B)
lies in M. Furthermore, for x, y 2 X, Bx = By implies Ax = Ay and then x = y, since
(X,A) is separated. Furthermore, x 2 X can be separated from §: since Ax 6= C there is
A 2 A with either x 2 A 6 2C or x 6 2A 2 C; in the latter case one has A[ {§} 2 B§ with
x 6 2A [ {§}, while in the former case one has A 2 Bx with § 6 2A. Consequently, (Y,B)
is separated, and (X,A) must be ≥-closed in (Y,B). However, when B \ X = C \ X
for B, C 2 B, then B \ {§}, C \ {§} are either both in C or both in A \ C, so that
B \ {§} = C \ {§}; hence § 2 ≥Y (X), a contradiction.

5.11. Example. An object (X,A) in ExtK,M(X ) with X = Modk and M = MonoX
(as in 4.4(3)) is separated if, and only if, A ∑ hom(X,K) satisfies

(17)
\

a2A

ker a = 0.

Indeed, (17) is clearly su±cient for separatedness since for any (f,') : (X, A) ! (Y, B)
with A = {b · f | b 2 B} one has ker f µ

T
a2A ker a, and for its necessity one considers

the canonical morphism g : X !
Q

a2A K =: Y with ker g =
T

a2A ker a (as in the
proof of 5.3); g is ept-initial since (as 3.5 and 3.7(2) show) the structure B of Y is the
submodule of hom(Y,K) generated by all projections pa : Y ! K, and every a 2 A has
the form a = pa · g.

In terms of Zariski closure, this means that the separated objects are those (X,A) with
0 Zariski closed in X.

For every x 2 X let us consider the submodule Ax = {a 2 A | x 2 ker a} of A. Then
(17) can be reformulated as

8x 2 X(Ax = A =) x = 0),

and since A0 = A, (17) is implied by

(18) 8x, y 2 X(Ax µ Ay =) kx ∂ ky).

We note in passing that, when k is a field and K 6= 0, then (18) is in turn implied by

(19) A = hom(X, K)

(since for {x, y} linearly independent one can find a 2 hom(X, K) whose kernel contains
only one of x, y). Only in rare cases (for example, for K = k a field and X finite-
dimensional), (19) is also necessary for separatedness of (X, A); hence, in this case X
carries a uniquely determined separated structure. For K = k = Z, no finite X 6= 0
carries any separated structure (since hom(X, Z) = 0), showing the restrictiveness of the
separation condition.

Returning to the case of a general K, to ask all objects (X, hom(X, K)) to be separated
is precisely to ask K to be a cogenerator in Modk. Hence, a good choice for K in case
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k = Z would be K = Q/Z, K = homZ(k, Q/Z) for arbitrary k, and of course K = k in
case of a field k.

Let us denote by Sep the full subcategory of ExtK,M(X ) formed by the objects (X, A)
satisfying (18); hence, Sep µ SepK,M(X ). Its objects are quite easily (and more natu-
rally) characterized as those (X,A) in ExtK,M(X ) for which every cyclic submodule is
Zariski-closed in (X,A).

We now prove that (X, A) 2 Sep is absolutely closed in Sep (so that whenever (X,A) ∑
(Y, B) with (Y, B) 2 Sep, (X, A) is actually Zariski-closed in (Y, B)), provided that every
submodule C ∑ A has the form C = Ax, for some x 2 X. For this one just mimics the
argumentation of 5.10, as follows. Given (X, A) ,! (Y, B) and

y0 = ≥Y (X) = {y 2 Y | 8b 2 B(X µ ker b =) y 2 ker b)}

consider C := {b|X | b 2 By0} and write C = Ax with x 2 X. Then By0 = Bx (”µ” is
obvious, and for ”∂” one notices that every b 2 Bx gives some c 2 By0 with c|X = b|X ,
e.g. (b° c)|X = 0 and then b(y0) = c(y0) = 0), and therefore y0 2 kx µ X, as desired.

We conjecture that the given su±cient condition is also necessary. Hence, in that case,
assuming Sep = SepK,M(X ), a separated object would be complete if, and only if, every
submodule C ∑ A has the form C = Ax, for some x. We will interpret this condition
more naturally in 6.12 below.

6. Enrichment and self-duality

6.1. Theorem ([C]). For X symmetric monoidal closed with pullbacks, and for any
object K, ChuK(X ) is also symmetric monoidal closed, in fact §-autonomous (in the
sense of [B1]) with its natural involution (°)§.

Proof. We just recall the basic constructions from [C] (where the reader finds all verifi-
cations). The tensor product

(X, r,A)≠ (Y, s, B) = (X ≠ Y, t, P )

in ChuK(X ) is defined by the pullback diagram

(20) P //

≤≤

AY

(ř)Y

≤≤

(KX)Y

ª=
≤≤

BX
(š)X

// (KY )X
ª=

// KX≠Y

with t : (X ≠ Y ) ≠ P °! K the mate of the diagonal morphism P °! KX≠Y of the
pullback. The unit of the tensor product is

(k, ∏K : k ≠K
ª°! K,K) = (K, %K , k)§.

The internal hom of ChuK(X ) can be defined by

(Y, s, B)(X,r,A) =
°
(X, r,A)≠ (Y, s, B)§

¢§
= (Q, h,X ≠B)
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where h is the mate of the diagonal morphism in the pullback diagram

(21) Q //

≤≤

AB

(ř)B

≤≤

(KX)B

ª=
≤≤

Y X
(ŝ)X

// (KB)X
ª=

// KX≠B

When (Y, s, B) = (K, %K , k) = K, then ŝ = %̂K : K °! Kk is an isomorphism, and
(ř)B = (ř)k ª= ř (in X 2), so that, up to natural isomorphism, (21) coincides with

(22) A
1A

//

ř
≤≤

A

ř
≤≤

KX
1KX

// KX

This shows
(X, r,A)§ ª= K(X,r,A),

naturally. §

6.2. Corollary. The functor (°)§ : ChuK(X )op °! ChuK(X ) is naturally isomorphic
to K(°), making K the dualizing object of ChuK(X ).

6.3. Example. In Chu2(Set), keeping the notation of (20) and (21), one has

P = { (f : X °! B, ' : Y °! A) | 8x 2 X 8y 2 Y (s(y, f(x)) = r(x,'(y))) }
= Chu2(Set)

°
(X, r,A), (B, s±, Y )

¢
,

Q = { (f : X °! Y, ' : B °! A) | 8x 2 X 8b 2 B (s(f(x), b) = r(x,'(b))) }
= Chu2(Set)

°
(X, r,A), (Y, s, B)

¢
.

6.4. Remarks.

(1) If X is already §-autonomous, with dualizing object K, then ChuK(X ) is equiv-
alent to an easily described comma category, namely

ChuK(X ) ' (IdX # (°)§).

In particular, for every symmetric monoidal-closed category X and K 2 obX
one has

Chu(K,%K ,k)(ChuK(X )) ' (IdChuK(X ) # (°)§).

This observation ultimately leads to Pavlovic’s [Pc] sophisticated characterization
of the Chu construction in terms of a universal property.

(2) If the class M is stable under binary intersection (in particular, if M is stable
under pullback and closed under composition), and if M satisfies the condition

A. for all m : X ! Y in M and objects A, mA : XA ! Y A is also in M,
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then the tensor product of ChuK(X ) restricts to ExtK,M(X ), as an easy ex-
amination of diagram (20) reveals. Similarly, under the same conditions diagram
(21) shows that, for (X, r,A) M-extensive and (Y, s, B) M-coextensive, the hom-
object (Y, x, B)(X,r,A) is M-coextensive.

(3) The status of condition A is examined in Prop. 4.1 of [B5]. Although the formu-
lation of that proposition is not correct, its proof shows that A is equivalent to
each of B, C below, provided that (E ,M) is a prefactorization system of X in the
sense of [FK], in particular when (E ,M) is an orthogonal factorization system:

B. for all ' : A ! B in E and objects X, ' ≠ X : A ≠ X ! B ≠ X is also
in E ,
C. for all m : X ! Y in M and ' : A ! B in E, the diagram

XB X'
//

mB

≤≤

XA

mA

≤≤

Y B Y '
// Y A

is a pullback.

In the notation of 2.9, since ř = (r±)̂ and r̂ = (r±)̌, the involution (°)§ preserves the full
subcategory

ExtK,M(X ) \ CxtK,M(X ),

so that this subcategory is self-dual, for any M. The point now is to characterize its
objects more conveniently. For that we assume M to be closed under composition and
left-cancellable (so that gf 2 M implies f 2 M), a hypothesis granted automatically
when M is part of an orthogonal factorization system (E ,M) for morphisms with E µ
EpiX . K remains ≠-exponentiating.

6.5. Proposition. A K-Chu space (X, r,A) is M-coextensive if, and only if, every
pt-cartesian morphism (f,') : (X, r,A) ! (Y, s, B) has f 2M, e.g. f 2M whenever
' is an isomorphism (see 2.7).

Proof. Showing “only if”, the right square of (6) (see 2.9) has r̂ 2 M and K' iso, by
hypothesis, so that ŝf = K'r̂ 2M. Now f 2M follows with the left-cancellability of
M. Conversely, one considers the pt-cartesian morphism

(r̂, 1A) : (X, r,A) ! (A, eA, KA)§ = (KA, e±A, A)

to obtain r̂ 2M from the hypothesis. §
In order for us to use the latter argumentation also in the subcategory ExtK,M(X ),

we need to have (A, eA, KA)§ 2 ExtK,M(X ).

6.6. Lemma. (A, eA, KA)§ is M-extensive if, and only if, there is any M-extensive
K-Chu space (X, r,A).

Proof. We need to show that the natural morphism

iA := (e±A)̌ : A ! KKA
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is in M when (X, r,A) is M-extensive. Since M is left-cancellable and ř 2M, it su±ces
to show ř = K r̂iA. But that equation follows from the universality of eX , since all faces
but the upper triangle in the following diagram are known to commute:

X ≠KKA

r̂≠KKA

≤≤

X≠K r̂

''

NNNNNNNNNNN

X ≠ A

r̂≠A

≤≤

X≠iA
77ppppppppppp X≠ř

// X ≠KX

eX

≤≤

KA ≠KKA

eKA

''

NNNNNNNNNNNNN

KA ≠ A

KA≠iA
77ppppppppppp

e±A

// K

§

6.7. Corollary. Every separated M-extensive K-Chu space is M-coextensive.

Proof. By the Lemma, the argumentation used in 6.5 may be restricted to ExtK,M(X ).
§

6.8. Theorem. Let (E ,M) be an orthogonal factorization system for morphisms of X
with E µ EpiX . If the functor K(°) : X op ! X maps E into M, then the identity

ExtK,M(X ) \ CxtK,M(X ) = SepK,M(X )

holds; in particular, this is then a self-dual subcategory of ChuK(X ). KE µM is also a
necessary condition for this identity to hold, provided that (A, eA, KA)§ is M-extensive
for all A 2 X .

Proof. In order to show the inclusion

ExtK,M(X ) \ CxtK,M(X ) µ SepK,M(X )

using closure of M under composition one can argue as in the first part of the proof
of 6.5, since it su±ces to have K' : KA ! KB in M whenever ' : A ! B in E . The
reverse inclusion has already been stated in 6.7.

For the necessity of KE µ M, let ' : B ! A be in E and consider the K-Chu
morphism

(K',') : (KA, e±A, A) ! (KB, e±B, B).

It trivially lies in CxtK,M(X ) (since (e±A)A = 1KA), but by hypothesis also in ExtK,M(X )
and therefore in SepK,M(X ). Hence, ' 2 E implies K' 2M, as desired. §

6.9. Remarks.

(1) M-extensitivity of (A, eA, KA)§ simply means that iA = ˇ(e±A) : A ! KKA
lies in

M. By Lemma 6.6 it is su±cient that A appears in some M-extensive K-Chu
space (X, r,A). For A = k, M-extensitivity of

(A, eA, KA)§ ª= (K, ΩK , k)
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was already used in Section 4. Under the (rather restrictive) hypothesis that, in
the presence of products in X , k be an M-cogenerator in X , M-extensitivity of
(K, ΩK , k) implies the same property for all objects (A, eA, KA)§, as the commu-
tative diagram

A

mA

≤≤

iA
// KKA

<KKª
>ª2X (A,k)

≤≤Q
X (A,k) k Q

X (A,k) ik

//

Q
X (A,k) KKk

shows. Indeed, mA 2 M, by hypothesis, as well as
Q
X (A,k) ik, since ik ª= (Ω̌K :

k ! KK) 2 M, so that the composition–cancellation argumentation becomes
applicable.

(2) If k is a generator of X and M = MonoX , then the condition KE µM holds.
Indeed, assuming K'

∞1
= K'

∞2
with ∞i : k ! KA, the commutative diagram

B

'

≤≤

ª=
// B ≠ k

'≠k

≤≤

B≠∞i
// B ≠KA

'≠KA

≤≤

B≠K'
// B ≠KB

eB

≤≤

A
ª=

// A≠ k
A≠∞i

// A≠KA
eA

// K

gives eA(A≠ ∞1) = eA(A≠ ∞2) when ' is epic, and then ∞1 = ∞2.

6.10. Corollary. Let X have (StrongEpi, Mono)-factorizations, and let the ≠-unit k
be a generator in X . Then, for every object K of X , the category of separated K-Chu
spaces is selfdual. §

We are left with the question when A := ExtK,M(X ) \ CxtK,M(X ) is actually §-
autonomous, which has been answered in [B5]. We already saw in 6.4(3) that ExtK,M(X )
is ≠-closed in ChuK(X ) when the class M is pullback stable, closed under composition
and satisfies condition A. Since the unit object (k, ∏K , K) lies trivially in ExtK,M(X ),
this category is symmetric monoidal, inheriting its structure from ChuK(X ), whenever
X is symmetric monoidal closed with pullbacks. It was proved in [B5] that, in order to
make A §-autonomous, it su±ces to show that the M-coextensional reflection (Y, t, A)
of an object (X, r,A) in ExtK,M(X ) stays M-coextensional. But by 3.3, (Y, t, A) may
be obtained from an orthogonal (E ,M)-factorization

Y
m=t̂

!!

BB
BB

BB
BB

X
r̂

//

e
??~~~~~~~~

KA

Transposition gives ř = Ke · ť. Since ř 2 M by hypothesis, there are two ways of
concluding ť 2 M: when M is left cancellable (hence, in particular when E µ EpiX ),
or when KE µM.

In summary one obtains:
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6.11. Corollary. Under the hypothesis of 6.8, ExtK,M(X ) \ CxtK,M(X ) = SepK,M(X )
is §-autonomous. §

6.12. Example. We return to Example 5.10 which trivially satisfies hypotheses of 6.8.
The formal dual (X,A)§ = (A,X) of an object (X, A) in SepK,M(X ) is concretely given
by the identification of points x 2 X with their evaluation maps

!X : A ! K, a 7! a(x).

Now, in the notation of 5.10 ker !x = Ax. Hence, assuming Sep = SepK,M(X ), in 5.10
we proved that a su±cient (and, as we conjecture, also necessary) condition for (X,A)
to be complete is that in (X, A)§ every subobject is the kernel of a “character”, i.e., of
an element of its structure.

It is well known (and quite easy to see) how to retrieve some classical dualities from
the self-dual category SepK,M(X ), see particularly [Pr], [G2]. For example, the Stone
duality may be obtained by suitably extending the characterization of complete objects
as given in 5.10, using the presentation of topological spaces given in 4.4(2). Here we
restrict ourselves to giving a brief account of the Pontrjagin duality within the setting
of this paper.

6.13. Example. We consider the category X = AbGrp = ModZ with K = R/Z the
torus and M = MonoX . For (X, A) in ExtK,M(X ), provide X with the initial topology
with respect to A ∑ hom(X,K). This defines a functor

T : ExtK,M(X ) ! TAG

into the category of topological abelian groups. T is easily seen to be right adjoint:
its left adjoint S assigns to a topological abelian group X the object (X, A) with
A = TAG(X, K) the group of continuous characters on X. The full image of T is
given by the subcategory of totally bounded abelian groups (e.g. the TAG-objects with
compact completion), and the image of SepK,M(X ) under T is precisely given by those
totally bounded groups that are HausdorÆ, that is: by the category PTAG of precompact
topological abelian groups (see 4.26 and 6.5 of [D]; those assertions are not trivial and go
essentially back to Comfort and Ross [CR]). Hence, SepK,M(X ) is equivalent to PTAG.

Let us now see how the self-duality (°)§ of SepK,M(X ) presents itself in the PTAG-
language. For a topological abelian group X,

bX := T (SX)§ = TAG(X, K)

is the group of continuous characters on X, provided with the initial topology with
respect to the evaluation maps

!x : bX ! K, a 7! a(x),

x 2 X; for X precompact, bX is also precompact, and we have
bbX ª= X. In other words,

the rather formal self-duality of SepK,M(X ) is in fact the highly non-trivial self-duality
of PTAG, as described by Raczkowski and Trigos-Arrieta [RT] and, in the more general
setting of topological modules, by Menni and Orsatti [MO].
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For the characterization of CplK,M(X ), let us first note that the Zariski closure of
(X, A) in (Y,B) of SepK,M(X ) = PTAG coincides with the Kuratowski closure:

≥Y (X) =
\
{ker b | b 2 B, X µ ker b} = X.

Hence, CplK,M(X ) is equivalent to the full reflective subcategory of PTAG given by
the absolutely-closed objects, e.g. by the compact HausdorÆ abelian groups. On the
other hand, the category X = AbGrp is coreflectively embedded in SepK,M(X ) via X 7!
(X, hom(X, K)) (see 2.11) and becomes the subcategory of discrete groups in PTAG.
Now the classical Pontrjagin duality between compact and discrete abelian groups comes
about by restricting the self-duality of PTAG and is therefore formally described by:

(X, hom(X,K)) SepK,M(X )op ª
// SepK,M(X )

X
_

OO

X op

OO

ª
// CplK,M(X )

OO
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