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ABSTRACT. We develop an elementary approach to the classical descent problems for modules
and algebras, and their generalizations, based on the theory of monads.

INTRODUCTION

In this third expository article on Descent Theory we return to the original descent problem
for modules as studied by Grothendieck [7]. Formulated in the language of monads, which we
will use in this paper, Grothendieck’s theorem says:

For a homomorphism p : R — S of commutative rings, the extension-of-scalars
functor S ®g (—) : R-mod — S-mod is comonadic whenever p makes S a faith-
fully flat R-module.

It is our principal goal in this paper to present what we think is the most elegant and simple
proof of a much stronger result in which the sufficient condition for comonadicity is replaced by
one that is also necessary:

For a homomorphism p : R — S of commutative rings, the extension-of-scalars
functor S ®g (—) : R —mod — S — mod is comonadic if and only if p is a pure
monomorphism of R-modules.

We actually derive this result from a more general theorem for non-commutative rings, and we
also show that the principal theorem remains valid when modules get traded for various sorts of
algebras, unital or not, associative or not, commutative or not, Lie, Jordan, differential, etc.
The principal theorem is not new but has a somewhat complicated history that we recall here to
the best of our knowledge. It seems that it first appeared in Olivier’s paper [19] where, however,
no convincing indication of proof was given. Afterwards for many years people continued to
use Grothendieck’s original weaker theorem, thus just using the sufficient condition that S be a
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faithfully flat R-module; a standard reference for ring-theorists is the monograph [12] by Knus and
Ojanguren, and for category theorists Borceux’s book [2] (although we note that Borceux requires
“pure plus flat” instead of “faithfully flat”, see Theorem 4.7.8 in [2]). Grothendieck’s theorem
has an obvious monadic connection, since it follows quite easily from the fact that in the presence
of coequalizers a right adjoint functor reflecting isomorphisms and preserving all coequalizers is
monadic. It seems, however, that neither Grothendieck himself nor anybody of his school ever
actively used the monadic approach to descent, although it was described explicitly by Bénabou
and Roubaud [1] fairly soon after monads had become fashionable in the mid to late 1960s.
Much later, after the publication of the important paper [11], which establishes a constructive
localic analogue of the characterization of effective descent morphisms of commutative rings,
the principal theorem of this paper was normally referred to (at least by topos-theorists) as an
unpublished result of Joyal and Tierney. The first proof the authors actually saw was briefly
shown (to the first author) by Makkai in 19973. Later Mesablishvili, a former Ph. D. student of
the first author, while working on the Galois theory of schemes discovered another proof which
uses the “homological-algebraic” approach to purity by means of the functor Homgz(—, Q/Z) (see
[16]).

The proof we give here very much follows Mesablishvili’s argumentation, the only major dif-
ference being that we explicitly state its category-theoretic backbone (see Theorem 2.3). In fact,
this approach lends itself perfectly well to be used for non-commutative rings as well, a goal
that we had in mind for many years and which the first author had discussed explicitly with
various interested people, including Caenepeel. Hence we were glad to see that he proved the
non-commutative variant of the principal theorem in [5], but the presentation appears to be a bit
more cumbersome than the one we give in this paper, simply because of a less clear isolation of
the categorical tools from the ring- and module-theoretic context.

In order to achieve our principal goal, at the beginning of the paper we must take the reader
back to what appears to be just another twist of the many existing versions of Beck’s monadicity
criterion, which then gets applied to the ring- and module theoretic context. We wish to em-
phasize, however, that this is not a one-way street. Monads and their algebras on the one hand
and rings and their modules on the other hand have a common categorical home that is most
generally described in the context of a monoidal category acting on another category. In fact,
they are both given by monoids and their actions in the general context. But these (very general)
actions are in fact algebras for a monad, thus exhibiting monads and their algebras not just as a
special instance of the general objects but in fact describing all of them, even in the most general
context. Although we can allude to these facts only briefly in Section 3 of this paper (and must
refer the reader to the forthcoming paper [4] for further details), we feel that these facts and our
method of proof for the principal theorem show the importance of fairly simple categorical tools
that, however, may become very powerful when applied in the right context.

A final comment: Unlike Nuss [18], in this paper we avoid the term “noncommutative de-
scent” which for us, according to an observation of Caenepeel, is nothing but comonadicity of
the extension-of-scalars functor. However, the way Caenepeel presents coring theory probably
suggests that it would be worthwhile to develop noncommutative and in fact monoidal-categorical
descent theory as such, with not only monadic but all other facets, a project left for future work.

3In his work on categorical logic Makkai [15] discovered a fundamental connection between descent and defin-
ability. Specifically, his theorem that every monomorphism of Boolean algebras is an effective descent morphism,
implies a definability theorem for propositional (classical) logic.
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We are indebted to Bachuki Mesablishvili, for detecting an error in an earlier version of Theorem
5.3, and for many other helpful comments.

1. FORKS AND CONTRACTIBLE PAIRS

1.1. A fork in a given category is a diagram of the form
f
Xﬁgbiz (1.1)

with hf = hg; such a fork is said to be split by a pair (%, j) of morphisms¢:Z - Y andj: Y — X
if hi =1z, fj = 1y, and gj = th. One also says that the diagram of five morphisms f, g, h, %, j
above is a split fork, or that (i,7) is a splitting for the fork (1.1). Let us recall:

PROPOSITION. (a) If f, g, h, i, j form a split fork, then diagram (1.1) is an absolute
coequalizer diagram (i.e. a coequalizer diagram preserved by every functor).

(b) A fork (1.1) has a splitting if and only if it is a coequalizer diagram and the pair (f,g) is
contractible, i.e. there exists a morphism j:Y — X with fj =1y and gjf = gjg.

Accordingly, split forks are also called split coequalizer diagrams.

1.2. OBSERVATION. Every retract of a contractible pair is itself contractible. That is, if

f
X—=V (1.2)

9
e el
XI é)) YI
gl
is a diagram with vf = f't, vg = ¢'t, fs = uf’, gs = ug’, ts = 1xs, vu = 1y, then contractibility
of (f,g) implies the same for (f',¢’). Indeed, given j : Y — X as in Proposition 1.1(b), just take
=t Y = X.

1.3. COROLLARY. Let C and D be arbitrary categories, 7 : ® — ¥ a split epimorphism of
functors @,V : C — D, and (f,g) a pair of parallel morphisms in C. Then with (®(f),®(g))
also (U(f),¥(g)) is contractible.

2. GENERAL MONADICITY IN THE PRESENCE OF COEQUALIZERS

2.1. Let us first recall the ordinary form of Beck’s monadicity criterion (see, for exmple, [2] or
[14]):

MONADICITY THEOREM IN THE PRESENCE OF COEQUALIZERS. Let A and
X be categories with coequalizers. A functor U : A — X is monadic if and only if the following
conditions hold:

(a) U has a left adjoint;

(b) U reflects isomorphisms;

(c) U preserves coequalizers of those pairs (f,g) for which (U(f),U(g)) is contractible.
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22. Let U : A — X be a functor with left adjoint F' and counit ¢ : FU — 1a. If € is a
split epimorphism, then condition 2.1(c) can be omitted. Indeed, if (U(f),U(g)) is contractible,
then so is (FU(f),FU(g)), and then Corollary 1.3 applied to e = 7 tells us that also (f,g) is
contractible, and therefore its coequalizer is preserved by every functor (see Proposition 1.1). In
other words, condition 2.1(c) becomes trivial simply because U reflects contractibility. Moreover,
condition 2.1(b) also becomes trivial since having ¢ : 1o — FU with e{ = 1 yields

(U(f : A — B) invertible) = (f invertible with f™! = e 4/F(U(f)"1)(B)

Thus we obtain:

SPLIT MONADICITY THEOREM IN THE PRESENCE OF COEQUALIZERS.
Let A and X be categories with coequalizers. A functor U : A — X is monadic if the following
conditions hold:

(a) U has a left adjoint F;

(b) the counit FU — 1A is a split epimorphism.

The Split Monadicity Theorem follows also from a more general theorem proved by Pare [20]
which asserts not just monadicity of the functor U under the given sufficient conditions, but even
of UV for every composable monadic functor V. But for the application given in 5.1 below, we
need a different type of generalization of 2.2 in which the sufficient conditions are again replaced
by conditions that are also necessary for monadicity of U, as follows.

2.3. Let us consider a more general situation, where not just the counit € : FU — 14 itself, but
its (horizontal) composite He : HFU — H with some functor H is a split epimorphism. Then
instead of having (f,g) contractible, we will only require (H(f), H(g)) to be contractible. Now,
in order to conclude that U preserves the coequalizer of (f,g) we have to “connect” U and H.
The following theorem gives such a “connection”:

THEOREM. Let A and X be categories with coequalizers. A functor U : A — X is monadic if
and only if the following conditions hold:

(a) U has a left adjoint F;

(b) U reflects isomorphisms;

(c) there exists a commutative diagram (possibly only up to an isomorphism)

A-—Y-x (2.1)

Hl l”'

B——>Y
UI

of functors such that

(c1) He: HFU — H is a split epimorphism;

(c2) H preserves coequalizers of those pairs (f,q) for which (U(f),U(g)) is contractible;
(cs) H' reflects isomorphisms.

Proof. “If”: By Theorem 2.1, we have to check only condition 2.1(c) on U. Let us write the
coequalizer diagram of (f,g) as the fork (1.1), and consider its images under H, U'H = H'U,
and U. We assume that (f,g) is as in 2.1(c), i.e. that (U(f),U(g)) is contractible, and so the
H-image of (1.1) is a coequalizer diagram by (c2). Moreover, this H-image is a split coequalizer
diagram, since (H(f),H(g)) is contractible, being a retract of (HFU(f), HFU(g)) (that is, we
are applying Corollary 1.3 to 7 = He). Since split coequalizer diagrams are preserved by every
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functor, we conclude that the U’ H-image of (1.1) is a coequalizer diagram, and the same is true
for the H'U-image since U'H = H'U. Now consider the coequalizer diagram

UX) —=U®Y) —=C (2.2)

of (U(f),U(g))- Note that since (U(f),U(g)) is contractible, the H'-image of (2.2) is a coequalizer
diagram. Now, since also the H'U-image of (1.1) is a coequalizer diagram, we can conclude
that the H'-image of the canonical morphism C' — U(Z) is an isomorphism. Since H' reflects
isomorphisms, this implies that the U-image of (1.1) is a coequalizer diagram, as desired.

“Only if”: Just take H = U and H' = U’ = 1x and apply Theorem 2.1. O

2.4. REMARK.

(a) As we see from the “only if” part of its proof, Theorem 2.3 contains Theorem 2.1. On the
other hand it also contains the Split Monadicity Theorem 2.2: in fact, just consider H = 14,
H' = 1x, and U’ = U. Note also that one could present Theorem 2.3 as a corollary of the
fact that conditions 2.3(a) and 2.3(c) imply condition 2.1(c).

(b) We do not really need to require the existence of all coequalizers, of course; for instance, we
could only require the existence of reflexive ones since all the needed coequalizers have that

property.

2.5. Theorem 2.3 uses diagram (2.1) to describe a necessary and sufficient condition for monadic-
ity of the functor U. The following easy lemma gives another such condition:

LEMMA. Let A and X be categories with coequalizers. A functor U : A — X is monadic if
and only if the following conditions hold:

(a) U has a left adjoint F';

(b) there exists a commutative diagram (possibly only up to an isomorphism)

A—L-x (2.3)

Hl l”'

BTY

of functors such that

(b1) U is monadic (or at least reflects isomorphisms and preserves coequalizers of those pairs
(f,9) for which (U'(f),U'(qg)) is contractible);

(bo) H preserves all coequalizers;

(bs) H' reflects isomorphisms;

Proof. “If”: Again, by Theorem 2.1, we have to check only condition 2.1(c) on U. Let (f,g) be
a pair of parallel arrows in A, for which (U(f),U(g)) is contractible. Then:

(i) (H'U(f),H'U(g)) is contractible, and therefore so is (U'H(f),U'H(g));

(ii) therefore U’ preserves the coequalizer of (H(f), H(g));

(iii) since H preserves the coequalizer of (f, g), we conclude that U'H preserves the coequalizer
of (f,g), and hence the same is true for H'U;

(iv) since (U(f),U(g)) is contractible, H' preserves its coequalizer (in the case that H' is
comonadic, of course we would not need contractibility here);

(v) since H' reflect isomorphisms, (iii) and (iv) imply that U preserves the coequalizer of (f, g),
which completes the proof.

“Only if”: Just consider H = 1o, H' = 1x,and U = U'. O
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3. MONADS AS GENERALIZED RINGS

3.1. We begin this section with a brief discussion involving abstract monoid actions, where a
monoid M in a monoidal category C acts on objects in a category X equipped with a “hyperac-
tion” of C. However, the only purpose of that discussion is to explain our intention to consider
rings and modules as a special case of monads and algebras. Hence the readers not familiar with
monoidal categories can safely ignore 3.1 and 3.2 and continue reading beginning from subsection
3.3.

What we mean by a hyperaction is actually a laxz action, i.e. a functor e : Cx X — X satisfying
the usual action axioms up to specified natural morphisms y: Ae (Be X) - (A® B) ¢ X and
0 : X — IeX (where I is the identity object for the tensor product ® in C) satisfying suitable
coherence conditions. Such an action is called strong or strict if the aforementioned morphisms
are isomorphisms or identity morphisms, respectively. Given a lax action e : C x X — X and a
monoid R = (R, e,m) in C, the category X% of R-actions in X is defined as the category of pairs
(X,h), where h : R e X — X makes the diagram

Re(ReX)—'~(RoR)e X ™ pex & x (3.1)

B | A

Re X X

commute (see [4] for more details; the general idea to use actions of a monoidal category has been
around since the 1960s [6] and appears explicitly in the form of strong (right) actions in Pareigis’
paper [21] ).

The following table recalls a standard collection of examples:
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C=(C,®) X AeX monoids in C R-actions in X
(a) | (Sets,x) X=C A x X | ordinary monoids R-sets
(b) | (Topological Spaces,x) X=C A x X | topological monoids | topological  spaces
equipped with a
continuous R-action
(c) | (Abelian Groups,®) X =C A® X |ringst R-modules®
(d) | (K-modules, ®k), where | X =C A®k X | K-algebras (associa- | R-modules
K is a commutative ring tive and with 1)
(with 1)
(e) | (Abelian Monoids,®) X=C A® X | semirings R-semimodules
(f) | (Complete X=C A®X | quantales R-modules
Semilattices,®)
(g) | (O-Graphs,xo) (see [14], | (Setsd O) A xo X | categories whose set | functors from R to
p. 171) of objects is O sets
(h) | (End(X),0), the category | the same X | A(X) monads on X R-algebras
of endofunctors of an arbi-
trary category X; o is the
composition of endofunc-
tors
(i) | (C,+), where C is an ar- | X =C A+ X |every object in C | pairs (X,h), where
bitrary category with fi- has a unique monoid | A : R — X is a mor-
nite coproducts structure phism in C
Table 1

Note also that the situation (a) has two well-known generalizations: we could keep C = Sets
but take X to be an arbitrary category with coproducts, and then take Ae X to be the A-indexed
coproduct of X with itself (which of course is the same as A x X when X = Sets); or, we could
take C = X to be an arbitrary category with finite products, and then keep Ae X = A x X (as in
the situation (b)). In the first case, an R-action on an object X in X is a monoid homomorphism
R — End(X). In the second case R becomes an internal monoid in C = X, and, unless X was
cartesian closed, an R-action can only be presented as a morphism R X X — X making diagram
(3.1) (with x instead of ® and e) commute. Similar generalizations of the situation (g) would
take us from ordinary categories to internal and enriched ones.

3.2. We see that algebras over monads are (very special) monoid actions (see row (g) in Table
1 in 3.1). However the converse proposition is also true since:

(a) alax action C x X — X of a monoidal category C can be presented as a monoidal functor
C — End(X);

(b) a monoid R in C can be presented as a monoidal functor 1 — C;

(c) the composite 1 — C — End(X) determines a monoid in End(X) and hence a monad on X;

(d) the algebras over that monad are the same as R-actions in X with respect to the lax action
C x X — X above.

Having this “logical equivalence” in mind, we could equally well present our generalized descent
theory of modules in any of the two languages, “monoidal” or “monadic”. We will choose the

4“Ring” always means “ring with 17 (unless we say “without 17).
5“Module” always means “left module” (unless we say “right module”).
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second one, which is more convenient for our purposes since we have already used monads in [8]
and [9].

3.3.  We briefly recall one of the most fundamental examples of a monad (see, for example [14]).
Every ring R determines a monad on the category Ab of abelian groups, whose algebras are all
R-modules. This can be deduced from 3.1(c) and 3.2, or directly as follows:

(a) The monad determined by R is (R ® (—),n%, uft), where (n%)x : X - R® X and (u®)x :
R®R®X — R® X are defined by (n%)x(z) = 1®z and (uB)x(r@r' ®z) = ' @z
respectively (for every abelian group X).

(b) An (R®(—),n%, uF)-algebra is a pair (X, k), where X is an abelian groupand h: R X — X
a group homomorphism making the diagram

(n™)x (n")x

ROR®X “ S RoX<—X (3.2)
1®hl hl/
R® X ; X

commute, and it is easy to see that such an A is the same as an R-module structure on X.

3.4. We will need some details of the change-of-base constructions for a morphism p : R — S of
monads. Instead of checking them with long routine calculations, we display, on the table below,
how the monadic situation imitates the classical one for rings:
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For a ring homomorphism p: R — S:

For a morphism p : R = (R,pf, uft) — S =
(S,n%, u°) of monads on a category X with re-
flexive coequalizers preserved by S and reflexive
equalizers:

The restriction-of-scalars functor

(=)p : S-mod — R-mod has a left adjoint,
namely the extension-of-scalars S ® g (—), which
can be defined via the reflexive coequalizer dia-
gram

s@rRz—sp(r)Qz
SQR®X

SRrRT—>sQRre

for each R-module X.

S®X—>S®RX

The induced functor X? : X° — X% has a left ad-
joint LP, called the change-of-base functor, which
can be defined via the reflexive coequalizer dia-
gram (in X and in X*)
(ns(Sp))x
S(h)

for each R-algebra (X,h); the canonical mor-
phism S(X) — LP(X,h) will be denoted by
7T(X,h)-

SR(X) SX — LP(X, h)

The unit 7P of the adjunction has its components
(n?)x defined as composites
1Rz

X—95@X —S®rX

The unit n? of the adjunction has its components
(nP)(x,n) defined as composites

T(X,h)

s
X (n )XS(X)

LP(X, h)

The unit 5? is a split monomorphism if and only
if there exists an (additive) group homomorphism
qg:S — R with gp = 1, ¢(p(r)s) = rq(s) and
q(sp(r)) = q(s)r, i.e. if and only if p is a split
monomorphism of (R, R)-bimodules.

The unit 5P is a split monomorphism if and
only if there exists a natural transformation q :
S — R with ¢p = 1, ¢(u®(pS)) = p®(¢R) and
a(u® (Sp)) = p*(Ra).

Moreover, there is a natural bijection between all
such ¢’s and all splittings @ for nP: givenaq: S —
R, the X-component §x of the corresponding 6
is the composite

SorX P Rop X =X

or, equivalently, the unique map making the
right-hand square in the diagram
SO®RIX—=S®X —=S®rX

lmx iax

RIRX—=R®®X ——X
commute;

lq®R®X

Moreover, there is a natural bijection between
all such ¢’s and all splittings 6 for n?: given a
q : S = R, the (X, h)-component 6x ) of the
corresponding 6 is the unique map making the
right-hand square in the diagram

(1°(Sp)) x
—_—

SR(X) — (X) ——= LP(X, h)
S(h
l/qR(X) lQX io(x,h)
(HR)X
RR(X) R(X) X
R(h)
commute;

conversely, given a splitting 6 for nP, the corre-
sponding ¢ is the composite

S~S@p R~ R.

conversely, given a splitting 6 for nP, the X-
component gx of the corresponding ¢ is the com-
posite

O r(x).(uB)x)

S(X) = LP(R(X), (1")x) R(X).

Table 2

4. SPLIT COMONADICITY

4.1.

Combining the Split Monadicity Theorem 2.2 and Remark 2.4(b) with the characterization

of splitting(s) for 7 given in the right-hand column of Table 2, we obtain:

THEOREM. The change-of-base functor X® — X5 induced by a morphism p : R = (R,n%, u®) —

S = (8,n%, %) of monads on X is comonadic whenever

(a) X has reflexive equalizers and reflexive coequalizers, and S preserves reflexive coequalizers;
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(b) there exists a natural transformation q : S — R with qp = 1, q(u®(pS)) = uf(¢R) and
q(1°(Sp)) = u"(Ryq).

4.2. We could also use the left-hand column of Table 2 to obtain a sufficient condition for
comonadicity of the functor S @g (—) : R-mod — S-mod; or, we could deduce it from Theorem
4.1, or from the following intermediate result:

COROLLARY. Let X = (X, ®) be a monoidal category and p: R — S a morphism of monoids
in X. The extension-of-scalars functor S ®g (—) : XB — X5 is comonadic whenever

(a) X has reflexive equalizers and reflexive coequalizers, and the functor S® (—) : X — X
preserves reflexzive coequalizers (which is always the case when (X,®) is a monoidal-closed
category with reflezive equalizers),

(b) there exists a morphism q : S — R in X with gp = 1, which is a morphism of left and right
R-actions at the same time.

Note that this fact was independently observed, in a (essentially) more general situation by
Mesablishvili (unpublished), and in the case X = Sets by Laan [13], together with several related
results.

4.3. Every commutative algebraic theory (see e.g. [2, Section 3.10]) has its category of models
monoidal closed, and hence yields an example for Corollary 4.2, where condition 4.2(a) holds
automatically. Examples of such monoidal closed categories are:

(a) Sets; the monoids here are ordinary monoids.
) Pointed sets; the monoids are monoids with zero.
(¢) Commutative monoids; the monoids are semirings (with 1).

) Abelian groups; the monoids are rings, and this is the “classical” case of row (c) in Table 1
and of the left-hand column of Table 2. We will return to this case again; at the moment let
us just point out that what we get from Corollary 4.2 here follows also from what we get for
semirings, simply because every semimodule over a ring is a module.

4.4. Another interesting example is provided by the monoidal-closed category of complete semi-
lattices. Its monoids are called quantales, and among these there are the locales, a fundamental
notion of “pointless” topology (see, for example, [3]). Recall that a locale can be defined as a
complete Heyting algebra, and a morphism of locales is the same as a \/-complete homomorphism
of lattices in the opposite direction. For a morphism p : S — R (which is in fact a map from R
to S as above!) of locales, the conditions required on ¢ in 4.2 become

gp=1 and q(p(r)As)=rAg(s). (4.1)
Recall that p is an open surjection in the sense of the theory of locales if and only if it satisfies
(4.1), with ¢ being the left adjoint of p (see [3, Section 1.6]). Since condition (4.1) is also satisfied
whenever p is a split monomorphism of complete lattices (=split epimorphism of locales), it is
certainly weaker than the open-surjection condition. On the other hand (4.1) is stronger than
what Plewe [22] requires for p to be a triguotient map of locales.

5. COMONADICITY FOR ORDINARY MODULES

5.1. According to Corollary 4.2 (see also 4.3(d)), a ring homomorphism p : R — S renders
the extension-of-scalars functor S @ (—) : R-mod — S-mod comonadic whenever p is a split
monomorphism of (R, R)-bimodules. In this section we will use Theorem 2.3 to obtain a stronger
result, which however cannot be extended to abstract monoidal categories.
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For a ring homomorphism p : R — S, let us choose the data involved in Theorem 2.3 as follows:

A = (R-mod)°P, the opposite category of R-modules;

X = (S-mod)°P;

U: A — X the dual of the extension-of-scalars functor S ® (—) : R-mod — S-mod;

F : X — A is thus the dual of the restriction-of-scalars functor;

B = mod-R, the category of right R-modules;

Y = Ab, the category of abelian groups;

H : A — B defined by H(A) = Homy(A,Q/Z) with the right R-module structure on

Homyz(A,Q/Z) defined by (hr)(a) = h(ra); of course the only reason for using Q/Z here

is that it is an injective cogenerator in Ab;

e U':B — Y defined by U'(A) = Hompg(S, A) (considering Hompg (S, A) just as an abelian
group of course);

e H : X — Y defined by H(X) = Homy(X,Q/Z).

We observe:

(a) For each R-module A, there are canonical isomorphisms
Hompg(S,Homy(A,Q/Z)) ~ Homz(S ®r A,Q/Z) ~ Hompg (A, Homy(S, Q/Z)), (5.1)

where however the first Homp is used for the right R-module homomorphisms, while the
second is used for the left ones, assuming that Homy (A4, Q/Z) is considered as an R-module
via (rh)(s) = h(sr). The first isomorphism tells us that in this case diagram (2.1) indeed
commutes up to an isomorphism.

(b) Since the forgetful functor from the category of modules (over any ring) to Ab is exact and
reflects isomorphisms, and since Q/Z is an injective cogenerator in Ab, the functors H and H'
preserve all coequalizers (in fact all limits and all finite colimits!) and reflect isomorphisms.

(c) If

Homy,(p, Q/Z) : Homg(S, Q/Z) — Homgz(R, Q/Z) (5.2)
is a split epimorphism of( R, R)-bimodules (= R ® R°P-modules), then each
Homy(e4,Q/Z) : Homy(S ®r A,Q/Z) — Homy (A, Q/Z) (5.3)

is a split epimorphism of right R-modules and, moreover, the splitting is natural in A. This
follows from the fact that (up to a natural isomorphism) (5.3) can be rewritten as

Homy(p ®r A,Q/Z) : Homz (S ®r A,Q/Z) — Homz(R ®r A,Q/Z), (5.4)
and then as
Homp(A, Homgz(p, Q/Z))) : Homg(A, Homz(S,Q/Z)) — Hompg(A, Homz(R, Q/Z)).  (5.5)
Thus, whenever S ®p (—) reflects isomorphisms and (5.2) is a split epimorphism of (R, R)-

bimodules, all assumptions of Theorem 2.3 are indeed satisfied.

5.2. Together with the observations 5.1(a)—(c), Theorem 2.3 yields:

LEMMA. For a ring homomorphism p: R — S, the extension-of-scalars functor S @ (=) : R-
mod — S-mod is comonadic whenever it reflects isomorphisms and Homz(p, Q/Z) : Homz(S, Q/Z) —
Homy (R, Q/Z) is a split epimorphism of (R, R)-bimodules.
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5.3. Let us see what it means for the homomorphism Homg(p, Q/Z) involved in Lemma 5.2 to
be a split epimorphism of (R, R)-bimodules. By the Yoneda Lemma this property holds if and
only if

Hompg(A, Homgz(p, Q/Z)) : Hompggrer (A, Homz (S, Q/Z)) — Hompgror (4, Homz(R, Q/Z))
is surjective for every (R, R)-bimodule A. Now, the isomorphism
HOII]Z (A ®R®Rop S, Q/Z) ~ HomR®Rop (A, HOIIlZ(S, Q/Z)), (56)

formed similarly to the second isomorphism in (5.1), tells us that the desired split property holds
ifand only if AQ p: A®rgror R — A Qprgrer S is a monomorphism for every R-module A, i.e.
if and only if p: R — S is a pure monomorphism of (R, R)-bimodules.

On the other hand, it is a well-known general fact that a right adjoint functor reflects iso-
morphisms if and only if all components of the counit of adjunction are extremal epimorphisms.
Since the extremal epimorphisms in (R-mod)°? are precisely the monomorphisms in R-mod,
and since in our case these components can be presented as pQr A: RRr A — S ®r A, we con-
clude that the reflection of isomorphisms in Lemma 5.2 is equivalent to the purity of p as a right
R-module homomorphism implies the comonadicity of S ® g (—). Moreover, since comonadicity
always implies reflection of isomorphisms, we obtain:

THEOREM. For a ring homomorphism p: R — S, we have (a)=(b)=(c), with
(a) p is a pure monomorphism of (R, R)-bimodules;

(b) the extension-of-scalars functor S g (—) : R-mod — S-mod is comonadic;
(¢) p is a pure monomorphism of right R-modules.

This is a (corrected version of a) theorem originally proved by Caenepeel [5]; he describes
his arguments as an adoption of Mesablishvili’s arguments [16] to the noncommutative case. A
simplified version of Theorem 5.3 is obtained from its proof in the commutative case, as follows.

54. COROLLARY. For a homomorphism p : R — S of commutative rings, the following
conditions are equivalent:

(a) p is a pure monomorphism of R-modules;
(b) the extension-of-scalars functor S g (—) : R-mod — S-mod is comonadic.

6. FROM MODULES TO ALGEBRAS

6.1. Lemma 2.5 tells us that, for commutative R and S, the comonadicity of the extension-of-
scalars functor for modules implies the same property for algebras. Indeed, we can take diagram
(2.3) to be

(S@r(-))°P

(R-alg)°P (S-alg)°P (6.1)
(R-mod)°® (S-mod)°P,

(S®r(-))°P
where the vertical arrows are the (duals of the) forgetful functors from algebras to modules. Note

that this observation actually applies to many kinds of algebras, and in particular to the following
ones:

(a) arbitrary (not necessarily associative or commutative) algebras, with or without 1;
(b) associative algebras, with or without 1;
(c) (associative and) commutative algebras, with or without 1;
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(d) Lie algebras;
(e) Jordan algebras;
(f) differential algebras.

6.2. It is interesting that the converse is also true, that is, the comonadicity of the extension-of-
scalars functor for any kind of algebras above implies the same property for modules. This again
follows from Lemma 2.5, but this time applied to the diagram

(R-mod)® 2227 (g mod)er (6.2)

l l

(R-alg)°P e (S-alg)°P,

where the vertical arrows are the functors carrying modules M to

(a) M equipped with the zero multiplication if our algebras are not required to have 1;
(b) the semidirect product of M with the ground ring (i.e. R for the left-hand vertical arrow, and
S for the right-hand one).

6.3. Summarizing we obtain:

THEOREM. For a homomorphism p: R — S of commutative rings, the extension-of-scalars
functor S®g (—) : R-mod — S-mod is comonadic if and only if the induced extension-of-scalars
functor S ®g (—) : R-alg — S-alg is comonadic, for any kind of algebras as listed in 6.1(a)—(f).

6.4. REMARK. Like many other things, our previous arguments and Theorem 6.3 easily extend
(under obvious additional conditions) from rings to monoids in a monoidal categories. Omitting
details, let us just mention that since commutativity is involved, those monoidal categories should
actually be symmetric (or at least braided in the sense of [10]). Note also that the straightforward
translation of 6.1 (not 6.2!) from rings to locales would tell us that the comonadicity of the
extension-of-scalars functor for modules over locales implies the comonadicity of the corresponding
functor for locales themselves. In particular, the localic open-surjection descent theorem of Joyal
and Tierney (for modules over locales; see [11]) implies the localic open-surjection descent theorem
of Moerdijk [17]. Unlike these two theorems, the triquotient descent theorem of Plewe [22] is not
covered by the results presented here (see also 4.4). We are omitting details again; however the
relationship between comonadicity and descent will be recalled in the next section.

7. FROM COMONADICITY TO (CO)DESCENT

7.1. It is well known (see 3.7 and 3.8 in [8]), that the basic (bi)fibration over a category C
with pullbacks always satisfies the Beck-Chevalley condition. This simply means that, for every
pullback square

iq

~~

F—
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the canonical morphism between the two composites in the diagram

(ClD) "~ (ClE) (7.2)

t*T Tq*

(CLF)—~(CLB)

is an isomorphism®. We could also express this property more briefly, by saying that for every
object C' in C equipped with a morphism from C' to FE, we have

(ExpF)xpC=E xgC. (7.3)
When C is the opposite category of commutative rings, (7.3) becomes

which in fact holds for every F-module C and has nothing to do with any multiplication on C.
Hence also the (bi)fibration

(Modules over Commutative Rings)°®? — (Commutative Rings)°P (7.5)

satisfies the Beck-Chevalley condition, and of course the same is true for all kinds of algebras
listed in 6.1(a)—(f). From this fact and Theorem 6.3 we obtain:

THEOREM. A homomorphism p : R — S of commutative rings is an effective descent mor-
phism (considered as a morphism S — R in the opposite category of commutative rings) with
respect to any, or to every, (bi)fibration of modules or algebras from 6.1(a)—(f) if and only if the
extension-of-scalars functor S ®g (—) : R-mod — S-mod is comonadic.

7.2. Corollary 5.4 can now be reformulated as:

THEOREM. A homomorphism p : R — S of commutative rings is an effective descent mor-
phism, i.e. it satisfies the equivalent conditions of Theorem 7.1, if and only if it is a pure monomor-
phism of R-modules.

7.3. REMARK. Since the basic fibration for the opposite category of commutative rings is
among those that occur in Theorem 7.1 (see 6.1(c)), we can say that the descent theory of
modules over commutative rings is a special case of what we called global descent (theory) in [8].

REFERENCES

[1] J. Bénabou and J. Roubaud, Monades et descente, C. R. Acad. Sci. 270 (1970) 96-98.

[2] F. Borceux, Handbook of Categorical Algebra 2, Encyclopedia of Mathematics and its Applications, Cam-
bridge University Press (Cambridge 1994).

[3] F. Borceux, Handbook of Categorical Algebra 3, Encyclopedia of Mathematics and its Applications, Cam-
bridge University Press (Cambridge 1994).

[4] F. Borceux, G. Janelidze, and G. M. Kelly, Internal object actions, in preparation.

[5] S. Caenepeel, Galois corings from the descent theory point of view, in: “Galois Theory, Hopf Algebras and
Semiabelian Categories”, Fields Institute Communications, Amer. Math. Soc. (to appear).

[6] S. Eilenberg and G. M. Kelly, Closed Categories, In: Proc. Conf. Categorical Algebra (La Jolla 1965),
Springer-Verlag (Berlin, 1966).

[7] A. Grothendieck, Technique de descente et théorems d’existence en géometrie algebrique, I. Géneralités.
Descente par morphismes fidélement plats, Séminaire Bourbaki 190 (1959).

[8] G. Janelidze and W. Tholen, Facets of Descent I, Applied Categorical Structures 2 (1994) 245-281.

[9] G. Janelidze and W. Tholen, Facets of Descent II, Applied Categorical Structures 5 (1997) 229-248.

6We could also require p = g, as in [8].



FACETS OF DESCENT III: MONADIC DESCENT FOR RINGS AND ALGEBRAS 15

[10] A. Joyal and R. Street, Braided Tensor Categories, Advances in Mathematics 102 (1993) 20-78.

[11] A. Joyal and M. Tierney, An Extension of the Galois Theory of Grothendieck, Memoirs of the American
Mathematical Society 309 (Providence, R.I., 1984).

[12] M. A. Knus and M. Ojanguren, Théorie de la descente et algébres d’Azumaya, Lecture Notes in Math. 389,
Springer-Verlag (Berlin, 1974).

[13] V. Laan, On descent theory for monoid actions, Appl. Categorical Structures (this volume).

[14] S. Mac Lane, Categories for the Working Mathematician, Second Edition, Springer-Verlag (New York 1998).

[15] M. Makkai, Duality and definability in first order logic, Memoirs of the American Mathematical Society 503
(Providence, R.I., 1993).

[16] B. Mesablishvili, Pure morphisms of commutative rings are effective descent morphisms for modules — a
new proof, Theory and Applications of Categories 7 (2000) 38-42.

[17] I. Moerdijk, Descent theory for toposes, Bull. Soc. Math. Belgique 41 (1989) 373-391.

[18] P. Nuss, Noncommutative descent and nonabelian cohomology, K-Theory 12 (1997), 23-74.

[19] J.-P. Olivier, Descente par morphismes purs, C. R. Acad. Sci. Paris Ser. A-B 271 (1970), A821-A823.

[20] R. Pare, On absolute colimits, J. Algebra 19 (1971), 80-97.

[21] B. Pareigis, Non-additive ring- and module theory II: C-categories, C-functors and C-morphisms, Publ.
Math. Debrecen 24 (1977) 351-361.

[22] T. Plewe, Localic triquotient maps are effective descent maps, Math. Proc. Cambridge Philos. Soc. 122
(1997) 17-43.



