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Abstract

For a monad S on a category whose Kleisli category is a quantaloid, we introduce the notion
of modularity, in such a way that morphisms in the Kleisli category may be regarded as V-
(bi)modules (= profunctors, distributors), for some quantale V . The assignment S V is
shown to belong to a global adjunction which, in the opposite direction, associates with every
(commutative, unital) quantale V the prototypical example of a modular monad, namely the
presheaf monad on V-Cat, the category of (small) V-categories. We discuss in particular the
question whether the Hausdorffmonad on V-Cat is modular.

Keywords: modular monad, Kleisli category, quantale, quantaloid, V-(bi)module, V-category,
power-set monad, presheaf monad, Hausdorffmonad.
Mathematics Subject Classification: 18 C 20, 18 D 20, 18 B 35.

1. Introduction

For a monad S on a category , a morphism in the Kleisli category of S is given by a
morphism of type Y S X in . As the carrier of the free Eilenberg-Moore algebra over X,
naturally S X carries additional structure which may be inherited by the relevant hom-set of the
Kleisli category. For example, when S is the power-set monad on Set, so that S X = PX is the free
sup-lattice over the set X, the Kleisli category is the (dual of the) category of sets and relations
and, hence, a quantaloid, i.e., a Sup-enriched category. Less trivially, and more generally, taking
presheaves over a (small) category X defines a monad P on Cat whose Kleisli category is the
(bi)category of categories and bimodules (= profunctors, distributors), the rich structure of which
is a fundamental tool for a substantial body of categorical research. We refer the reader in
particular to [12], [6], [5] and [4], and the extensive lists of references in these papers which point
the reader also to the origins of a theme that seems to have interested researchers for some forty
years. Some of these papers consider the presheaf monad in the enriched context (see [8]), i.e.,
for V-Cat, where V is a symmetric monoidal-closed category (rather than the classical V = Set),
or even a bicategory (see [10], for example). The more manageable case when the bicategory
is just a quantaloid has been considered by Stubbe [13] who exhibits the passage from V to the
category of V-bimodules as a morphism of quantaloids.
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In this paper we consider the further simplified case when V is a quantale, i.e., a one-object
quantaloid which, based on Lawvere’s treatment of metric spaces [9] and Barr’s presentation of
topological spaces [2], has been used to set up a common syntax for various categories of interest
in analysis and topology; see, for example, [3], [11], [7], [14]. Specifically, with (the dual of) the
Kleisli category of the presheaf monad P on V-Cat describing precisely the quantaloid V-Mod
of V-categories and V-modules, we ask ourselves the question when the morphisms of the Kleisli
category of an arbitrary monad S on a category may be treated as V-modules, for some quan-
tale V . To this end we introduce the notion of amodular monad on an abstract category which
asks its Kleisli category to be a quantaloid (and, hence, a 2-category) in which -morphisms
have adjoints. By means of a distinguished “unital” object E in one may then associate with
the monad S a quantale V and establish a fully faithful “comparison functor” from the (dual of
the) Kleisli category to V-Mod. With some natural restrictions on both the objects and mor-
phisms, this fully faithful functor plays the role of a unit of an adjunction between a (very large)
category of modular monads and the category of (commutative unital) quantales, the counits of
which are isomorphisms. In other words, assigning to every V the presheaf monad on V-Cat
defines, up to categorical equivalence, a full reflective embedding of the category of quantales
into a category of modular monads. In setting up this category, some care must be given to the
definition of its morphisms since the assignments S V and V P behave surprisingly
crudely with respect to the natural 2-categorical structures of these categories. We have therefore
used 2-cells only to the minimal extent necessary to answer our original question.

The paper is written in a largely self-contained style; it therefore recalls some known facts,
giving sufficient details in particular on our prototypical example of a modular monad, the
presheaf monad on V-Cat (Section 2). Having already set up a “modular terminology” for
the dual of the Kleisli category of a modular monad in that introductory section, in Section 3
we prove the comparison theorem with the modules of actual V-categories, for some suitable V .
Section 4 contains a detailed discussion of the question to which extent the Hausdorff monad
(see [1]) is modular. Finally, global correspondences between quantales and modular monads
are established in Sections 5 and 6, first in terms of functors that are partially (pseudo-)inverse
to each other, and then in terms of the somewhat suprising adjunction that exhibits the ordinary
category of quantales as a very substantial part of a very large environment of (certain) modular
monads.

2. Modular monads

Let S = (S , ε, ν) be a monad on a category . We denote the opposite of the Kleisli category
of S by

S -Mod .

Hence, its objects are the objects of , and a morphism ϕ : X ◦ Y, also called S -module
from X to Y, is given by a -morphism ϕ : Y S X; composition with ψ : Y ◦ Z is
defined by

ψ ◦ ϕ := νX ·Sϕ·ψ,

and 1∗X := εX : X ◦ X is the identity morphism on X in S -Mod. Extending this notation, one
has the right-adjoint functor

(−)∗ : op S -Mod
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which sends f : X Y in to f ∗ := εY · f : Y ◦ X in S -Mod. We denote its left adjoint
by

(̂−) : S -Mod op,

sending X to S X and ϕ : X ◦ Y to ϕ̂ := νX ·Sϕ : S Y S X in . The adjunction produces
two factorizations of ϕ, namely

ϕ = ϕ̂·εY in and ϕ = ϕ∗ ◦ ιX in S -Mod,

with the morphisms εX serving as counits (in
op), and the morphisms ιX := 1S X : X ◦ S X

as units (in S -Mod). Units and counits are connected by the triangular equalities (which are
special cases of the factorization)

ι̂X ·εS X = 1S X in and ε∗X ◦ ιX = 1
∗
X in S -Mod.

Definition 2.1. We call the monad S on modular if

1. S -Mod carries the structure of a quantaloid, that is: every hom-set carries the structure
of a complete lattice, such that composition in S -Mod from either side preserves arbitrary
suprema;

2. for every morphism f : X Y in , f ∗ : Y ◦ X has a left adjoint in the 2-category
S -Mod, that is: there exists f∗ : X ◦ Y in S -Mod with 1∗X ≤ f ∗ ◦ f∗ and f∗ ◦ f ∗ ≤ 1∗Y;

3. there is an object E in with (E, E) = {1E} and
∨

x : E→X
x∗ ◦ x∗ = 1∗X

for all X in .

For a modular monad S , we always fix the order that makes S -Mod a quantaloid and assume
a fixed choice of the left adjoints f∗ and the distinguished object E; in other words, modularity is
not considered as a property of the monad, but as a structure on it.

Example 2.2. For the power-set monad (P, {−},
⋃
) on Set, when one considers maps ϕ : Y

PX as relations ϕ : X ◦ Y (by writing x ϕ y instead of x ∈ ϕ(y)), P-Mod is simply the
category Rel of sets and relations. Its hom-sets inherit the inclusion order of power-sets, which
makes P-Mod a quantaloid. One takes f∗ : Y PX to be the inverse-image function of f : X

Y in Set, and with E a singleton set, condition 3 of 2.1 amounts to the trivial statement

(∃x ∈ X : u = x& x = v) ⇐⇒ u = v

for all u, v ∈ X. Hence, P is modular.

Example 2.3. Replacing the 2-element chain in PX = 2X by an arbitrary frame V , one general-
izes the previous example, as follows. For f : X Y in Set, PV f : PVX = VX PVY be
left adjoint to V f : VY VX , β β· f ; hence

(PV f )(α)(y) =
∨

x∈ f−1(y)

α(x),
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for all α : X V , y ∈ Y. The maps

x
δX PVX and PVPVX

νX PVX

with δX(x)(x′) = ⊤ (the top element in V) if x = x′ and ⊥ (bottom) else, and with

νX(Σ)(x) =
∨

α∈PVX
Σ(α) ∧ α(x)

for all Σ : VX V , x, x′ ∈ X, give PV the structure of a monad. Using P instead of PV ,
we can describe P-Mod equivalently as the quantaloid V-Rel of sets with V-valued relations
ϕ : X ◦ Y as morphisms. Indeed, maps ϕ : Y PX = VX correspond bijectively to maps
ϕ̃ : X × Y V , and composition in P-Mod becomes the ordinary composition of V-valued
relations:

ψ̃ ◦ ϕ(x, z) = (ψ̃ ◦ ϕ̃)(x, z) =
∨

y∈Y
ψ̃(y, z) ∧ ϕ̃(x, y),

for ψ : Y ◦ Z, x ∈ X, z ∈ Z. The left adjoint f∗ of f ∗ for f : X Y is obtained by
interchanging variables:

f∗(y)(x) = f ∗(x)(y) = ⊤

if f (x) = y, and ⊥ else. Condition 3 of 2.1 is, as in the case V = 2, trivially satisfied also in
general. Consequently, P = PV is a modular monad on Set.

Example 2.4. Let V be a unital quantale (= one-object quantaloid), i.e. a complete lattice with
a binary associative operation ⊗ and a neutral element k such that ⊗ preserves suprema in each
variable. (Every frame V as in 2.3 is a quantale, with ⊗ = ∧, k = ⊤.) The category V-Cat
of (small) V-categories and V-functors has as objects sets X which come with a function X × X

V (whose value on (x, y) we denote by X(x, y)) such that

k ≤ X(x, x) and X(y, z) ⊗ X(x, y) ≤ X(x, z);

morphisms f : X Y satisfy X(x, y) ≤ Y( f (x), f (y)), for all x, y, z ∈ V . The quantale V itself
is a V-category, with the V-category structure V(v,w) = v ! w given by its own “internal hom”
defined by

z ≤ v ! w ⇐⇒ z ⊗ v ≤ w

for all z, v,w ∈ V . Moreover, V-Cat has an “internal hom” with

X ! Y = V-Cat(X, Y) and

(X ! Y)( f , g) =
∨

x∈X
Y
(
f (x), g(x)

)
.

When V is commutative, V-Cat is symmetric monoidal closed, with X ⊗ Y = X × Y and

(X ⊗ Y)
(
(x, y), (x′, y′)

)
= X(x, x′) ⊗ Y(y, y′),

and one can also form the opposite Xop of a V-category X, with Xop(x, y) = X(y, x). Now, the
Yoneda embedding

yX : X P◦VX := (X
op ! V), x X(−, x),
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provides the unit of the presheaf monad (P◦V , y,m) of V-Cat, as follows. Writing P instead of P◦V ,
for f : X Y, the V-functor P f : PX PY is defined by

(P f )(α)(y) =
∨

x∈X
Y
(
y, f (x)

)
⊗ α(x)

for all α ∈ PX, y ∈ Y, and the monad multiplication mX : PPX PX is given by

mX(Σ)(x) =
∨

α∈PX
Σ(α) ⊗ α(x).

We claim that the category P-Mod is precisely the category V-Mod whose objects are V-cat-
egories, and whose morphisms ϕ : X ◦ Y are V-(bi)modules, also called V-distributors or
V-profunctors, given by functions ϕ : X × Y V satisfying

Y(y1, y2) ⊗ ϕ(x2, y1) ⊗ X(x1, x2) ≤ ϕ(x1, y2) (∗)

for all x1, x2 ∈ X, y1, y2 ∈ Y; composition with ψ : Y ◦ Z is defined by

(ψ ◦ ϕ)(x, z) =
∨

y∈Y
ψ(y, z) ⊗ ϕ(x, y). (∗∗)

PROOF. Since (∗) is equivalent to ϕ : Xop ⊗ Y V being a V-functor we may as well think
of ϕ as a V-functor Y PX, writing ϕ(x, y) as ϕ(y)(x). Hence, all we need to verify is that the
composition (∗∗) in V-Mod coincides with the Kleisli composition of P-Mod, i.e.,

∨

y∈Y
ϕ(y)(x) ⊗ ψ(z)(y) = (mX ·Pϕ·ψ)(z)(x) (∗∗∗)

for all ϕ : Y PX, ψ : Z PY in V-Cat, x ∈ X, z ∈ Z. By the Yoneda Lemma the
left-hand side of (∗∗∗) may be rewritten and compared to the right-hand side, as follows:

∨

y∈Y
PX

(
yX(x), ϕ(y)

)
⊗ ψ(z)(y) = (Pϕ)

(
ψ(z)

)(
yX(x)

)

≤ (Pϕ)
(
ψ(z)

)(
yX(x)

)
⊗ yX(x)(x)

≤
∨

α∈PX
(Pϕ)

(
ψ(z)

)
(α) ⊗ α(x)

= mX
(
(Pϕ)

(
ψ(z)

))
(x).

For “≥”, since
(∨

x′∈X
α(x′) ! ϕ(y)(x′)

)
⊗ α(x) ≤

(
α(x) ! ϕ(y)(x)

)
⊗ α(x) ≤ ϕ(y)(x),

one has, for all α ∈ PX,

(Pϕ)
(
ψ(z)

)
(α) ⊗ α(x) =

∨

y∈Y
PX

(
α, ϕ(y)

)
⊗ ψ(z)(y) ⊗ α(x)

≤
∨

y∈Y
ϕ(y)(x) ⊗ ψ(z)(y),

as desired. "
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With suprema formed pointwise (as in V-Rel of 2.3), V-Mod becomes a quantaloid, and it
is easy to check the remaining conditions to confirm that P is modular, by putting f∗(y)(x) :=
Y( f (x), y) for all x ∈ X, y ∈ Y, f : X Y in V-Cat.

Note that Example 2.3 is a special case of 2.4, by restriction to discrete V-categories, i.e.,
sets.

In Section 4 we discuss an example showing that conditions 2, 3 of 2.1 do not follow from
condition 1 of 2.1.

3. Exhibiting Kleisli morphisms as V-modules

The following theorem shows that Example 2.4 exhibits the prototypical modular monad,
and it justifies the module terminology for the morphisms of its Kleisli category.

Theorem 3.1. Let S = (S , ε, ν) be a modular monad on a category . Then there is a unital
quantale V and a functor |−| : V-Cat that can be lifted to a full and faithful homomor-
phism |−| : S -Mod V-Mod of quantaloids such that

op (V-Cat)op
|−|op

S -Mod

op

(−)∗

S -Mod V-Mod|−|
V-Mod

(V-Cat)op

(−)∗

commutes.

PROOF. The monoid structure of V := S -Mod(E, E) = (E, S E) makes V a unital quantale
since S -Mod is a quantaloid. The hom-functor |−| = (E,−) takes values in V-Cat if, for a

object X, we put
|X|(x, y) := y∗ ◦ x∗

for all x, y ∈ |X|. Indeed, the adjunctions x∗ ⊣ x∗ show the V-category laws for |X|, and for a
morphism f : X Y in one obtains the V-functoriality of | f | from

|X|(x, y) = y∗ ◦ 1∗X ◦ x∗ ≤ y
∗ ◦ f ∗ ◦ f∗ ◦ x∗ ≤ ( f ·y)∗ ◦ ( f ·x)∗ = |Y |

(
| f |(x), | f |(x)

)

for all x, y ∈ |X|; here we used the fact that the local adjunctions f∗ ⊣ f ∗ compose, so that func-
toriality of (−)∗ produces a pseudofunctor (−)∗ : S -Mod. For ϕ : X ◦ Y in S -Mod
one defines |ϕ| : |X| |Y | in V-Mod by

|ϕ|(x, y) = y∗ ◦ ϕ ◦ x∗

for x ∈ |X|, y ∈ |Y |; V-modularity follows immediately from the local adjunctions. Also, for f : X
Y in , one has

| f ∗|(y, x) = x∗ ◦ f ∗ ◦ y∗ = ( f ·x)∗ ◦ y∗ = |Y |
(
y, | f |(x)

)
= | f |∗(y, x),
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for all x ∈ |X|, y ∈ |Y |. Next we show that |−| : S -Mod V-Mod preserves composition and
suprema. In fact, for ψ : Y ◦ Z and x ∈ |X|, z ∈ |Z| one has:

|ψ ◦ ϕ|(x, z) = z∗ ◦ ψ ◦ 1∗Y ◦ ϕ ◦ x∗

= z∗ ◦ ψ ◦
(∨

y∈|Y |

y∗ ◦ y∗
)
◦ ϕ ◦ x∗

=
∨

y∈|Y |

(z∗ ◦ ψ ◦ y∗) ◦ (y∗ ◦ ϕ ◦ x∗)

=
(
|ψ| ◦ |ϕ|

)
(x, z);

also, for ϕi : X ◦ Y (i ∈ I) and x ∈ |X|, y ∈ |Y |, one has:
∣∣∣∣∣
∨

i
ϕi

∣∣∣∣∣(x, y) = y
∗ ◦

∨

i
ϕi ◦ x∗

=
∨

i
y∗ ◦ ϕi ◦ x∗

=

(∨

i
|ϕi|

)
(x, y).

Furthermore, since

ϕ = 1∗Y ◦ ϕ ◦ 1
∗
X =

∨

x∈|X |,y∈|Y |

y∗ ◦ y∗ ◦ ϕ ◦ x∗ ◦ x∗ =
∨

x,y
y∗ ◦ |ϕ|(x, y) ◦ x∗,

ϕ is in fact determined by |ϕ|, so that |−| : S -Mod V-Mod is faithful. In order to show that
|−| is also full, given a V-module φ : |X| |Y |, one defines

ϕ :=
∨

x,y
y∗ ◦ φ(x, y) ◦ x∗

and obtains

|ϕ|(x′, y′) =
∨

x,y

(
y′
)∗
◦ y∗ ◦ φ(x, y) ◦ x∗ ◦ (x′)∗

=
∨

x,y
|Y |(y, y′) ◦ φ(x, y) ◦ |X|(x′, x)

= φ(x, y),

with the last equality arising from the V-modularity of φ. "

Remark 3.2. The 2-functor |−| : S -Mod V-Mod of 3.1 is not only full and faitful at the
1-cell level, but also at the 2-cell level, that is:

|−| : S -Mod(X, Y) V-Mod
(
|X|, |Y |

)

is an order-isomorphism, for all objects X, Y in . Indeed, if |ϕ| ≤ |ψ| for ϕ,ψ : X ◦ Y, then

ϕ =
∨

x,y
y∗ ◦ |ϕ|(x, y) ◦ x∗ ≤

∨

x,y
y∗ ◦ |ψ|(x, y) ◦ x∗ = ψ.
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Remark 3.3. For = V-Cat with a commutative unital quantale V and S = P◦V = P as
in Example 2.4, the construction of Theorem 3.1 reproduces the given V as P-Mod(E, E) =
V-Cat(E, PE), with E the singleton V-category that is neutral w.r.t. the tensor product of V-Cat.
Indeed, V-functors E (Eop ! V) ! V correspond to elements of V , which produces an
isomorphism V-Mod(E, E) ! V of quantales. In fact, one also has (in the notation of 3.1) |X| ! X
for every V-category X, in particular |V | ! V (as V-categories). Consequently, both horizontal
functors in the diagram of 3.1 become equivalences of categories.

Theorem 3.1 offers two ways of making a category which carries a modular monad into
an ordered category, by either declaring |−| : V-Cat to be full and faithful on 2-cells, or
(−)∗ : op S -Mod; fortunately, the two options are equivalent.

Proposition 3.4. With the assumptions and notations of Theorem 3.1, one has | f | ≤ |g| in V-Cat
if, and only if, f ∗ ≤ g∗ in S -Mod, for all morphisms f , g : X Y in .

PROOF. By the definition of the 2-categorical structure of V-Cat, | f | ≤ |g| means

1∗E ≤ |Y |(| f |(x), |g|(x)) = x
∗ ◦ g∗ ◦ f∗ ◦ x∗

for all x ∈ |X|. Consequently,

1∗X =
∨

x∈|X |

x∗ ◦ x∗ ≤
∨

x∈|X |

x∗ ◦ x∗ ◦ g∗ ◦ f∗ ◦ x∗ ◦ x∗ ≤ g∗ ◦ f∗

and, hence, f ∗ ≤ g∗ by adjunction. The converse implication is obvious. "

Corollary 3.5. A category with a modular monad becomes a 2-category when one puts

f ≤ g :⇐⇒ | f | ≤ |g| ⇐⇒ f ∗ ≤ g∗.

This way all functors of the diagram of 3.1 become full and faithful on 2-cells.

4. The Hausdorffmonad

For a commutative unital quantale V , let (H, {−},
⋃
) denote the Hausdorff monad on V-Cat

which is a lifting of the power set monad 2.2 of Set along the forgetful functor V-Cat Set
(see [1]). Hence, HX = PX as sets, and

HX(A, B) =
∧

x∈A

∨

y∈B
X(x, y)

=
∧

x∈X

X(x, A)! X(x, B),

where X(x, B) =
∨
y∈B X(x, y), for all A, B ⊆ X, X in V-Cat. An H-module ϕ : X ◦ Y is a

V-functor ϕ : Y HX, i.e., ϕ must satisfy

Y(y, y′) ≤ HX
(
ϕ(y), ϕ(y′)

)

for all y, y′ ∈ Y, that is
Y(y, y′) ⊗ X

(
x, ϕ(y)

)
≤ X

(
x, ϕ(y′)

)
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for all x ∈ X. Composition of ϕ with ψ : Y ◦ Z is given by

(ψ ◦ ϕ)(z) =
⋃

y∈ψ(z)
ϕ(y)

for all z ∈ Z. Finally, for f : X Y in V-Cat, f ∗ : Y ◦ X is given by f ∗(x) = { f (x)} for all
x ∈ X.

We discuss two options for making H-Mod into a quantaloid:

A. ϕ ≤ ϕ′ :⇐⇒ ∀y ∈ Y : ϕ(y) ⊆ ϕ′(y),
B. ϕ # ϕ′ :⇐⇒ ∀y ∈ Y : ϕ(y) ≤ ϕ′(y) (in the V-category HX),

⇐⇒ ∀y ∈ Y : k ≤ HX
(
ϕ(y), ϕ′(y)

)
,

for ϕ, ϕ′ : X ◦ Y in H-Mod.
Of course, “#” fails to be separated in general, but this is not essential, i.e., Definition 2.1

may be relaxed by dropping the antisymmetry requirement for the lattice structure of the hom-
sets, without any detrimental effect on the subsequent theory; however, see Remark 4.3 below.
With this proviso we may state:

Proposition 4.1. H-Mod becomes a quantaloid under both orders, ≤ and #.

PROOF. For ϕi : X ◦ Y (i ∈ I) in H-Mod, ϕ(y) :=
⋃
i∈I ϕi(y) defines a supremum under either

order, which is easily seen to be preserved by composition in H-Mod from both sides. "

The principal difference of the two structures is exhibited when we look at the order induced
on V-Cat by (−)∗ : V-Cat H-Mod (see 3.4): for f , f ′ : X Y in V-Cat one has:

A. f ∗ ≤ g∗ ⇐⇒ ∀x ∈ X :
{
f (x)

}
⊆

{
g(x)

}
⇐⇒ f = g,

B. f ∗ # g∗ ⇐⇒ ∀x ∈ X : k ≤ X
(
f (x), g(x)

)
⇐⇒ f ≤ g (in V-Cat).

Briefly, (−)∗ induces the discrete order on V-Cat under option A, and the “natural” order under
option B.

Assume now that f ∗ : Y ◦ X has a left adjoint f∗ : X ◦ Y in H-Mod. Since

( f ∗ ◦ f∗)(x) = f∗
(
f (x)

)
, ( f∗ ◦ f ∗)(y) = f

(
f∗(y)

)

for all x ∈ X, y ∈ Y, under option A the adjointness conditions amount to

x ∈ f∗
(
f (x)

)
and f∗(y) ⊆ f −1(y),

for all x ∈ X, y ∈ Y. In addition, V-functoriality of f∗ : Y HX implies

Y(y, y′) ≤
∨

x′∈ f∗(y′)
X(x, x′) (∗)

for all y ∈ Y, x ∈ f∗(y). In case V = 2, so that V-Cat = Ord is the category of (pre)ordered sets
and monotone maps, these conditions force f : X Y to have an up-closed image: whenever
f (x) ≤ y′, then y′ = f (x′) for some x′ ≥ x. But monotonicity of f does not guarantee its image
to be up-closed.
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Under option B the adjointness conditions are equivalently described by

k ≤ X
(
x, f∗

(
f (x)

))
and f∗(y) ⊆ {x ∈ X | f (x) ≤ y}

for all x ∈ X, y ∈ Y. These conditions are trivially satisfied if, conversely, we now define f∗ by

f∗(y) :=
{
x ∈ X | f (x) ≤ y

}
=

{
x ∈ X

∣∣∣ k ≤ X
(
f (x), y

)}

for all y ∈ Y. In case V = 2, f∗ satisfies also the (quite restrictive) V-functoriality condition (∗).
In addition, condition 3 of 2.1 is trivially satisfied.

These findingsmay be expressed in terms of the ordinary relational composition ◦, as follows:

Proposition 4.2. The Hausdorff monad H on Ord (= 2-Cat) becomes modular if one orders
H-Mod(X, Y) by

ϕ # ϕ′ ⇐⇒ ϕ ⊆ ϕ′ ◦ (≤X),

but not when one uses (ϕ ≤ ϕ′ ⇐⇒ ϕ ⊆ ϕ′). Here, a relation ϕ from X to Y is an H-module if,
and only if, (≤Y ◦ ϕ) ⊆ (ϕ ◦ ≤X). With E a singleton set, the functor

|−| : H-Mod 2-Mod

of 3.1 assigns to ϕ the relation ϕ ◦ (≤X); it makes the (pre)ordered sets H-Mod(X, Y) and
2-Mod(X, Y) equivalent (as categories), but not necessarily isomorphic.

Here is the reason for this last statement:

Remark 4.3. Since# fails to be antisymmetric, in general the functor |−| : H-Mod 2-Mod
of 4.2 is not necessarily faithful (on 1-cells) but satisfies only

|ϕ| = |ϕ′| ⇐⇒ ϕ # ϕ & ϕ′ # ϕ′.

However, |−| : Ord Ord = 2-Cat of 3.1 is an equivalence of categories.

5. A functorial correspondence between modular monads and quantales

We describe the assigment S V of Theorem 3.1 as a functor

∆ : MODMON Quant .

Here Quant has as objects unital quantales, and a morphism Φ : V W must preserve
suprema and themonoid structure given by the tensor product. The (very large) categoryMODMON
has as objects categories equipped with a monad S = (S , ε, ν), a distinguished object E in
and a fixed order that makes S -Mod a quantaloid and S modular. A morphism

(F,α) :
(
, (S , ε, ν), E

) (
, (T, η, µ),D

)

of modular monads consists of a functor F : and a natural transformation α : FS
TF such that FE ! D, α·Fε = ηF, α·Fν = µF·Tα·αS , and the induced functor

(̃F,α): S -Mod T -Mod
10



preserves suprema, i.e., is a morphism of quantaloids. Functoriality of

(̃F,α) :
(
X

ϕ
◦ Y

) (
FX

αX ·Fϕ
◦ FY

)

is in fact guaranted by the preceding conditions, while preservation of suprema amounts to the
condition

αX ·F
(∨

i
ϕi

)
=

∨

i
(αX ·Fϕi),

for all ϕi : X ◦ Y, i ∈ I. Now ∆(F,α) is simply a hom-map of the functor (̃F,α):

∆(F,α) := (̃F,α)E,E : V = S -Mod(E, E) W = T -Mod(D,D),

which is indeed a morphism in Quant. Functoriality of ∆ follows from the easily checked fact

˜(G, β)(F,α) = (̃G, β)(̃F,α),

with (G, β) : ( , T,D) ( ,U,C) and

(G, β)(F,α) = (GF, βF·Gα)

inMODMON.
Calling a modular monad S on commutative if the quantale ∆( , S , E) = S -Mod(E, E)

is commutative, one has the restricted functor

∆ : CMODMON CQuant

of commutative objects on both sides. Next we will show that Example 2.4 provides the object
function of a functor Γ in the opposite direction:

V ΓV = (V-Cat, P◦V , EV ),

with EV = E as in Remark 3.3. For a morphism Φ : V W of commutative unital quan-
tales, one defines the morphism ΓΦ in CMODMON, as follows. First of all, without change of
notation we can regard Φ as a functor

V-Cat W-Cat, X ΦX = X,

keeping underlying sets fixed and mapping structures by Φ:

(ΦX)(x, y) = Φ
(
X(x, y)

)
,

for all x, y ∈ X. In fact, Φ may be (more generally) regarded as a functor

V-Mod W-Mod, (X
ϕ
◦ Y) (ΦX

Φϕ
◦ ΦY),

with (Φϕ)(x, y) = Φ(ϕ(x, y)) for all x ∈ X, y ∈ Y. One then has

Φ( f ∗) = (Φ f )∗, Φ( f∗) = (Φ f )∗
11



for all f : X Y in V-Cat. We will show that the functor V-Mod W-Mod above is in
fact induced by a morphism

(Φ, π) : (V-Cat, P◦V , EV ) (W-Cat, P◦W , EW),

as
(̃Φ, π) : V-Mod = P◦V -Mod W-Mod = P◦W -Mod,

where now Φ is regarded as a functor V-Cat W-Cat. In order to define the natural trans-
formation

π = πΦ : ΦP◦V P◦WΦ,

for a V-category X we let

πX : Φ(Xop ! V)
(
(ΦX)op ! W

)

assign to every V-functor α : Xop V the map (x Φ(α(x)). This map is indeed a
W-functor since

(ΦX)(x, y) = Φ
(
X(x, y)

)
≤ Φ

(
α(y) ! α(x)

)
≤ Φ

(
α(y)

)
! Φ

(
α(x)

)
,

for all x, y ∈ X. Moreover, πX is a W-functor since

Φ

(∧

x∈X
α(x) ! β(x)

)
≤

∧

x∈X
Φ
(
α(x) ! β(x)

)
≤

∧

x∈X
Φ
(
α(x)

)
! Φ

(
β(x)

)
,

for all α, β ∈ P◦VX. While one immediately sees that (̃Φ, π) is indeed the functor V-Mod
W-Mod described above, it is a bit more laborious to verify the remaining requirements for (Φ, π)
being a morphism inMODMON, namely:

Lemma 5.1. π : ΦP◦V P◦WΦ is a natural transformation with π·ΦyV = yWΦ and π·ΦmV =

mWΦ·P◦Wπ·πP
◦
V .

PROOF. The commutativity of the diagrams

P◦WΦX P◦WΦYP◦WΦ f=P
◦
W f

ΦP◦VX

P◦WΦX

πX

ΦP◦VX ΦP◦VY
ΦP◦V f=P

◦
V f

ΦP◦VY

P◦WΦY

πY ΦX

P◦WX
yΦX

ΦP◦VX

ΦX

ΦyX=yX
ΦP◦VX

P◦WX

πX

is immediate, for all f : X Y in V-Cat:

P◦W f
(
πX(α)

)
(y) =

∨

x∈X

Φ
(
Y
(
y, f (x)

))
⊗Φ

(
α(x)

)

= Φ

(∨

x∈X
Y
(
y, f (x)

)
⊗ α(x)

)

= Φ
(
P◦V f (α)(y)

)

= πY
(
P◦V f (α)

)
(y),

πX
(
yX(x)

)
(x′) = Φ

(
X(x′, x)

)
= yΦX (x)(x′),

12



for all x, x′ ∈ X, y ∈ Y, α ∈ P◦VX. For the commutativity of

ΦP◦VP
◦
VX P◦WΦP

◦
VX

πP◦V X P◦WΦP
◦
VX P◦WP

◦
WΦX

P◦WπX
ΦP◦VP

◦
VX

ΦP◦VX

ΦmX=mX

P◦WP
◦
WΦX

P◦WΦX

mΦX

ΦP◦VX P◦WΦXπX

let Σ ∈ P◦VP
◦
VX and x ∈ X; then

πX
(
mX(Σ)

)
= Φ

(
mX(Σ)(x)

)

= Φ

( ∨

α∈P◦VX

Σ(α) ⊗ α(x)
)

=
∨

α∈P◦VX

Φ
(
Σ(α)

)
⊗ Φ

(
α(x)

)
.

On the other hand,

mΦX
(
P◦WπX

(
πP◦VX(Σ)

))
=

∨

β∈P◦WΦX

P◦WπX
(
πP◦VX(Σ)

)
(β) ⊗ β(x)

=
∨

β∈P◦W (ΦX)

∨

α∈P◦VX

P◦W (ΦX)
(
β, πX(α)

)
⊗ πP◦VX(Σ)(α) ⊗ β(x)

=
∨

α∈P◦VX

Φ
(
Σ(α)

)
⊗

( ∨

β∈P◦W (ΦX)
P◦W (ΦX)

(
β, πX(α)

)
⊗ β(x)

)
.

Hence, it suffices to show
∨

β∈P◦W (ΦX)
P◦W(ΦX)

(
β, πX(α)

)
⊗ β(x) = Φ

(
α(x)

)
;

but
P◦W(ΦX)

(
β, πX(α)

)
⊗ β(x) ≤

(
β(x) ! Φ

(
α(x)

))
⊗ β(x) ≤ Φ

(
α(x)

)

for all β ∈ P◦W (ΦX), and for β := ΦX(−, x) one has with the Yoneda Lemma

P◦W(ΦX)
(
β, πX(α)

)
⊗ β(x) ≥ πX(α)(x) ⊗ΦX(x, x) ≥ Φ

(
α(x)

)
.

"

Since functoriality of ∆ follows immediately from the definitions, we are now ready to sum-
marize what we have proved so far:

Theorem 5.2. There are functors

CQuant CMODMON
Γ

CQuant CMODMON
∆

with ∆Γ ! 1.

The question to “which extent” this pair of functors is adjoint is discussed in the next section.
13



6. An adjunction between modular monads and quantales

For a commutative monad S on with distiquished object E we first revisit the functors
|−| : V-Cat and |−| : S -Mod V-Mod of 3.1 (with V = S -Mod(E, E)) and show:

Proposition 6.1. There is a natural transformation γ such that
(
|−|, γ

)
: ( , S , E) ΓV

is a morphism of monads with (̃|−|, γ) = |−| : S -Mod V-Mod.

PROOF. For X in one defines

γX : |S X| P◦V |X| =
(
|X|op ! V

)

by γX(ϕ)(x) = ϕ ◦ x∗, for all ϕ ∈ |S X| = (E, S X) = S -Mod(X, E) and x ∈ |X| = (E, X).
With y ∈ |X| one has

γX(ϕ)(y) ◦ |X|(x, y) = ϕ ◦ y∗ ◦ y∗ ◦ x∗ ≤ ϕ ◦ x∗ = γX(ϕ)(x)

and then |X|(x, y) ≤ γX(ϕ)(y) ! γX(ϕ)(x), so that γX(ϕ) : |X|op V is indeed a V-functor.
In order to show that γX is a V-functor, we recall from Section 2 that the V-module ϕ may be
written as ϕ = ϕ∗ ◦ ιX and, with ψ ∈ |S X|, we obtain:

|S X|(ϕ,ψ) ◦ γX(ϕ)(x) = ψ∗ ◦ ϕ∗ ◦ ϕ ◦ x∗
= ψ∗ ◦ ϕ∗ ◦ ϕ

∗ ◦ ιX ◦ x∗
≤ ψ∗ ◦ ιX ◦ x∗
= γX

(
ψ(x)

)

for all x ∈ |X|, hence |S X|(ϕ,ψ) ≤ P◦V |X|(γX(ϕ), γX(ψ)). For f : X Y in , the diagram

P◦V |X| P◦V |Y |P◦V | f |

|S X|

P◦V |X|

γX

|S X| |S Y |
|S f |

|S Y |

P◦V |Y |

γY

commutes since for all ϕ ∈ |S X| and y ∈ |Y | one has:

P◦V | f |
(
γX(ϕ)

)
(y) =

∨

x∈|X |

γX(ϕ)(x) ◦ |Y |
(
y, | f |(x)

)

=
∨

x∈|X |

ϕ∗ ◦ ιX ◦ x∗ ◦ ( f ·x)∗ ◦ y∗

= ϕ∗ ◦ ιX ◦

(∨

x∈|X |

x∗ ◦ x∗
)
◦ f ∗ ◦ y∗

= ϕ∗ ◦ ιX ◦ f ∗ ◦ y∗
= ϕ∗ ◦ (S f )∗ ◦ ιY ◦ y∗
= (S f ·ϕ)∗ ◦ ιY ◦ y∗
= γY (S f ·ϕ)(y)
=

(
γY ·|S f |

)
(ϕ)(y).

14



Hence, γ is a natural transformation. Finally, we must check that the following diagram com-
mutes:

|S S X| P◦V |S X|
γS X P◦V |S X| P◦VP

◦
V |X|

P◦VγX
|S S X|

|S X|

|νX |

P◦VP
◦
V |X|

P◦V |X|

m|X|

|S X| P◦V |X|
γX

|X|

|S X|

|εX |

|X|

P◦V |X|

y|X|

But for all x, y ∈ |X| one has:

γX
(
|εX |(x)

)
(y) = (εX ·x)∗ ◦ ιX ◦ y∗ = x∗ ◦ ε∗X ◦ ιX ◦ y∗ = x

∗ ◦ y∗ = y|X |(x)(y).

Furthermore, for all θ ∈ |S S X| and x ∈ X one obtains:

γX
(
|νX |(θ)

)
(x) = γX(νX ·θ)(x)
= θ∗ ◦ ν∗X ◦ ιX ◦ x∗
= θ∗ ◦ ιS X ◦ ιX ◦ x∗

=
∨

ϕ∈|S X |

θ∗ ◦ ιS X ◦ ϕ∗ ◦ ϕ
∗ ◦ ιX ◦ x∗.

Using the Yoneda Lemma one may rewrite

ϕ∗ ◦ ιX ◦ x∗ = γX(ϕ)(x) =
∨

α∈P◦V |X |

P◦V |X|
(
α, γX(ϕ)

)
◦ α(x),

which then gives

γX
(
|νX |(θ)

)
(x) =

∨

α∈P◦V |X |

∨

ϕ∈S X
θ∗ ◦ ιS X ◦ ϕ∗ ◦ P◦V |X|

(
α, γX(ϕ)

)
◦ α(x)

=
∨

α∈P◦V |X |

P◦VγX
(
γS X(θ)

)
(α) ◦ α(x)

= m|X |
(
P◦VγX

(
γS X(θ)

))
(x).

"

For a commutative modular monad S on with distiguished object E and a commutative
unital quantaleW, from 5.2 and 6.1 one obtains the map

CQuant
(
∆( , S , E),W

)
CMODMON

(
( , S , E), ΓW

)

Φ ΓΦ·
(
|−|, γ

)

which, however, cannot be expected to be surjective, not even “up to isomorphism”: for a mor-
phism (F,α) : ( , S , E) (W-Cat, P◦W , EW) to be in its image, FX must have underlying
set (E, X), but one should allow for appropriate isomorphisms. Hence we must restrict the
codomain of the above map appropriately.

15



Definition 6.2. (1) A morphism (F,α) : ( , S , E) ( , T,D) of modular monads is repre-
sentable if there is a natural isomorphism τ : (E,−) (D, F−).

(2) A 2-cell θ : (F,α) (G, β) of morphisms (F,α), (G, β) : ( , S , E) ( , T,D) of
modular monads is a natural transformation θ : F G with Tθ·α = β·θS ; (F,α) and (G, β)
are isomorphic if θ can be chosen to be an isomorphism, i.e., if all θX are isomorphisms.

Remarks 6.3. (1) By the Yoneda Lemma, a natural transformation τ : (E,−) (D, F−)
is completely determined by a morphism i : D FE in , as τX(x) = Fx·i for all x ∈
(E, X). Since (E, E) = {1E} and FE ! D one sees that (F,α) is representable if, and only

if, the maps FE,X : (E, X) (FE, FX) are bijective for all objects X in .
(2) A 2-cell θ : (F,α) (G, β) : ( , S , E) ( , T,D) induces a natural transforma-

tion θ∗ : (G̃, β) (F̃,α) : S -Mod T -Mod with (θ∗)X = (θX)∗ for all object X in .
Since (D,D) ! (D, FE) ! (D,GE) are singleton sets, θE = j·i−1 is an isomorphism,
with the unique morphisms i : D FE, j : D GE in . Consequently, for every
v ∈ V = S -Mod(E, E) one has a commutative diagram

GE GE
(G̃,α)(v)

FE

GE

θ∗E

FE FE
(F̃,α)(v)

FE

GE

θ∗E

◦

◦

◦ ◦

with the horizontal arrows therefore determining the same element in W = T -Mod(D,D).
Consequently: if there is a 2-cell (F,α) (G, β) of morphisms of modular monads, then
∆(F,α) = ∆(G, β).

(3) For a 2-cell θ as above, from the naturality condition θX ·Fx = Gx·θE for all x ∈ (E, X)
and the fact that θE is the only morphism in (FE,GE) one derives immediately: if the fam-
ily (Fx)x∈|X | is jointly epic, then there is at most one 2-cell (F,α) (G, β). When (F,α) is
representable and ( , T,D) = ΓW = (W-Cat, P◦W , EW ) for a commutative unitale quantale W,
the epi-condition is certainly satisfied since there is a bijection

FE,X : (E, X) W-Cat(FE, FX) ! FX.

(4) For any morphism (F,α) : ( , S , E) ( , T,D) of modular monads one has

(F̃,α)( f ∗) = (F f )∗ and (F̃,α)( f∗) = (F f )∗,

for all morphisms f : X Y in . Indeed,

(F̃,α)( f ∗) = αY ·FεY ·F f = ηFY ·F f = (F f )∗;

and since both, (F̃,α)( f∗) and (F f )∗ are left adjoint to (F f )∗, also the second claim holds.

We can now set up the category RCMODMON whose objects are commutative modular
monads (as in CMODMON) but whose morphisms are isomorphism classes of representable
morphisms (F,α) : ( , S , E) ( , T,D); we denote the class of (F,α) by [F,α]. By Re-
mark 6.3(2), the functor

∆ : RCMODMON CQuant, [F,α] ∆(F,α),

is well defined, and we can now state:
16



Theorem 6.4. ∆ has a full and faithful right adjoint Γ. Hence, CQuant is equivalent to a full
reflective subcategory of RCMODMON.

PROOF. With Γ defined by Φ [Φ, πΦ] (see Section 5) we must prove that every morphism

[F,α] : ( , S , E) ΓW = (W-Cat, P◦W , EW)

in RCMODMON with a commutative unital quantale W factors as [F,α] = ΓΦ·[|−|, γ], with a
uniquely determined morphism Φ : V = ∆( , S , E) W of quantales. By Remark 6.3(2),
such Φ must necessarily satisfy

(Φ̃, πφ)( ˜|−|, γ) ! (F̃,α);
in particular, the diagram

V = S -Mod(E, E) V-Mod
(
|E|, |E|

)∼V = S -Mod(E, E)

W-Mod(EW , EW) ! W

(F̃,α)E,E

V-Mod
(
|E|, |E|

)

W-Mod(EW , EW) ! W

Φ

must commute. In other words, up to trivial isomorphisms, Φ is neccessarily given by (F̃,α)E,E .
Conversely, for proving its existence, let us define Φ : V W by Φ(v) = (F̃,α)E,E (v) for

all v ∈ V (thus ignoring trivial bijections). Then Φ is certainly a morphism of quantales (see
Section 5). Furthermore, denoting the underlying Set-functors of V-Cat and by UV and UW ,
respectively, from the representability of (F,α) we obtain a natural isomorphism

UWF
∼ (E,−) = UV |−| = UWΦ|−|,

with |−| : V-Cat and Φ : V-Cat W-Cat as in 3.1 and Section 5. We must
now lift this Set-based isomorphism to a W-Cat-based isomorphism θ : F ∼

Φ|−|. For ease
of computation, we may without loss of generality assume that the Set-based isomorphism is
actually an identity; hence, FX has underlying set (E, X), for all objects X in , and we must
show that FX and Φ|X| have the same W-category structure. But for all x, y ∈ |X| = (E, X)
one has with 6.3(4):

(
Φ|X|

)
(x, y) = Φ

(
|X|(x, y)

)

= Φ(y∗ ◦ x∗)

= (F̃,α)(y∗) ◦ (F̃,α)(x∗)
= (Fy)∗ ◦ (Fx)∗
= (FX)(x, y).

Finally, in order to confirm θ as a 2-cell (F,α) ∼
ΓΦ·(|−|, γ), under the assumption θ = 1 we

must show that the diagram

Φ|S X| Φ
(
P◦V |X|

)ΦγX=γX
Φ
(
P◦V |X|

)
P◦WΦX

πX

FS X

Φ|S X|

P◦WFX

P◦WΦX

FS X P◦WFXαX
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commutes, for all objects X. To this end, let us first observe that αX may be considered a W-
module FX ◦ FS X, and as such is represented as

αX = (F̃,α)(ιX),

with ιX : X ◦ S X in S -Mod (see Section 2). Now, for all ϕ ∈ |S X| and x ∈ X, we obtain:

πX
(
γX(ϕ)

)
(x) = Φ

(
γX(ϕ)(x)

)

= Φ(ϕ ◦ x∗)
= Φ(ϕ∗ ◦ ιX ◦ x∗)

= (F̃,α)(ϕ∗ ◦ ιX ◦ x∗)

= (F̃,α)(ϕ∗) ◦ (F̃,α)(ιX) ◦ (F̃,α)(x∗)
= (Fϕ)∗ ◦ αX ◦ (Fx)∗
= αX(ϕ)(x).

"

Remark 6.5. WhileMODMON carries the structure of a 2-category (see 6.2(2)), the full extent
of this structure is of limited interest for our purposes, since ∆ maps every 2-cell to an iden-
tity morphism: see 6.3(2). Likewise, the natural 2-categorical structure of CQuant, given by
ordering its hom-sets pointwise, is not helpful for our purposes: if Φ,Ψ : V W are mor-
phisms of commutative quantales with Φ(v) ≤ Ψ(v) for all v ∈ V , the natural transformation θ : Φ

Ψ : V-Cat W-Cat with θX = 1X (at the Set-level) will in general not give a 2-cell ΓΦ
ΓΨ.
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