
KLEISLI OPERATIONS FOR TOPOLOGICAL SPACES

DIRK HOFMANN AND WALTER THOLEN

Abstract. The axioms for a topology in terms of open sets follow
necessarily from the intuitive relation of this concept with ultrafil-
ter convergence. By contrast, the intuitive relations between neigh-
bourhood systems or closure operations on the one hand and ultra-
filter convergence on the other lead only to pretopologies. Kleisli
operations, previously used in categorical algebra, greatly facili-
tate categorical descriptions of topological spaces, both in terms of
neighbourhood systems and (ultra)filter convergence relations.

1. Introduction and main results

The development of the notion of topological space was intimately
linked to the need of describing convergence in exact and su�ciently
general terms. The first thesis of this paper is that the topology axioms
for open sets (closure under finite intersection and arbitrary union)
follow necessarily from the usual intuitive notion of convergence of
ultrafilters.

More specifically, for a set X, let us on the one hand consider subsets
⌧ ✓ PX of the power set of X, without imposing any a-priori conditions
on ⌧ , but still thinking of its elements as of “open sets” of X. On
the other hand we consider relations a ✓ UX ⇥ X from the set UX
of ultrafilters on X to X, again without any further condition, but
thinking of (x, x) 2 a as of “x converges to x” and therefore writing
x

a�! x instead. Given ⌧ , it would then be natural to define a =  (⌧)
by

(1) x
a�! x () 8A 2 ⌧ (x 2 A =) A 2 x)
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(“x converges to x i↵ every open neighbourhood A of x lies in x”).
Conversely, given a, one would naturally define ⌧ = '(a) by

(2) A 2 ⌧ () 8 x
a�! x (x 2 A =) A 2 x)

(“A is open in X i↵ every ultrafilter converging to a point of A is
actually an ultrafilter on A”). It is easy to see that  and ' are order-
reversing maps (w.r.t. “✓”)

(3) PPX
 

// P (UX ⇥X)
'

oo

which, in fact, constitute a Galois correspondence:

⌧ ✓ '( (⌧), a ✓  ('(a))

for all ⌧ ✓ PX, a ✓ UX ⇥X. We prove in Section 2:

Theorem A. The subsets ⌧ ✓ PX closed under the Galois correspon-

dence (3) are exactly the topologies on X.

In order to describe the relations a ✓ UX⇥X closed under (3) most
elegantly, in Section 2 we recall from [5] the co-Kleisli composition a⇤b
for such structures, which is associative and has a right neutral element

e⇤X (where x
e⇤X�! x means that x is the principal ultrafilter over x).

Then topologies correspond bijectively to convergence structures sat-
isfying a simple reflexivity/extensitivity and transitivity/idempotency
condition:

Theorem B. The relations a ✓ UX ⇥ X closed under the Galois

correspondence (3) are those satisfying

e⇤X ✓ a and a ⇤ a ✓ a.

For finite X these conditions describe just reflexive and transitive
relations on X, leading to the identification of topologies on X with
preorders. For general X, these conditions are equivalent to those used
by Barr [1] in order to represent topological spaces as lax algebras
with respect to the ultrafilter monad, as we explain below (see Section
4). They have their roots in the iterated limit conditions first used by
Kowalsky [8] and Kelley [7], which are nicely presented in [13]. The
proof of Theorem B given in Section 2 is, however, quite di↵erent from
the ones given by those authors.

To some extent the correspondence (3) is presented more easily if we,
like Hausdor↵ [4] did, describe topologies in terms of neighbourhood
systems. Hence, for every function v : X �! FX of a set X into the
set of (proper) filters on X, let us define a ✓ UX ⇥X by

(4) x
a�! x () v(x) ✓ x.
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Conversely, given a, define v by

(5) A 2 v(x) () 8 x
a�! x : A 2 x.

These settings define a Galois correspondence

(6) (FX)X
✓ // P (UX ⇥X)
�

oo

where the set (FX)X of filter-valued functions on X is ordered point-
wise by inclusion. Obviously, the correspondence (6) may be restricted
to one between pretopologies v (satisfying v ✓ eX) and pseudotopologies

a (satisfying e⇤X ✓ a). In Section 3, we introduce a Kleisli composition

v ⇤w for filter-valued functions (which is associative and has a neutral
element eX : X �! FX) and prove the now somewhat surprising:

Theorem C. All functions v : X �! FX are closed under the cor-

respondence (6) while the relations a ✓ UX ⇥ X closed under the

correspondence (6) are those satisfying e⇤X ⇤ a = a. This equivalence

can be restricted to pretopologies on X and those pseudotopologies a
satisfying e⇤X ⇤ a = a, and further to the topological neighbourhood sys-

tems characterized by the conditions v ✓ eX and v ✓ v ⇤ v and the

relations a ✓ UX ⇥X described in Theorem B.

For the sake of completeness, we also mention here the (covariant!)
correspondence

(7) (PX)PX
 // P (UX ⇥X)
�

oo

described in [5], which assigns to any map c : PX �! PX (being
thought of as a closure operation) the relation a ✓ UX ⇥X defined by

(8) x
a�! x () 8A 2 x : x 2 c(A);

conversely, given any a ✓ UX ⇥X, one defines c by

(9) x 2 c(A) () 9 x 2 UX : A 2 x and x
a�! x.

The order-preserving maps , � satisfy

�((c)) ✓ c, a ✓ (�(a))

for all c 2 (PX)PX (ordered pointwise by inclusion) and a 2 P (UX ⇥
X). Obviously, the correspondence (7) may be restricted to one be-
tween extensive functions c (satisfying A ✓ c(A) for all A ✓ X) and
pseudotopologies a (satisfying e⇤X ✓ a).
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Theorem D ([5]). A function c : PX �! PX is closed under the

correspondence (7) if and only if it is additive, and a relation a ✓
UX⇥X is closed under (7) if and only if it satisfies e⇤X ⇤a = a. Hence,

when restricted to extensive functions c and pseudotopologies a, the

fixed elements under (7) are, as for (6), precisely the pretopologies on

X. The mappings  and � then become homomorphisms with respect to

ordinary composition of closure operations and the co-Kleisli operation

for ultrafilter convergence structures.

Theorems C and D make Theorems A and B even more surprising.
Although all three correspondences (3), (6), (7) arise from the same
natural intuition of convergence vis-a-vis the three standard descrip-
tions of topological spaces, in terms of open sets, neighbourhoods, and
closure operations, only the first one yields precisely the topologies as
the fixed structures, whereas the others lead to structures encompass-
ing even the much larger class of pretopologies (for which the closure
operation is not required to be idempotent, i.e. to Čech closure opera-
tions).

We finally need to summarize the categorical context and implica-
tions of this work. The functor U : Set �! Set carries the structure
of a monad, i.e. one has natural transformations e : Id �! U and
m : UU �! U satisfying m(eU) = 1 = m(Ue) and m(mU) = m(Um)
(see [11]), the (strict) Eilenberg–Moore algebras of which had been
identified as the compact Hausdor↵ spaces by Manes [10]. U allows
for a natural extension to a functor U : Rel �! Rel of the category
of sets, with relations as morphisms, maintaining the status of m as a
natural transformation but making the unit e only a so-called op-lax
transformation. Still, for this lax monad U of Rel, one may form the
category Alg U of lax U-algebras. Theorems A and B are the backbone
of the category equivalence Alg U ' Top first established by Barr [1]
(see also [12]). The co-Kleisli operation is simply the Kleisli operation
for the lax comonad U⇤ of the self-dual category Rel, with ⇤ referring
to this self-duality. The question remains what the categorical mean-
ing of Theorem C is. Although the maps v : X �! FX look more
like coalgebra structures, we show in Section 4 how one can naturally
regard them as algebra structures, for a suitable extension of the fil-
ter monad F from Set to (what we call) the Lawvere category Law of
preordered sets, with ordered relations as morphisms [9].

In the same context, F can be used to describe Top categorically
and constructively (without recourse to the Axiom of Choice) in terms
of filter convergence, rather than ultrafilter convergence.
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Categories of Eilenberg-Moore algebras with respect to monads of
Set describe precisely the varieties of general algebras admitting free
algebras (with no restriction on the arities or number of operations),
with Kleisli operations playing a fundamental role in describing the
syntax. Hence, our observations show that lax versions of these tools
are perfectly suitable for general topology.

2. Open sets versus ultrafilter convergence

2.1. Notation. For a relation r ✓ X ⇥ Y from a set X to a set Y we
also write r : X �!X Y ; often we consider r as a function X �! PY ,
hence r(x) = {y 2 Y | xry} (writing xry instead of (x, y) 2 r) for x 2
X and r(A) =

S
x2A r(x) for A ✓ X. The converse of r is denoted by

r⇤ : Y �!X X, and for s : Y �!X Z one has the composite sr : X �!X Z
defined as usual by (x(sr)z () 9 y : xry and ysz).

Recall that a filter a on X is a subset a ✓ PX which (w.r.t. “✓”)
is upwards closed and down-directed (so that finite subsets of a have
lower bounds in a); we also assume a to be proper so that a 6= PX.
More explicitly then, a satisfies: (A 2 a, A ✓ B ✓ X =) B 2 a),
(A, B 2 a =) A \ B 2 a), X 2 a, ; /2 a. Maximal filters (w.r.t.
“✓”) are called ultrafilters. They are characterized by the additional
property (A [ B 2 a =) A 2 a or B 2 a). We denote the set of all
filters on X by FX, while UX is the set of all ultrafilters on X. For
x 2 X, the principal filter on X over x is denoted by eX(x) = ẋ, i.e.

A 2 eX(x) () x 2 A.

For A 2 FFX, the Kowalsky sum mX(A) 2 FX of A is defined by

A 2 mX(A) () A# 2 A,

with A# denoting the set of those filters on X inducing filters on A,
i.e.

a 2 A# () A 2 a.

The maps eX : X �! FX and mX : FFX �! FX restrict to maps
eX : X �! UX and mX : UUX �! UX if we replace filters by
ultrafilters everywhere.

The lattice-theoretical notion dual to filter is ideal. We frequently
use the well-known:

2.2. Extension Lemma. For a filter a and an ideal j on X with a\j =
;, there is an ultrafilter x ◆ a on X with x \ j = ;.
Proof. A standard application of Zorn’s Lemma produces a filter which
is maximal amongst all filters x on X satisfying x ◆ a and x \ j = ;.
Such a filter turns out to be an ultrafilter. ⇤
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2.3. Corollary. For any relation r : X �!X Y , a filter a on X and an

ultrafilter y on Y with r[a] := {r(A) | A 2 a} ✓ y, there is an ultrafilter

x on X with a ✓ x and r[x] ✓ y.

Proof. Apply 2.2 to the ideal j := {A ✓ X | r(A) /2 y}. ⇤
2.4. The correspondence. Definitions (1), (2) of the Introduction
for the correspondence

PPX
 

// P (UX ⇥X)
'

oo

may be written as

x
 (⌧)�! x () ⌧(x) ✓ x,

A 2 '(a) () a⇤(A) ✓ A#,

where ⌧(x) := {A 2 ⌧ | x 2 A} and A# := {x 2 UX | A 2 x}. One has

a⇤
� [

i2I

Ai

�
=

[

i2I

a⇤(Ai),
[

i2I

A#
i ✓

� [

i2I

Ai

�#
,

a⇤
� \

i2I

Ai

�
✓

\

i2I

a⇤(Ai),
\

i2I

A#
i =

� \

i2I

Ai

�#
,

with the last identity requiring finiteness of I. Considering ⌧ = '(a)
we obtain easily:

2.5. Corollary. Subsets ⌧ ✓ PX closed under the Galois correspon-

dence are topologies (of open sets) on X. ⇤
2.6. Proof of Theorem A. It remains to be shown that a topology ⌧
on X is closed under the Galois correspondence 2.4, i.e. '( (⌧)) ✓ ⌧ .
Consider A 2 '(a) with a :=  (⌧); it su�ces to show that for every
x 2 A there is B 2 ⌧(x) with B ✓ A. Assuming the opposite we
would have, for some x 2 A, ⌧(x) \ PA = ;, so that 2.2 would give an
ultrafilter x ◆ ⌧(x) with A /2 x. Hence x

a�! x which, with A 2 '(a),
would imply A 2 x, a contradiction. ⇤
2.7. Co-Kleisli composition. Every relation r : X �!X Y gives a
relation Ur : UX �!X UY defined by

x(Ur)y :() r⇤[y] ✓ x () r[x] ✓ y.

In particular, any relation a : UX �!X X induces a relation Ua :
UUX �!X UX. Writing x

a�! x for xax, we usually write X
a�! x

instead of X(Ua)x. For a : UX �!X X, b : UX �!X X, the operation

a ⇤ b := a(Ub)m⇤
X : UX �!X X
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is described by
(⇤)
x

a⇤b�! x () 9 y 2 UX, X 2 UUX : mX(X) = x, X
b�! y, y

a�! x.

We note that the operation is order-preserving in each variable, asso-
ciative, and satisfies

a ⇤ e⇤X = a and a ✓ e⇤X ⇤ a,

i.e. e⇤X is a strict left and lax right unit for the operation. More im-
portantly for our purposes,  and ' become lax homomorphisms, as
follows:

2.8. Proposition. For ⌧,� ✓ PX and a, b : UX �!X X one has

(1)  (⌧) ⇤  (�) ✓  (⌧ \ �),  (PX) = e⇤X .

(2) '(a) \ '(b) ✓ '(a ⇤ b), '(e⇤X) = PX.

Proof. (1) Putting a =  (⌧), b =  (�), for x
a⇤b�! x we have the right-

hand side of (⇤) and must show (⌧ \ �)(x) ✓ x. But for A 2 ⌧ \ �
with x 2 A one has A 2 y since y

a�! x, and then b⇤(A) 2 X since

X
b�! y. This implies A# 2 X and then A 2 x = mX(X) since from

A 2 � ✓ '( (�)) one knows b⇤(A) ✓ A#. The identity  (PX) = e⇤X
is obvious. (2) follows similarly. ⇤
2.9. Corollary. Relations a : UX �!X X closed under the Galois cor-

respondence 2.4 satisfy

e⇤X ✓ a and a ⇤ a ✓ a.

Proof. The inclusions follow with 2.8(1) from ⌧ ✓ PX and ⌧ \ ⌧ =
⌧ . ⇤

We are aiming at the converse proposition of 2.9. It is convenient to
consider the Zariski topology on UX with respect to which A ✓ UX
is closed if any x 2 UX with

T
A ✓ x lies in A. Note that

T
A ✓ x

is equivalent to x ✓
S
A. The relations a : UX �!X X for which e⇤X

is left-neutral with respect to the co-Kleisli operation are now easily
characterized:

2.10. Lemma [5]. For any a : UX �!X X, e⇤X ⇤ a = a holds if and

only if a⇤(x) is Zariski-closed for every x 2 X.

Proof. “if ” We must show e⇤X⇤a ✓ a. Now, x
e⇤X⇤a�! x means X

a�! eX(x)
for some X 2 UUX with mX(X) = x. To conclude x

a�! x, since
a⇤(x) is Zariski-closed, it su�ces to show

T
a⇤(x) ✓ x. Hence, consider
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A ✓ X with A 2 y whenever y
a�! x, hence a⇤(x) ✓ {y 2 UX |

A 2 y} = A#. Since X
a�! eX(x), we have a⇤(x) 2 X and therefore

A# 2 X, which means A 2 x = mX(X).
“only if ” Let x ✓

S
a⇤(x). We need to show x

a�! x, and for that

it su�ces to confirm x
e⇤X⇤a�! x. Each A 2 x belongs to some y 2 a⇤(x).

Therefore {A# | A 2 x}[ {a⇤(x)} is a filter base on UX which, by 2.3,
can be extended to an ultrafilter X 2 UUX. It follows X

a�! ẋ and

mX(X) = x, hence x
e⇤X⇤a�! x. ⇤

2.11. Proof of Theorem B. Let a : UX �!X X satisfy e⇤X ✓ a and
a ⇤ a ✓ a, hence e⇤X ⇤ a ✓ a ⇤ a ✓ a and therefore e⇤X ⇤ a = a, i.e. a⇤(x)
is Zariski-closed by 2.10. With ⌧ := '(a), we must show  (⌧) ✓ a.

Let x
 (⌧)�! x, that is ⌧(x) ✓ x, where (A 2 ⌧ () a⇤(A) ✓ A#). In

order to derive x
a�! x it su�ces to show

T
a⇤(x) ✓ x since a⇤(x) is

Zariski-closed, and for that it su�ces to show

\
a⇤(x) ✓" ⌧(x) := {A ✓ X | 9B 2 ⌧(x) : B ✓ A}.

Hence, let A 2
T

a⇤(x) and consider

B := {y 2 X | a⇤(y) ✓ A#}.

Then x 2 B, and B ✓ A since e⇤X ✓ a. Finally, to have B 2 ⌧ we
must show a⇤(B) ✓ B#. Suppose y

a�! y with y /2 B#, i.e. B /2 y.
Hence C \ (X \ B) 6= ; for all C 2 y, so that there is z

a�! z 2 C
with A /2 z. Hence {(X \ A)#} [ {a⇤(C) | C 2 y} is a filter base on
UX. Now 2.3 gives X 2 UUX with (X \ A)# 2 X and X

a�! y. With
y

a�! y and a ⇤ a ✓ a this implies mX(X)
a�! y. But since A# /2 X we

have A /2 mX(X), hence y /2 B, as desired. ⇤

2.12. Remarks.

(1) In 2.11, we have in fact
T

a⇤(x) = " ⌧(x), and B is the ⌧ -interior
of A.

(2) Note that the condition e⇤X ✓ a describes pseudotopological (or
Choquet [2]) spaces in terms of ultrafilter convergence, and if
one adds to this the condition e⇤X ⇤ a ✓ a one obtains precisely
pretopological spaces (see Theorems C and D of Section 1 and
[6]).
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3. Neighbourhood systems versus ultrafilter

convergence

3.1. Kleisli composition. On the set

(FX)X = {v | v : X �! FX}

of filter-valued functions of a set X we introduce the operation

v ⇤ w := mX(Fv)w : X �! FX,

with mX : FFX �! FX as in 2.1 (not to be confused with mX :
UUX �! UX as used in 2.7), and with Fv : FX �! FFX the usual
functorial extension of F , so that

A 2 Fv(x) () 9B 2 x : v(B) ✓ A.

Hence, the elementwise description of v ⇤ w is

A 2 (v ⇤ w)(x) () A# 2 Fv(w(x))

() 9B 2 w(x) : v(B) ✓ A#

() 9B 2 w(x)8 y 2 B : A 2 v(y)

() {y 2 X | A 2 v(y)} 2 w(x).

With (FX)X ordered pointwise by inclusion, we obtain an operation
that is order-preserving in each variable and associative and that sat-
isfies

eX ⇤ v = v and v ⇤ eX = v,

i.e. that makes (FX)X a monoid.
From the calculation above we see immediately:

3.2. Proposition. The neighbourhood systems describing topologies on

a set X are exactly the functions v : X �! FX satisfying

v ✓ eX and v ✓ v ⇤ v.

⇤
Let us now turn to the correspondence (6) and establish the coun-

terpart of 2.8, exhibiting ✓ and � as lax and strict antihomomorphisms

respectively, under ⇤:

3.3. Proposition. For v, w : X �! FX and a, b : UX �!X X one

has

(1) ✓(v) ⇤ ✓(w) ✓ ✓(w ⇤ v), ✓(eX) = e⇤X .

(2) �(a) ⇤ �(b) = �(b ⇤ a), �(e⇤X) = eX .
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Proof. (1) With a = ✓(v), b = ✓(w), assume x
a⇤b�! x, so that X

b�!
y

a�! x for some y 2 UX, X 2 UUX with mX(X) = x, hence v(x) ✓ y
and b⇤(B) 2 X for all B 2 y. We must show (w ⇤ v)(x) ✓ x. Indeed, for
every A 2 (w ⇤ v)(x) one has B 2 v(x) with w(B) ✓ A#, which implies
b⇤(B) ✓ A# 2 X and therefore A 2 mX(X) = x. Trivially, ✓(eX) = e⇤X
and �(e⇤X) = eX .

(2) The proof of “✓” of the first identity is similar to (1). To see
�(b ⇤ a) ✓ v ⇤w with v = �(a) and w = �(b), assume A /2 v ⇤w(x). We
conclude that B := {y 2 X | A 2 v(y)} /2 w(x), that is: there is some

x
b�! x with X \ B 2 x. For each y 2 X \ B there exists y

a�! y such
that A /2 y. Hence {(X \ A)#} [ {a⇤(C) | C 2 x} is a filter base, and
from 2.3 we conclude the existence of X 2 UUX with (X \ A)# 2 X

and X
a�! x. Therefore mX(X)

b⇤a�! x but A /2 mX(X), which implies
A /2 �(b ⇤ a)(x). ⇤
3.4. Proof of Theorem C. For any function v : X �! FX, one has

�(✓(v))(x) =
\

{a 2 UX | v(x) ✓ a} = v(x).

On the other hand, given a relation a : UX �!X X, we have

x 2 ✓(�(a))(x) ()
\

a⇤(x) ✓ x.

Therefore ✓(�(a))(x) = a(x) if and only if a⇤(x) is Zariski closed in UX,
hence the characterization given by the Theorem follows from 2.10.

The second part of the statement follows immediately from Propo-
sitions 3.3 and 3.2. ⇤

Finally, for the sake of completeness let us prove that the composition
of the correspondences (3) and (6) yields the usual correspondence
between topologies and the neighbourhood systems describing them.

3.5. Proposition.

(1) For any v : X �! FX and ⌧ = '✓(v) one has

A 2 ⌧ () 8x 2 A9B 2 v(x) : B ✓ A.

(2) For a topology ⌧ ✓ PX and v = � (⌧) one has

A 2 v(x) () 9B 2 ⌧ : x 2 B ✓ A.

Proof. (1) A 2 ⌧ means by definition A 2 x whenever v(x) ✓ x with
x 2 A. Hence “(=” is trivial. Conversely, consider x 2 A and assume
B 6✓ A for all B 2 v(x). Then we can choose x 2 UX with v(x) ✓ x,
X \ A 2 x. But A 2 x by hypothesis, a contradiction.

(2) For any ⌧ ✓ PX and v = � (⌧), A 2 v(x) means by definition
A 2 x whenever ⌧(x) ✓ x. Again, “(=” is trivial, and for “=)”
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suppose B 6✓ A for all B 2 ⌧(x). Then, if ⌧ is a topology and therefore
⌧(x) a filterbase, we can find x 2 UX with ⌧(x) ✓ x, X \A 2 x, leading
to a contradiction as in (1). ⇤

4. Topological spaces as lax Eilenberg-Moore algebras

4.1. Barr’s presentation. The ultrafilter monad U = (U, e, m) of Set

(as defined in 2.1) allows for an extension to the category Rel of sets
with relations as morphisms, as given in 2.7. U remains a functor and
m : UU �! U a natural transformation, but e : IdRel �! U is only
op-lax, that is: for r : X �!X Y in Rel, in general the diagram

(10) X
eX //

✓r U

✏✏

UX

UrU

✏✏

Y eY

// UY

commutes only laxly, not strictly. U-algebras (X, a) over Rel are de-
fined by the lax commutativity conditions

(11) X
eX //

✓
1X !!D

DD
DD

DD
D UX

aU

✏✏

X

UUX
Ua

� //

mX

✏✏

◆

UX

aU

✏✏

UX a
� // X

which may equivalently be displayed as e⇤X ✓ a, a ⇤ a ✓ a; the lax
homomorphisms f : (X, a) �! (Y, b) are maps f : X �! Y satisfying

(12) UX
Uf

//

✓aU

✏✏

UY

bU

✏✏

X
f

// Y

We thus have the category Alg U.
With ',  of (3) one obtains functors

(13) Top
 //

Alg U,
�

oo

(X, ⌧) � // (X, (⌧))

(X,'(a)) (X, a)�oo

in fact a category equivalence, essentially by Theorems A and B.
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4.2. Ord and Law. In Theorem C we use the order relation of FX in
terms of inclusion of filters. We therefore extend the filter monad F =
(F, e,m) of Set (see 2.1) to the category Ord of preordered sets (sets
with a reflexive and transitive relation) and order-preserving maps. For
a preordered set X (with the preorder normally denoted by ), FX is
the set of filters of down(wards)-closed subsets, ordered geometrically
by “◆”; hence

x  y () 8B 2 y9A 2 x : A ✓ B () x ◆ y.

Of course, when X is discrete, every subset of X is down-closed, and
FX has the same meaning as before. A relation r : X �!X Y of
preordered sets is monotone (or a bimodule) if r ✓ X⇤⇥Y is up(wards)-
closed (where X⇤ denotes the object obtained from X by reversing the
preorder); explicitly,

x0  xry  y0 =) x0ry0

for all x, x0 2 X and y, y0 2 Y . Denoting by Law (in honour of
Lawvere [9]) the category of preordered sets with monotone relations
as morphisms, we can now extend F from Set (and Ord) to Law by
defining Fr : FX �!X FY by

x(Fr)y () r⇤[y] ✓ x

() 8B 2 y9A 2 x8x 2 A9 y 2 B : xry.

F remains a functor and m : FF �! F a natural transformation, but
(as for U) e : IdLaw �! F is only op-lax. But we must be careful about
how to regard e and m as monotone relations. There are in fact two
natural embeddings

Ord

�⇤ //

�⇤
// Law.

Both map objects identically, and for a monotone map f : X �! Y
one defines monotone relations

f⇤ : X �!X Y by xf⇤y () f(x)  y,

f ⇤ : Y �!X X by yf ⇤x () y  f(x);

hence �⇤ is covariant and �⇤ contravariant. But this is not the whole
story: with the pointwise order of Ord(X, Y ) and with Law(X, Y ) or-
dered by inclusion, �⇤ gives a contravariant full embedding Ord(X, Y ) �!
Law(X, Y ) and�⇤ a covariant full embedding Ord(X, Y ) �! Law(X,Y ).
Briefly, in 2-categorical language, �⇤ is covariant on 1-cells but con-
travariant on 2-cells, and the converse is true for �⇤. Consequently, we
obtain a lax monad F⇤ = (F, e⇤, m⇤) and a lax comonad F⇤ = (F, e⇤, m⇤)
of Law. In what follows, we shall however use only F⇤.
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4.3. Lax F⇤-algebras. One defines the category Alg F⇤ to have as
objects sets X (considered as discrete preordered sets) with a monotone
relation a : FX �!X X satisfying the conditions

(14) 1X  a(eX)⇤ and a(Fa)  a(mX)⇤

which, by left-adjointness of f⇤ to f ⇤ in the 2-category Law, are equiv-
alently expressed by

(15) e⇤X  a and a(Fa)m⇤
X  a.

Hence, putting a ⇤ a = a(Fa)m⇤
X , we have the same conditions as

in Theorem B, with ultrafilters replaced by filters. Morphisms f :
(X, a) �! (Y, b) are mappings satisfying the continuity condition f⇤a 
bFf⇤. (Note that one has F (f⇤) = (Ff)⇤.) Hence, diagrammatically
Alg F⇤ is defined by

X
(eX)⇤

//

✓
1X !!D

DD
DD

DD
D FX

aU

✏✏

X

FFX
Fa

� //

(mX)⇤
✏✏

◆

FX

aU

✏✏

FX a
� // X

FX
Ff⇤

//

✓aU

✏✏

FY

bU

✏✏

X
f⇤

// Y

4.4. Theorem. Alg F⇤ is equivalent to the category Top.

Proof. (15) amounts to the convergence conditions

eX(x)
a�! x,

�
A

a�! b
a�! x =) mX(A)

a�! x
�

for all x 2 X, b 2 FX, A 2 FFX. Monotonicity of a amounts to

a0 ◆ a
a�! x =) a0

a�! x.

These are precisely the conditions which describe topological spaces
in terms of filter convergence (see [12], [13]). This fact may be seen
also directly using the proofs given in Section 2, by following the
principle that ’up-directed sets of filters behave like sets of ultrafil-
ters’. Specifically, for ultrafilters one has A /2 x =) X \ A 2 x,
whereby for filters holds A /2 a =) X \ A 2 b for some finer filter b.
From that we conlcude that, for a filter a and A ✓ FX up-directed,
a ◆

T
A () a ✓

S
A. ⇤

4.5. Functional description of lax algebras. For an object (X, a)
of Alg F⇤, one has a = v⇤ with a mapping v : X ! FX. In fact, one
takes v(x) :=

T
a⇤(x) and obtains a = v⇤ with the filter version of 2.10.

Condition (15) translates to

(16) eX  v and mX(Fv)v  v
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in Ord, which are precisely the conditions appearing in Theorem C.
Since the continuity condition f⇤a  bFf⇤ translates into (Ff)v  wf
in Ord, we obtain:

4.6. Corollary. The relational description (15) of Top is functional

(in the sense of (16)). ⇤
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[8] H.-J. Kowalsky, Beiträge zur topologischen Algebra, Math. Nachr.

11(1954), 143–186.
[9] F. W. Lawvere, Metric spaces, generalized logic, and closed categories,

Rend. Sem. Mat. Fis. Milano 43(1973), 135–166.
[10] E. G. Manes, A triple theoretic construction of compact algebras, in:

Springer Lecture Notes in Math. 80(1969), 91–118.
[11] S. Mac Lane, Categories for the Working Mathematician, Second Edition,

Springer (New York 1998).
[12] C. Pisani, Convergence in exponentiable spaces, Theory Appl. Categories

5(1999), 148–162.
[13] O. Wyler, Convergence axioms for topology, Ann. New York Academy of

Sciences 806(1995), 465–475.

Dep. de Mathematica, Universidade de Aveiro, 3810-193 Aveiro, Por-

tugal

E-mail address: dirk@mat.ua.pt

Dept. of Mathematics and Statistics, York University, 4700 Keele

St., Toronto, Ontario, M3J 1P3, Canada

E-mail address: tholen@mathstat.yorku.ca


