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Abstract

The paper presents a new definition of closure operator which encompasses the
standard Dikranjan-Giuli notion, as well as the Bourn-Gran notion of normal closure
operator. As is well known, any two closure operators C, D in a category may be
composed in two ways: For a subobject M ! X one may consider DX(CXM) or
DCX(M)(M) as the value at M of a new closure operator D ·C or D ⇤C, respectively.
The two binary operations are linked by a lax middle-interchange law. This paper
explores situations in which the law holds strictly.
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1 Introduction

The most important aspects of the categorical theory of closure operators were pre-
sented by Dikran Dikranjan and Eraldo Giuli in their fundamental article [DG]. The
important role of closure operators in various branches of mathematics has subsequently
been studied in two monographs ([DT], [Ca]) and in a large array of research articles.
We mention here in particular their role in characterizing epimorphisms in many full
subcategories of topological spaces and in settling the question of cowellpoweredness of
such subcategories, as well as their ability to provide a topological intuition for prob-
lems of algebra, especially in torsion and radical theory. A closure operator may also
provide enough structure for an abstract category to be able to regard its objects as
spaces and establish a general theory of separation, compactness, and perfectness: See
[CGT1], [CGT2].

The book [DT] utilizes quite systematically the two ways in which one may compose
a closure operator C with an operator D, called composition (D ·C) and cocomposition
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(D⇤C), and it mentions en passant that a lax middle-interchange law holds for closure
operators:

(C ⇤D) · (E ⇤ F ) 6 (C · E) ⇤ (D · F ) (mil)

(Exercise 4.A in [DT]). The primary purpose of this paper is to present situations
when this law holds strictly. Roughly, we prove that when one of the four operators is
idempotent and weakly hereditary and two others are comparable by order to the first
operator, then (mil) holds strictly, and this fact is characteristic for the idempotency
and weak heredity of the first operator.

The (pre)order of closure operators and its smooth interaction with the two binary
operations make the proofs quite easy. In order to have this order it is essential that,
unlike in the case of more general factorization systems, closure operators provide a
factorization for monomorphisms only, or a suitable subtype of monomorphism. In
the follow-up paper [T] we will present middle-interchange laws for general types of
factorization systems (including weak factorization systems as used in Quillen model
categories), the proofs of which require the replacement of inequalities by certain co-
herent morphisms. In this way, the proofs presented in this paper provide essential
guidance for the considerably more complicated arrow-based proofs in [T].

In order to emphasize the guiding role of closure operators for more general fac-
torization systems we actually give a new definition of closure operator in this paper
which no longer makes any assumptions on the ambient category (in terms of existence
of preimages or direct images), and which leads us directly to the general notion of
factorization system as presented in [T]. Our notion of closure operator encompasses
in particular the notion of normal closure operator as presented in [BG], [CDT].

2 Closure operators

Let M be a class of monomorphisms in a category K which contains all isomorphisms,
is closed under composition with isomorphisms, and satisfies the left-cancellation con-
dition:

n ·m 2M, n 2M =) m 2M .

We refer to morphisms in M as subobjects and write m 6 m0 whenever m = hm0 for
some morphism h; that morphism is uniquely determined and must lie in M when m
and m0 lie in M.

Recall that the morphisms of K form the objects of the arrow category K2 of K;
a morphism (u, v) : m ! n in K2 is given by a pair of morphisms which make the
diagram

· u
//

m
✏✏

·
n

✏✏

· v
// ·

(1)

commute. We can now regard M as a full (and isomorphism-closed) subcategory of
K2; that is, we consider only morphisms in K2 with m, n in the class M.
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Definition 2.1. A closure operator C of M in K is an endofunctor C : M!M with
I 6 C and cod C = cod; here I denotes the identity functor of M, and cod : M! K
is the codomain functor (u, v) 7! v.

Since m 6 Cm, the closure operator facilitates a factorization

m = Cm · �m

of every subobject m, with a uniquely determined morphism �m; furthermore, given
the morphism (1) in M one has the commutative diagram

M
u

//

�m

✏✏

N

�n

✏✏

CXM �u,v
//

Cm
✏✏

CY N

Cn
✏✏

X v
// Y

(2)

Here we have put �u,v := dom C(u, v) (with dom : M ! K the domain functor
(u, v) 7! u). Note that the lower rectangle in (2) commutes since C(u, v) is a morphism
in K2, and that the upper one commutes since the outer rectangle (1) commutes and
Cn is monic in K.

Writing CX(m) instead of Cm (where X = codm) we see that C is given by a
family of maps CX : subX ! subX = {m 2M | codm = X} where

(1) m 6 CX(m) and

(2) m 6 m0 ) CX(m) 6 CX(m0) (consider v = 1X in (2)).

When K has pullbacks of subobjects, so that for all f : X ! Y in K and n 2 subY
there is a pullback diagram

f�1N //

f�1(n)
✏✏

N

n

✏✏

X
f

// Y

(3)

with f�1(n) in subX, we may apply C to (3) in lieu of (1) and obtain

(3) CX(f�1(n)) 6 f�1(CY (n)) .

When K has right M-factorizations (see [DT]), that is, when M is reflective in K2,
then for all f : X ! Y in K and m 2 subX there is a factorization

M //

m

✏✏

f(M)

f(m)

✏✏

X
f

// Y

(4)

we may apply C to (4) in lieu of (1) to obtain

(3’) f(CX(m)) 6 CY (f(m)) .
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Proposition 2.2. A closure operator C of M in K may equivalently be defined by

a family of maps (CX : subX ! subX)X2obK satisfying conditions (1),(2),(3) or

(1),(2),(3’), for all f : X ! Y in K and m, m0 2 subX, n 2 subY , provided that the

required pullbacks or factorizations exist in K, respectively.

Proof. The necessity of the conditions follows from the above considerations, and for
su�ciency see [DT], Lemma 2.4.

The advantage of the Definition 2.1 lies in the fact that it minimizes the conditions
on the category: neither the existence of inverse images nor that of direct images in the
category is required. Hence, it encompasses not only the notion of closure operator as
coined by Dikranjan and Giuli [DG], but also that of a normal closure operator [BG],
[CDT].

Remark 2.3. In 2.1 we have (implicitly) introduced a closure operator C as a pointed
endofunctor � : I ! C with cod� = 1cod, where

·
�m = (�m,1) : m

✏✏

�m
// ·

Cm
✏✏

·
1

// ·

lies componentwise in the class M, for all subobjects m in M. But we could have
equivalently introduced a closure operator as a copointed endofunctor � : eC ! I with
dom � = 1dom, where

·
�m = (1,�m) : �m = eCm

✏✏

1
// ·

m
✏✏

·
�m = Cm

// ·

lies componentwise in the class M, for all subobjects m. We call eC (with �) the
companion of C and note that we may define a closure operator by just defining its
companion.

Definition 2.4. For closure operators C, D the composite D · C is obtained by com-
posing the functor C with D while the cocomposite D ⇤ C is obtained by composing
the (copointed) functor eC with eD, so that

D · C := DC , D̂ ⇤ C := eD eC .

Explicitly, for a subobject m one has the diagram

DCX(M)(M)
�D

eCm
// CX(M)

�D
Cm

//

�C
m = Cm

''

O

O

O

O

O

O

O

O

O

O

O

O

O

DX(CX(M))

D(Cm)

✏✏

M

eD( eCm)

OO

eCm = �C
m

77

p

p

p

p

p

p

p

p

p

p

p

p

m
// X

and
(D · C)(m) = D(Cm), �D·C

m = �D
Cm · �C

m.
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(D̂ ⇤ C)(m) = eD( eCm) , �D⇤C
m = �C

m · �D
eCm

.

Of course the symmetry of composition and cocomposition is lost if one insists in
presenting D ⇤ C ‘directly’, as

(D ⇤ C)(m) = Cm ·D(�C
m) , �D⇤C

m = �D
�C

m
.

Remark 2.5. A closure operator C is in fact a wellpointed ([K]) endofunctor of M,
that is, �C = C�. Likewise, its companion eC is wellcopointed, that is, � eC = eC�.

Definition 2.6. A closure operator C is idempotent if �C : C ! CC is an isomor-
phism, and C is weakly hereditary if � eC : eC eC ! eC is an isomorphism. Hence C is
idempotent if �Cm : CX(M) ! CX(CX(M)) is an isomorphism, and weakly hered-
itary if � eCm = C�m : CCX(M)(M) ! CX(M) is an isomorphism, for all subobjects
m : M ! X. In terms of the pointwise-defined preorder for closure operators, C is

idempotent if C · C 6 C, and weakly hereditary if C 6 C ⇤ C.

The preordered conglomerate CLOP of all closure operators of M in K has a least
element I and a largest element T , the trivial closure operator with T (m : M ! X) =
1X . From [DT] we recall the following easily established facts:

Proposition 2.7.

(1) Composition and cocomposition are associative binary operations on CLOP that

are monotone in each variable.

(2) I is neutral w.r.t. composition and absorbing w.r.t. cocomposition (so that I ⇤
C = C ⇤ I = I), while T is neutral w.r.t. cocomposition and absorbing w.r.t.

composition (so that T · C = C · T = T ).

Note that, as usual, we have written C = D (instead of C ' D) when C 6 D and
D 6 C. We will follow this practice also in what follows.

3 The lax middle-interchange law

Throughout this section we consider closure operators C, D, E, F of M in K and first
prove the lax middle-interchange law (mil):

Proposition 3.1. (C ⇤D) · (E ⇤ F ) 6 (C · E) ⇤ (D · F ).

Proof. For subobjects m : M ! X and n : N ! X we write M 6 N instead of m 6 n
and first note that one has EN (M) 6 EK(M) whenever N 6 K, all to be considered
subobjects of X. In particular,

L := EFX(M)(M) 6 EDX(FX(M))(M) and L 6 FX(M) .

Consequently,

CDX(L)(L) 6 CDX(FX(M))(L) 6 CDX(FX(M))(EDX(FX(M))(M)) .

But the left-hand side is ((C ⇤D) · (E ⇤F ))X(M), and the right-hand side is ((C ·E) ⇤
(D · F ))X(M).
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Remark 3.2.

(1) A ‘morphism-based’ proof of 3.1 will be presented in [T] in greater generality.

(2) The inequality in 3.1 may be as strict as it possibly could get: For C = F = I
and D = E = T one has

(C ⇤D) · (E ⇤ F ) = I < T = (C · E) ⇤ (D · F ) .

Here is an easy application of the lax middle-interchange law 3.1:

Corollary 3.3. D ·C is weakly hereditary if D and C are weakly hereditary, and D⇤C
is idempotent if D and C are idempotent.

Proof. From D 6 D ⇤D and C 6 C ⇤ C one obtains with 3.1

D · C 6 (D ⇤D) · (C ⇤ C) 6 (D · C) ⇤ (D · C) .

Likewise, C · C 6 C and D ·D 6 D imply

(D ⇤ C) · (D ⇤ C) 6 (D ·D) ⇤ (C · C) 6 D ⇤ C .

In what follows we exhibit four situations in which the lax middle-interchange law
holds strictly:

(C ⇤D) · (E ⇤ F ) = (C · E) ⇤ (D · F ) . (MIL)

In each of the four situations described, the application of either side reduces to the
application of one of the four participating closure operators.

Theorem 3.4.

(1) C is idempotent and weakly hereditary if, and only if, (MIL) holds for all D,E, F
with E 6 C 6 D; in this case (C · E) ⇤ (D · F ) = C.

(2) D is idempotent and weakly hereditary if, and only if, (MIL) holds for all C, E, F
with F 6 D 6 C; in this case (C · E) ⇤ (D · F ) = D.

(3) E is idempotent and weakly hereditary if, and only if, (MIL) holds for all C, D, F
with C 6 E 6 F ; in this case (C · E) ⇤ (D · F ) = E.

(4) F is idempotent and weakly hereditary if, and only if, (MIL) holds for all C, D, E
with D 6 F 6 E; in this case (C · E) ⇤ (D · F ) = F .

Proof. (1) When C is idempotent and weakly hereditary one has

C · E 6 C · C 6 C 6 C ⇤ C 6 C ⇤D .
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Consequently,
(C · E) ⇤ (D · F ) 6 C ⇤ (D · F )

6 C ⇤ T
= C
= C · I
6 C · (E ⇤ F )
6 (C ⇤D) · (E ⇤ F ) .

Conversely, assuming (MIL) one obtains C ⇤ C = C when putting D = C, E = I,
F = T , and C = C · C when putting E = C, D = T , F = I.

(2) For D idempotent and weakly hereditary one obtains similarly to (1)

(C · E) ⇤ (D · F ) 6 (C · E) ⇤D
6 D
6 D · (E ⇤ F )
6 (C ⇤D) · (E ⇤ F ) .

Conversely one exploits the choices C = T , E = I, F = D to obtain D · D = D, and
C = D, E = T , F = I to obtain D = D ⇤D.

(3), (4) are shown similarly to (1), (2).

Corollary 3.5. The following assertions are equivalent for a closure operator C:

(i) C is idempotent and weakly hereditary;

(ii) for all D, C · (C ⇤D) = C ⇤ (C ·D);

(iii) for all D, C · (D ⇤ C) = (C ·D) ⇤ C;

(iv) for all D, (C ⇤D) · C = C ⇤ (D · C);

(v) for all D, (D ⇤ C) · C = (D · C) ⇤ C.

If the equivalent conditions hold, the value of each of the composite closure operators

appearing in (ii)-(v) is C.

Proof. One obtains (ii)-(iv) as necessary consequences of (i) by choosing the compa-
rable closure operators in (1)-(4) of Theorem 3.4 to be equal; hence, in (1) of 3.4 one
chooses E = C = D, and so on. One sees that each of (ii)-(v) is su�cient for (i) by
choosing D = I or D = T .
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