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Abstract

For a small quantaloid Q, we consider 2-monads on the 2-category Q-Cat and their lax extensions
to the 2-category Q-Dist of small Q-categories and their distributors, in particular those lax
extensions that are flat, in the sense that they map identity distributors to identity distributors.
In fact, unlike in the discrete case, a 2-monad on Q-Cat may admit only one flat lax extension.
Every ordinary monad on the comma category Set/obQ with a lax extension to Q-Rel gives rise
to such a 2-monad on Q-Cat, and we describe this process globally as a coreflective embedding.
The Q-presheaf and the double Q-presheaf monads are important examples of 2-monads on Q-Cat
allowing flat lax extensions to Q-Dist, and so are their submonads, obtained by the restriction
to conical (co)presheaves and known as the Q-Hausdor↵ and double Q-Hausdor↵ monads, which
we define here in full generality, thus generalizing some previous work in the case when Q is a
quantale, or just the “metric” quantale [0,1]. Their discretization leads naturally to various lax
extensions of the relevant Set-monads used in monoidal topology.

Keywords: quantaloid, Q-category, Q-distributor, 2-monad, lax extension, flat lax extension,
presheaf monad, double presheaf monad, Hausdor↵ monad
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1. Introduction

In order to extend Manes’ [10] description of compact Hausdor↵ spaces via ultrafilter conver-
gence to all topological spaces, Barr [2] employed the prototype of a lax extension of a monad
on Set. Observing that a relation R ✓ X ⇥ Y , when written as a morphism r : X //7 Y in the
category Rel of sets and relations, may be factored as

r = q� � p
�,

where p� : X //7 R is the converse of the graph of the first projection p : R //X and q� : R //7 Y
the graph of the second projection q : R // Y , he extended the ultrafilter functor � : Set // Set
to Rel by putting

�r = (�q)� � (�p)
� : (�X //7 �R //7 �Y ) (⇤)

or, in pointwise terms,

x(�r)y () 9z 2 �R (p[z] = x and q[z] = y),

for all ultrafilters x on X and y on Y ; here p[z] = �p(z) denotes the image of the ultrafilter z under
the map p. While Barr’s extension procedure works well for �, its use beyond its original purpose
seems to be rather limited. For example, when one trades � for an arbitrary Set-functor T , the
procedure yields a lax extension of T to Rel (if and) only if T preserves weak pullback diagrams
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[6]. Generally speaking, there is a price to pay for the reliance on the Cartesian structure of Set
when presenting the relation r : X //7 Y as a subobject of X ⇥ Y .

However, there is another relational factorization which, as we will show in this paper, while
giving an alternative description of the Barr extension when applied to �, lends itself to a vast gen-
eralization to other endofunctors or monads, reaching considerably beyond the Set-environment.
It takes advantage of the fact that the Set-functor � is just the “discrete restriction” of the functor
� : Ord //Ord which, for a (pre)ordered set (X,6), orders the set of ultrafilters on the set X
by

x 6 y () 8A 2 x8B 2 y9x 2 A 9y 2 B (x 6 y).

With this fact in mind, one factors the relation r : X //7 Y of (discretely ordered) sets through
the powerset PX, ordered by inclusion, as

r = ( �r )? � (yX)?,

with the maps yX : X // PX, x 7! {x}, and  �r : Y // PX, y 7! {x 2 X |x r y}; here, for any
monotone map f : (A,6) // (B,6), we denote by f? the order graph {(fx, y) |x 2 A, y 2 B, fx 6
y} of f , while f? = {(y, fx) |x 2 A, y 2 B, y 6 fx}. Now the lax extension � of the Set-functor
� may be described by

�r = (� �r )? � (�yX)? : (�X //7 �PX //7 �Y ) (⇤⇤)

or, in pointwise terms,

x(�r)y () yX [x] 6 �r [y] () 8A 2 x8B 2 y9x 2 A 9y 2 B (x r y),

for all x 2 �X, y 2 �Y .
The extension procedure (⇤⇤) was introduced in [1] more generally for any endofunctor T of

V-Cat in lieu of �, to yield a lax extension of T to the 2-category V-Dist of small V-categories
and their distributors (=(bi-)modules=profunctors), for any commutative quantale V. When
restricted to V-relations (= “discrete” V-distributors), and for V = 2 the two-element chain, so
that V-Cat = Ord, it corresponds to (⇤⇤). Its superiority over (⇤) in terms of applicability is
founded in the use of the presheaf category of a V-category X which, when V = 2, reduces to the
powerset PX in the discrete case, rather than the use of the Cartesian product in Set.

The question remains how one may guarantee a su�cient supply of endofunctors of V-Cat
that can cover the relevant applications. One answer to this question was given in [16] where
it was observed that any monad on Set equipped with a lax extension to V-Rel (the discrete
“skeleton” of V-Dist) gives rise to a monad on V-Cat in a natural way (see also [6]). Another
answer was presented in [9], in the considerably generalized environment in which the quantale V

is traded for a small quantaloid Q (without any commutativity constraints). There we presented
lax extensions to Q-Dist of the presheaf monad and the copresheaf monad on Q-Cat, as well as
their two composite monads. Neither of these four monads may be obtained from a “discrete”
counterpart.

In this paper we merge the aspects of [16, 1, 9] alluded to earlier and present a more compre-
hensive theory of 2-monads on Q-Cat and their lax extensions to Q-Dist, for any small quantaloid
Q. A simple but pivotal observation that was missed in previous works is that a 2-functor T on
Q-Cat may admit only one lax extension T̂ that is flat, so that T̂ maps identities to identities in
Q-Dist. Such lax extension must necessarily be minimal, and there is an easy criterion for the
extension procedure (⇤⇤) applied to T (in lieu of �) to produce the minimal flat lax extension of
T : the 2-functor T must preserve the full fidelity of the Yoneda Q-functor of every Q-category
into its presheaf category. The 2-monads on Q-Cat whose endofunctor satisfies this criterion form
the full subcategory ↵YMnd(Q-Cat) of Mnd(Q-Cat).

By contrast, in the discrete environment, a Set/Q0-monad (with Q0 = obQ) may allow several
flat lax extensions to Q-Rel. Nevertheless, after the preliminaries of Section 2 we start the essence
of this paper in Section 3 in the discrete setting, by showing how every monad on Set/Q0 equipped
with a lax extension to Q-Rel gives rise to a 2-monad on Q-Cat which comes equipped with a lax
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extension to Q-Dist. The lax extensions obtained turn out to be flat, so that this process describes
a full embedding of the meta-category ExtMnd(Set/Q0) of laxly extended Set/Q0-monads into
↵YMnd(Q-Cat). One of the two main results of this paper says that this embedding is coreflective,
with the coreflector given by “discretization” (Theorem 4.6).

The other main insight is given in Section 5 where we show that the principal lax monad
extensions discussed in [6] all arise from an application of the aforementioned coreflector to one
of the four monads on Q-Cat discussed in [9], given by the presheaf and copresheaf monads on
Q-Cat and their two composite monads, as well as by their restrictions to conical (co)presheaves.
As observed by [14] for the presheaf monad, such restriction yields the Hausdor↵ monad, as
introduced in [1] in order to provide a categorical environment for the study of Hausdor↵ and
Gromov distances. The restriction of the double (co)presheaf monads to conical (co)presheaves
is, however, not trivial and requires us to impose the condition that the ambient quantaloid Q be
completely distributive, so that all hom sets of Q are completely distributive lattices: see Theorem
5.8.

2. Quantaloid-enriched categories and their distributors

A quantaloid [12] is a category enriched in the monoidal-closed category Sup [7] of complete
lattices and sup-preserving maps. Explicitly, a quantaloid Q is a 2-category with the 2-cells given
by the order of morphisms, denoted by 6, such that each hom-set Q(p, q) is a complete lattice
and the composition of morphisms from either side preserves arbitrary suprema. Hence, Q has
“internal homs”, denoted by . and & , as the right adjoints of the composition maps

(�) � ↵ a (�). ↵ : Q(p, r) //Q(q, r) and � � (�) a � & (�) : Q(p, r) //Q(p, q);

that is, for all morphisms ↵ : p // q, � : q // r, � : p // r in Q, one has the equivalences

↵ 6 � & � () � � ↵ 6 � () � 6 � . ↵.

Throughout this paper, we let Q be a small quantaloid. From Q one forms a new (large)
quantaloid Q-Rel of Q-relations, with the following data: its objects are those of Set/Q0, with
Q0 := obQ, i.e., sets X equipped with an array (or type) map |-| : X // Q0, and a morphism
r : X //7 Y in Q-Rel is given by a map that assigns to each pair x 2 X, y 2 Y a morphism
r(x, y) : |x| // |y| in Q; its composite with s : Y //7 Z is defined by

(s � r)(x, z) =
_

y2Y

s(y, z) � r(x, y),

and 1�X : X //7 X with

1�X(x, y) =

®
1|x| if x = y,

? else,

acts as the identity morphism onX. AsQ-relations are equipped with the pointwise order inherited
from Q, internal homs in Q-Rel are computed pointwise by

(t. r)(y, z) =
^

x2X

t(x, z). r(x, y) and (s& t)(x, y) =
^

z2Z

s(y, z)& (x, z)t,

for all r : X //7 Y , si : Y //7 Z, t : X //7 Z.
A map f : X // Y in Set/Q0 may be seen as a Q-relation via its graph f� or its cograph f�,

which are given by
f� : X //7 Y, f�(x, y) = 1�Y (fx, y),
f� : Y //7 X, f�(y, x) = 1�Y (y, fx).

(2.i)
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A (small) Q-category is precisely an (internal) monad in the 2-category Q-Rel; or, equivalently,
a monoid in the monoidal-closed category (Q-Rel(X,X), �) for some X over Q0. Explicitly, a Q-
category consists of an object X in Set/Q0 and a Q-relation a : X //7 X such that 1�X 6 a and
a � a 6 a; that is:

1|x| 6 a(x, x) and a(y, z) � a(x, y) 6 a(x, z)

for all x, y, z 2 X. For every Q-category (X, a), the underlying (pre)order on X is given by

x 6 x0 () |x| = |x0| and 1|x| 6 a(x, x0).

A map f : (X, a) //(Y, b) between Q-categories is a Q-functor if it lives in Set/Q0 and satisfies
(any of) the following four equivalent conditions:

(i) f� � a 6 b � f�;
(ii) a � f� 6 f� � b;
(iii) a 6 f� � b � f�;
(iv) 8x, x0 2 X : a(x, x0) 6 b(fx, fx0).

With the pointwise order of Q-functors inherited from Y , i.e.,

f 6 g : (X, a) // (Y, b) () 8x 2 X : fx 6 gx

() 8x 2 X : 1|x| 6 b(fx, gx),

Q-categories and Q-functors are organized into a 2-category, denoted by Q-Cat.
A Q-relation ' : X //7 Y becomes a Q-distributor ' : (X, a) //� (Y, b) if it is compatible with

the Q-categorical structures a and b, in the sense that

b � ' � a 6 ',

in which case one actually has b�'�a = '. With the composition and internal homs calculated in
the same way as for Q-relations, Q-categories and Q-distributors constitute a quantaloid, denoted
by Q-Dist; the identity Q-distributor on (X, a) is given by the hom a : (X, a) //� (X, a).

The set-of-objects functor

o : Q-Cat // Set/Q0, (X, a) 7! X,

has a left adjoint
d : Set/Q0

//Q-Cat, X 7! (X, 1�X),

which embeds Set/Q0 into Q-Cat as a full coreflective subcategory. Furthermore, with no change
on their e↵ect on objects, the functors o and d may be extended to Q-Rel and Q-Dist in an
obvious way, thus yielding respectively a lax 2-functor (not a functor)

o : Q-Dist //Q-Rel

and a 2-embedding
d : Q-Rel //Q-Dist.

Every Q-functor f : (X, a) // (Y, b) induces an adjunction

f⇤ a f⇤ : (Y, b) //� (X, a)

in the 2-category Q-Dist with
f⇤ = b � f�, f⇤ = f� � b. (2.ii)

Hence, there are 2-functors (�)⇤ : Q-Catco //Q-Dist and (�)⇤ : Q-Catop //Q-Dist which map
objects identically and make the diagrams

Q-Catco Q-Dist
(�)⇤

//

Set/Q0

Q-Catco

d

✏✏

Set/Q0 Q-Rel
(�)�

// Q-Rel

Q-Dist

d

✏✏

Q-Catop Q-Dist
(�)⇤

//

(Set/Q0)op

Q-Catop

dop

✏✏

(Set/Q0)op Q-Rel
(�)�

// Q-Rel

Q-Dist

d

✏✏
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commute (where “co” refers to the dualization of 2-cells). Note that

a = (1X)⇤ = 1⇤X ,

for every Q-category X = (X, a). A Q-functor f : X // Y is fully faithful if f⇤ � f⇤ = 1⇤X ; that is,
if a(x, y) = b(fx, fy) for all x, y 2 X.

With {s} denoting the singleton Q-category with only one object s 2 Q0 of array s and hom
1⇤
{s}(s, s) = 1s, Q-distributors of the form � : X //� {s}, called presheaves on X; with |�| = s

and 1⇤
PX(�, ⌧) = ⌧ . � they constitute the Q-category PX. Dually, the copresheaf Q-category

P
†X consists of Q-distributors � : {s} //� X with 1⇤

P†X(�, ⌧) = ⌧ & �.
Every Q-distributor ' : X //� Y induces Q-functors [13] given by

'� : PY // PX, '�⌧ = ⌧ � ', and '� : P†X // P
†Y, '�� = ' � �. (2.iii)

One obtains two pairs of adjoint 2-functors [5], described by

X Y
'
//�

Y PX
 �'
//

( �' y)x = '(x, y) Q-Cat (Q-Dist)op,

(�)⇤
//

(Q-Dist)op,Q-Cat
P

oo ?

('� : PY // PX) �oo (' : X //� Y )

X Y
'
//�

X P
†Y

�!'
//

(�!' x)y = '(x, y) Q-Cat (Q-Dist)co,

(�)⇤
//

(Q-Dist)co,Q-Cat
P

†
oo ?

('� : P†X // P
†Y ) �oo (' : X //� Y )

(2.iv)

The endofunctor of the presheaf 2-monad P = (P, s, y) on Q-Cat induced by (�)⇤ a P sends each
Q-functor f : X // Y to

f! := (f⇤)� : PX // PY ;

the unit y is given by the Yoneda functor

yX =
 �
1⇤X : X // PX, (2.v)

and the monad multiplication s at X is obtained from the counit (yX)⇤ as

sX = (yX)�
⇤
: PPX // PX. (2.vi)

Similarly, the endofunctor of the induced copresheaf 2-monad P† = (P†, s†, y†) on Q-Cat sends f
to

(f⇤)
� : P†X // P

†Y,

with the unit y† given by the co-Yoneda functor

y†X =
�!
1⇤X : X // P

†Y, (2.vii)

and the monad multiplication s† by

s†X = ((y†X)⇤)� : P†
P

†X // P
†X. (2.viii)

3. From laxly extended monads on Set/Q0 to laxly extended monads on Q-Cat

First we recall the “discrete version” of lax extensions of monads (see [17]), by considering
a mere functor T : Set/Q0

// Set/Q0. A lax extension of T to Q-Rel is a lax 2-functor T̂ :
Q-Rel //Q-Rel which agrees with T on objects and satisfies the lax extension conditions

(Tf)� 6 T̂ (f�), (Tf)� 6 T̂ (f�) (3.i)
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for all maps f : X // Y in Set/Q0. The lax extension is flat if these inequalities are in fact
equalities.

The lax 2-functor T̂ is a lax extension of the Set/Q0-monad T = (T,m, e) to Q-Rel if T̂ is a
lax extension of T which makes both m� : T̂ T̂ // T̂ and e� : 1 // T̂ oplax, i.e., which satisfies

(mY )� � T̂ T̂ r 6 T̂ r � (mX)�, (eY )� � r 6 T̂ r � (eX)� (3.ii)

or, equivalently,
T̂ T̂ r 6 (mY )

�
� T̂ r � (mX)�, r 6 (eY )

�
� T̂ r � (eX)�, (3.iii)

for all Q-relations r : X //7 Y .

Proposition 3.1. ([17, 6]) Given T : Set/Q0
// Set/Q0, a lax 2-functor T̂ : Q-Rel //Q-Rel

which coincides with T on objects is a lax extension of T if, and only if,

T̂ (f� � r) = (Tf)� � T̂ r and T̂ (s � f�) = T̂ s � (Tf)�.

for all maps f : X // Y over Q0 and all Q-relations r : Z //7 Y , s : Y //7 Z. In this case, T̂ is

flat if, and only if, for all sets X over Q0,

T̂1�X = 1�TX .

For monads S and T on Set/Q0, a morphism of lax extensions � : (S, Ŝ) // (T, T̂ ) is a monad
morphism � : S // T such that �� becomes an oplax transformation from Ŝ to T̂ , i.e.,

(�Y )� � Ŝr 6 T̂ r � (�X)�,

for all Q-relations r : X //7 Y .
The conglomerate of monads on Set/Q0 and their morphisms constitute the metacategory

Mnd(Set/Q0). The Set/Q0-monads that come equipped with a lax extensions of monads to
Q-Rel and their morphisms form the metacategory ExtMnd(Set/Q0). One easily proves the
following Proposition, similarly to the proof of its non-discrete counterpart that appears below as
Proposition 3.4.

Proposition 3.2. ExtMnd(Set/Q0) is topological over Mnd(Set/Q0).

Lax extensions of Q-Cat-monads may be considered analogously to their discrete prototypes
(see [8]). Given a 2-functor T : Q-Cat //Q-Cat, a lax extension of T to Q-Dist is a lax functor

T̂ : Q-Dist //Q-Dist

which coincides with T on objects and satisfies the lax extension conditions

(T f)⇤ 6 T̂ (f⇤), (T f)⇤ 6 T̂ (f⇤), (3.iv)

for all Q-functors f : X //Y . If these inequalities are in fact equalities, we say that T̂ is flat. By
definition then, a lax extension T̂ of T is flat if, and only if, it makes the diagrams

Q-Dist Q-Dist
T̂

//

Q-Catco

Q-Dist

(�)⇤

✏✏

Q-Catco Q-Catco
T // Q-Catco

Q-Dist

(�)⇤

✏✏

Q-Dist Q-Dist
T̂

//

Q-Catop

Q-Dist

(�)⇤

✏✏

Q-Catop Q-Catop
T

op
// Q-Catop

Q-Dist

(�)⇤

✏✏

commute.
Given a 2-monad T = (T ,m, e) on Q-Cat, T̂ is a lax extension of the monad T if it is a lax

extension of the 2-functor T which makes both m⇤ : T̂ T̂ // T̂ and e⇤ : 1 // T̂ oplax, i.e.,

(mY )⇤ � T̂ T̂ ' 6 T̂ ' � (mX)⇤, (eY )⇤ � ' 6 T̂ ' � (eX)⇤ (3.v)
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or, equivalently,
T̂ T̂ ' 6 (mY )

⇤
� T̂ ' � (mX)⇤, ' 6 (eY )

⇤
� T̂ ' � (eX)⇤, (3.vi)

for all Q-distributors ' : X //� Y .
It is useful to describe the extension conditions (3.iv) equivalently by the left- and right-

whiskering properties, as follows.

Proposition 3.3. For a 2-functor T : Q-Cat //Q-Cat, a lax 2-functor T̂ : Q-Dist //Q-Dist
that agrees with T on objects is a lax extension of T if, and only if,

T̂ (f⇤ � ') = (T f)⇤ � T̂ ' and T̂ ( � f⇤) = T̂  � (T f)⇤,

for all Q-functors f : X // Y and all Q-distributors ' : Z //� Y ,  : Y //� Z. In this case, T̂

is flat if, and only if,

T̂ 1⇤X = 1⇤
T X ,

for all Q-categories X.

Proof. The whiskering conditions give immediately

T̂ f⇤ = T̂ (1⇤Y � f⇤) = T̂ 1⇤X � (T f)⇤ > (T f)⇤

and
T̂ f⇤ = T̂ (f⇤ � 1

⇤

X) = (T f)⇤ � T̂ 1⇤X > (T f)⇤.

Conversely, first notice that, on one hand, one has

T̂ (f⇤ � ') > T̂ f⇤ � T̂ ' > (T f)⇤ � T̂ ',

and, on the other hand, one obtains

T̂ (f⇤ � ') 6 (T f)⇤ � (T f)⇤ � T̂ (f⇤ � ')

6 (T f)⇤ � T̂ f⇤ � T̂ (f⇤ � ')

6 (T f)⇤ � T̂ (f⇤ � f
⇤
� ')

6 (T f)⇤ � T̂ ',

which gives T̂ (f⇤ � ') = (T f)⇤ � ', as desired. The other equation may be checked similarly, and
the non-trivial part of the additional statement follows from the consideration of ' = 1⇤X .

For 2-monads S = (S, n, d) and T = (T ,m, e) on Q-Cat, a morphism of lax extensions � :
(S, Ŝ) // (T, T̂ ) is a morphism � : S // T of monads such that �⇤ : Ŝ // T̂ becomes an oplax
transformation, i.e.,

(�Y )⇤ � Ŝ' 6 T̂' � (�X)⇤,

for all Q-distributors ' : X //� Y .
With these morphisms the 2-monads onQ-Cat which come with a lax extension toQ-Dist con-

stitute the metacategory ExtMnd(Q-Cat). The forgetful functor to the metacategoryMnd(Q-Cat)
behaves well, as we show next.

Proposition 3.4. ExtMnd(Q-Cat) is topological over Mnd(Q-Cat).

Proof. One easily verifies that, for a morphism of 2-monads � : S //T and a lax extension (T, T̂ ),
the initial extension of S induced by � is given by

Ŝ' = (�(Y,b))
⇤
� T̂ ' � (�(X,a))⇤

for all Q-distributors ' : (X, a) //� (Y, b). Thus, for a family of monad morphisms �i : S // Ti

and a family of lax extensions (Ti, T̂i), for each i one has the initial extension (S, Ŝi) induced
by �i. To complete the proof, one needs to show that the meet Ŝ given by Ŝ' =

V
i Ŝi' for all

Q-distributors ' : (X, a) //� (Y, b) is also a lax extension of the monad S. The verification of this
fact is routine.
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Remark 3.5. As a consequence, given a 2-monad T on Q-Cat, on one hand, there is a largest
lax extension T

>; it maps each Q-distributor ' : X //� Y to the greatest distributor from T X
to T Y . On the other hand, the least lax extension also exists, which we will describe explicitly in
Section 4 if T maps every Yoneda functor (2.v) to a fully faithful Q-functor.

We will now show that monads on Set/Q0 laxly extended to Q-Rel induce 2-monads on
Q-Cat that are laxly extended to Q-Dist. For that, first let T̂ be a lax extension of a functor
T : Set/Q0

// Set/Q0. As observed in [16] in the quantalic context, given a Q-category (X, a),
since

1TX 6 T̂1X 6 T̂ a, T̂ a � T̂ a 6 T̂ (a � a) = T̂ a,

(TX, T̂ a) is also a Q-category. If f : (X, a) // (Y, b) is a Q-functor, then

T̂ a 6 T̂ (f� � b � f�) = (Tf)� � T̂ b � (Tf)�

shows that Tf : (TX, T̂ a) // (TY, T̂ b) is also a Q-functor. In this way one obtains a 2-functor

T : Q-Cat //Q-Cat, (X, a) 7! (TX, T̂ a). (3.vii)

Furthermore, if T = (T,m, e) is a monad on Set/Q0 and T̂ is a lax extension of T to Q-Rel,
oplaxness of m� and e� with respect to T̂ implies that, for every Q-category (X, a), both mX :
TTX // TX and eX : X // TX become Q-functors

mX : T̂ T̂ (X, a) // T̂ (X, a), eX : (X, a) // T̂ (X, a). (3.viii)

Hence, the monad T on Set/Q0 with its lax extension T̂ to Q-Rel has been shown to “lift” along
o : Q-Cat // Set/Q0 to a 2-monad (T ,m, e) on Q-Cat, in the sense that one has

oT = To, om = mo, oe = eo. (3.ix)

We will now verify that (T ,m, e) comes with a lax extension to Q-Dist that is obtained from
T̂ in a straightforward manner.

Proposition 3.6. For a monad T on Set/Q0 with a lax extension T̂ to Q-Rel, the 2-functor
T : Q-Cat �! Q-Cat defined by (3.vii) admits a uniquely determined lax extension T̂ to Q-Dist
with oT̂ = T̂o, for the forgetful o : Q-Dist //Q-Rel; it commutes with T̂ also via the “discrete”

d, as shown by the commutative diagrams

Q-Dist Q-Dist
T̂

//

Q-Rel

Q-Dist

d

✏✏

Q-Rel Q-Rel
T̂ // Q-Rel

Q-Dist

d

✏✏

Q-Rel Q-Rel
T̂

//

Q-Dist

Q-Rel

o

✏✏

Q-Dist Q-Dist
T̂ // Q-Dist

Q-Rel

o

✏✏

Furthermore, T̂ is flat, and it yields a lax extension of the monad T = (T ,m, e) to Q-Dist defined

by (3.vii) and (3.viii).

Proof. The constraint oT̂ = T̂o dictates putting T̂ '(x, y) = T̂'(x, y) for every distributor ' :
(X, a) //� (Y, b) and all x 2 TX, y 2 TY . To show the existence of T̂ , we first confirm that T̂' is
indeed a Q-distributor from (TX, T̂ a) to (TY, T̂ b):

T̂ b � T̂' � T̂ a 6 T̂ (b � ' � a) 6 T̂'.

Second, for every Q-category (X, a) one has

1⇤
T (X,a) = T̂ a = T̂ 1⇤(X,a),

8



and T̂  � T̂ ' 6 T̂ ( � ') holds for all distributors ' : (X, a) //� (Y, b) and  : (Y, b) //� (Z, c),
since T̂ � T̂' 6 T̂ ( � ') holds for their underlying Q-relations. Thus, T̂ is a flat lax functor.

Thirdly, for a Q-functor f : (X, a) // (Y, b), Proposition 3.1 gives

T̂ (f⇤) = T̂ (b � f�) = T̂ b � (Tf)� = (T f)⇤,

and
T̂ (f⇤) = T̂ (f� � b) = (Tf)� � T̂ b = (T f)⇤.

Hence, T̂ is a lax extension of the 2-functor T .
Using the fact that T̂' is a Q-distributor (TX, T̂ a) //� (TY, T̂ b) for every Q-distributor ' :

(X, a) //� (Y, b), one checks the oplaxness of m and e, as follows:

(eY )
⇤
� T̂ ' � (eX)⇤ = (eY )

�
� T̂ b � T̂' � T̂ a � (eX)� = (eY )

�
� T̂' � (eX)� > ',

(mY )
⇤
� T̂ ' � (mX)⇤ = (mY )

�
� T̂ b � T̂' � T̂ a � (mX)� = (mY )

�
� T̂' � (mX)� > T̂ T̂' = T̂ T̂ '.

Therefore, T̂ is a lax extension of the 2-monad T = (T ,m, e).

Theorem 3.7. The process (T, T̂ ) 7! (T, T̂ ) described by Proposition 3.6 is the object assignment

of a full and faithful functor

� : ExtMnd(Set/Q0) // ExtMnd(Q-Cat).

Proof. For every morphism � : (S, Ŝ) //(T, T̂ ) in ExtMnd(Set/Q0), since (�X)� � Ŝa 6 T̂ a�(�X)�
for everyQ-category (X, a), the map �X is in fact aQ-functor (SX, Ŝa) //(TX, T̂ a). Furthermore,
since

(�Y )⇤ � Ŝ' = (�Y )� � Ŝ' 6 T̂' � (�X)� = T̂ ' � (�X)⇤

for every Q-distributor ' : (X, a) //� (Y, b), the morphism � : (S, Ŝ) // (T, T̂ ) can be considered
as a morphism �� : (S, Ŝ) = �(S, Ŝ) // (T, T̂ ) = �(T, T̂ ).

Now consider any morphism  : (S, Ŝ) // (T, T̂ ) in ExtMnd(Q-Cat). Since for every Q-
category (X, a) one has the Q-functor "(X,a) = 1X : do(X, a) = (X, 1�X) // (X, a), naturality of
 : S // T gives (X,a) · S1X = T 1X · dX , so that o(X,a) = odX . Hence, putting �X = odX
by necessity, one easily sees that � : (S, Ŝ) // (T, T̂ ) is indeed a morphism of lax extensions with
�� = . Therefore, � is full and faithful.

We now construct a left inverse to the functor � and consider any 2-monad T = (T ,m, e) on
Q-Cat. One then obtains a monad T = (T,m, e) on Set/Q0 by composing the Eilenberg-Moore
adjunction of T with the adjunction d a o : Q-Cat // Set/Q0, so that

T = oT d, m = om d · oT "T d, e = o e d, (3.x)

where " is the counit of d a o (as in the proof of Theorem 3.7).

Proposition 3.8. For every 2-functor T : Q-Cat //Q-Cat, a lax extension T̂ of T to Q-Dist
yields the lax extension T̂ = oT̂ d of T = oT d : Set/Q0

// Set/Q0 to Q-Rel. Moreover, if T

belongs to a 2-monad T = (T ,m, e), then T̂ is a lax extension of T = (T,m, e) as defined by (3.x).

Proof. As a composite of lax 2-functors, T̂ is also one. The lax extension conditions for T̂ follow
from

T̂ (f�) = oT̂ d(f�) = oT̂ ((df)⇤) > o(T df)⇤ > (oT df)�

and
T̂ (f�) = oT̂ d(f�) = oT̂ ((df)⇤) > o(T df)⇤ > (oT df)�,

for every map f : X // Y over Q0. Hence T̂ is a lax extension of the functor T .
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To check that T̂ satisfies condition (3.iii), we first notice that o and o respect whiskering, in
the sense that, for all Q-functors f : W //X, g : Z // Y and Q-distributors ' : X //� Y , one
has

(og)� � (o') � (of)� = (og)� � 1⇤Y � (o') � 1
⇤

X � (of)� = og⇤ � o' � of⇤ = o(g⇤ � ' � f⇤).

Thus, for every Q-relation r : X //7 Y one obtains,

r = odr 6 o(e⇤dY � T̂ dr � (edX)⇤) = (oedY )
�
� oT̂ dr � (oedX)� = e�X � T̂ r � (eY )

�,

and

(mY )
�
� T̂ r � (mX)� = (o(mdY · T "T dY ))

�
� oT̂ dr � (o(mdX · T "T dX))�

= o((mdY · T "T dY )
⇤
� T̂ dr � (mdX · T "T dX)⇤)

= o((T "T dY )
⇤
�m⇤dY � T̂ dr � (mdX)⇤ � (T "T dX)⇤)

> o(T "T dY )
⇤
� T̂ T̂ dr � (T "T dX)⇤)

= oT̂ ("⇤
T dY � T̂ dr � ("T dX)⇤)

= oT̂ doT̂ dr = T̂ T̂ r;

here the penultimate equality holds since "⇤Y � ' � ("X)⇤ = do' for every Q-distributor ' :
X //� Y

To extend the process � : (T , T̂ ) 7! (oT d,oT̂ d) functorially, let  : (S, Ŝ) // (T, T̂ ) be
a morphism of lax extensions of 2-monads on Q-Cat. Then �X = odX defines a morphism
�() = � : (oSd,oŜd) // (oT d,oT̂ d) between lax extensions of monads on Set/Q0, and the
remaining verifications of the assertion of the following theorem become a straightforward exercise.

Theorem 3.9. � : ExtMnd(Q-Cat) // ExtMnd(Set/Q0) is a functor that is left inverse to the

embedding �.

In the next section we will restrict the domain of �, so that the respective restrictions of � and
� become adjoint.

4. The minimal lax extension of a 2-monad on Q-Cat

At first, let us consider just a 2-functor T on Q-Cat. By Proposition 3.3, any lax extension T̂

of T must satisfy

T̂ ' = T̂ (( �' )⇤ � (yX)⇤) = (T �' )⇤ � T̂ 1⇤
PX � (T yX)⇤ > (T �' )⇤ � (T yX)⇤,

for all Q-distributors ' : X // Y . Putting

T ' := (T �' )⇤ � (T yX)⇤

for all ', conversely one proves easily (see [1, 14]):

Proposition 4.1. Every 2-functor T : Q-Cat //Q-Cat admits a least lax extension to Q-Dist,
given by T .

Corollary 4.2. Any flat lax extension to Q-Dist of an endofunctor T must equal T .

But is T always flat? By definition one has

T 1⇤X = (T (
 �
1⇤X))⇤ � (T yX)⇤ = (T yX)⇤ � (T yX)⇤,

so that the right-hand-side term needs to equal 1⇤
T X in order for us to guarantee that T be flat;

that is: like yX , the Q-functor T yX needs to be fully faithful. This and the previous arguments
easily prove the implications (i) =) (ii) =) (iii) =) (iv) =) (i) of the following Proposition.
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Proposition 4.3. For a 2-functor T : Q-Cat �! Q-Cat, the following assertions are equivalent:

(i) T yX is a fully faithful Q-functor, for every Q-category X;

(ii) T is a flat lax extension of T to Q-Dist;
(iii) T admits some flat lax extension to Q-Dist;
(iv) T admits a unique flat lax extension to Q-Dist.

Under these equivalent conditions we are able to prove that, when T carries a monad structure
T = (T ,m, e), the minimal lax extension T of the 2-functor T actually constitutes a lax extension
of the 2-monad T to Q-Dist:

Theorem 4.4. Let T = (T ,m, e) be a 2-monad on Q-Cat such that T preserves the full fidelity

of all Yoneda functors. Then T is a flat lax extension of the monad T to Q-Dist, and it is the

only one.

Proof. Given a distributor ' : X //� Y , one has

(eY )
⇤
� T ' � (eX)⇤ = (eY )

⇤
� (T �' )⇤ � (T yX)⇤ � (eX)⇤

= (T �' · eY )
⇤
� (T yX · eX)⇤

= (ePX ·
 �' )⇤ � (ePX · yX)⇤

= ( �' )⇤ � (ePX)⇤ · (ePX)⇤ � (yX)⇤

> ( �' )⇤ � (yX)⇤

= ',

and

(mY )
⇤
� T ' � (mX)⇤ = (mY )

⇤
� (T �' )⇤ � (T yX)⇤ � (mX)⇤

= (T �' ·mY )
⇤
� (T yX ·mX)⇤

= (mPX · T T
 �' )⇤ � (mPX · T T yX)⇤

= (T T
 �' )⇤ � (mPX)⇤ � (mPX)⇤ � (T T yX)⇤

> (T T
 �' )⇤ � (T T yX)⇤

= T ((T �' )⇤ � (T yX)⇤)

= T T ',

with the penultimate equality holding since T is flat, by Proposition 4.3. Therefore, T is a lax
extension of (T ,m, e) by (3.vi).

The corresponding assertion of the Theorem is not valid in the discrete environment: for a
monad on Set/Q0, there may exist several flat extensions to Q-Rel, as the following easy example
shows.

Example 4.5. LetQ be the Lawvere quantale ([0,1],>,+, 0), Then, trivially, the identity functor
on Q-Rel provides a flat lax extension of the identity monad I on Set to Q-Rel, but so does Ǐ
defined by

Ǐr(x, y) =

®
0 if r(x, y) <1,

1 if r(x, y) =1,

for every Q-relation r : X //7 Y.

We already proved in Proposition 3.6 that, for every lax extension T̂ of a monad T on Set/Q0,
�(T, T̂ ) gives a 2-monad on Q-Cat with a flat lax extension to Q-Dist. Hence, when we denote
by FlatExtMnd(Q-Cat) the full subcategory of ExtMnd(Q-Cat) of flat lax extensions of monads
on Q-Cat, we know that the functor � of Theorem 3.7 takes values in that subcategory. We will
now show that the respective restrictions

ExtMnd(Set/Q0) // FlatExtMnd(Q-Cat) // ExtMnd(Set/Q0)
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of� and � are adjoint to each other. In order to simplify matters, let us replace FlatExtMnd(Q-Cat)
by the isomorphic full subcategory ↵YMndQ-Cat of the metacategory Mnd(Q-Cat), containing
those 2-monads of Q-Cat whose endofunctor preserves the full fidelity of all Yoneda Q-functors:
see Proposition 4.3(i) and Theorem 4.4. Hence, we will show that the functors

ExtMnd(Set/Q0)
�0
// ↵YMnd(Q-Cat)

�0
// ExtMnd(Set/Q0)

are adjoint to each other: �0 a �0. Here �0 assigns to (T, T̂ ) the monad defined by (3.vii) and
(3.viii), and �0 assigns to T = (T ,m, e) the monad defined by (3.x), provided with the lax extension
T = oT d (see Proposition 3.8).

Theorem 4.6. �0 embeds ExtMnd(Set/Q0) into ↵YMnd(Q-Cat) as a full coreflective subcategory.

Proof. Since, by Theorem 3.9, �0 is left inverse of �0, the identity transformations 1T are the
obvious candidates to serve as the units (T, T̂ ) // �0�0(T, T̂ ) of the adjunction, where T =
(T,m, e). We will now describe the counits

◆T : �0�0T // T,

for all 2-monads T = (T ,m, e) on Q-Cat, such that T makes the Q-functors T yX fully faithful,
for all Q-categories X = (X, a). To this end, with the counit " : do // 1 of the adjunction d a o
described in Section 2, consider the Q-functors T "(X,a) : T (X, 1�X) = T do(X, a) //T (X, a). Since

�0 assigns to T the monad T with its endofunctor T = oT d laxly extended by T = oT d, we can
define the (X, a)-component

◆T(X,a) : (�
0�0T )(X, a) = (TX, Ta) // T (X, a)

of ◆T to have the same underlying maps as T "(X,a), so that o ◆T(X,a) = oT "(X,a), but must first

verify that ◆T(X,a) is indeed a Q-functor. But since the Q-relation a : X //7 X satisfies a = a�a, so

that da = ("(X,a)
⇤
� ("(X,a))⇤, and since o and o respect whiskering (see the proof of Proposition

3.8) and T is flat, we see that

Ta = oT d a

= oT (("(X,a))
⇤
� ("(X,a))⇤)

= o((T "(X,a))
⇤
� (T "(X,a))⇤)

= (oT "(X,a))
�
� 1⇤

T (X,a) � (oT "(X,a))�

= (o ◆T(X,a))
�
� 1⇤

T (X,a) � (o ◆
T

(X,a))�.

Naturality of ◆T follows immediately from the naturality of T " since the corresponding naturality
diagrams have the same underlying maps, and it is also easy to see that ◆T respects the monad
structures. Indeed, since the left square of

T do T
T "

//

do

T do

edo

✏✏

do 1Q-Cat
" // 1Q-Cat

T

e

✏✏

�0�0T T
◆T

//

�0�01Q-Cat

�0�0T

�0�0e

✏✏

�0�01Q-Cat 1Q-Cat
1 // 1Q-Cat

T

e

✏✏

commutes, so does the right one, since it has the same underlying maps as the left one when read
componentwise for every (X.a) in Q-Cat. Consequently, ◆T respects the units of the monads, and
for the preservation of the multiplication one argues similarly.
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To check that ◆T is natural in T , we just need to observe that, for a morphism ↵ : T // S of
2-monads, the left square of

T S↵
//

T do

T

T "

✏✏

T do Sdo
↵do // Sdo

S

S"

✏✏

T S↵
//

�0�0T

T

◆T

✏✏

�0�0T �0�0S
�0�0↵ // �0�0S

S

◆S

✏✏

commutes; consequently, since the right diagram has the same underlying maps as the left one
when read componentwise for every Q-category (X, a), it commutes as well.

Finally, for the verification of the triangular identities of the desired adjunction, since the
units are identity morphisms, it su�ces to show that all morphisms �0◆T : �0T // �0T and
◆�

0(T,T̂ ) : �0(T, T̂ ) //�0(T, T̂ ) are identity transformations. But this follows again from the fact
that the components of "d and o " are identity morphisms, since with T

0 = �0(T, T̂ ) one has

o((�0◆T )X) = o ◆TdX = oT "dX and o ◆T 0(X,a) = oT 0"(X,a) = To"(X,a),

respectively for all sets X over Q and all Q-categories (X, a).

Remark 4.7. (1) For a flat lax extension (T, T ) of a 2-monad T = (T ,m, e) on Q-Cat, with the
calculation given in the proof above one sees that ◆T : ��(T, T ) // (T, T ) is an initial morphism
with respect to the topological functor of Proposition 3.4.

(2) According to Theorem 4.6, ExtMnd(Set/Q0) is eqivalent to the full coreflective subcategory
of ↵YMnd(Q-Cat) formed by all those 2-monads T = (T .m, e) on Q-Cat for which ◆T is an
isomorphism. Up to monad isomorphism, they may be described by the following characteristic
property of their endofunctor T : for all Q-categories (X, a), the underlying set over Q0 of T (X, a)
is equal to that of T (X, 1�X), and the structure 1⇤

T (X,a) may be computed as oT da, which amounts
to

1⇤
T (X,a)(x, y) = 1⇤

T P(X,1�X)((T y(X,1�X))(x), (T
 �a )(y))

for all elements x, y in the underlying set of T (X, a); here  �a is to be treated as a Q-functor
(X, 1�X) // P(X, 1�X). Roughly, T must be completely determined by its e↵ect on discrete Q-
categories and discrete presheaf Q-categories, and their Q-functors.

(3) Without reference to Theorem 4.6, already from Proposition 4.3 and Theorem 3.9 we may
infer that, for a given monad T = (T,m, e) on Set/Q0, the assignment

(T, T̂ ) 7! (T ,m, e)

defined by equations (3.vii) and (3.viii) establishes a bijection between the lax extensions of T and
the 2-monads T = (T ,m, e) on Q-Cat such that oT = To, om = mo, oe = eo, and T preserves
the full fidelity of all Yoneda functors.

5. The presheaf and Hausdor↵ monads on Q-Cat and their discrete coreflections

We now present some old and new examples of 2-monads on Q-Cat, starting with the presheaf
and copresheaf monads and their composites, as investigated in [8], from which we then obtain new
“Hausdor↵-type” submonads, one of which was introduced in [1] and further developed in [14].
An application of the coreflector ⌃0 to them leads to various known lax extensions of Set-monads,
as presented in [6] and previous works, such as [3, 4].

For the presheaf 2-monad (P, s, y), the minimal lax extension of P to Q-Dist may be computed
as follows:

P'(�, ⌧) = ((( �' )!)
⇤
� ((yX)!)⇤)(�, ⌧)

= 1⇤
PPX(� � (yX)⇤, ⌧ � ( �' )⇤)

= 1⇤
PX(�, ⌧ � ( �' )⇤ � (yX)⇤)

= 1⇤
PX(�, ⌧ � ')
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for every Q-distributor ' : X //� Y and all � 2 PX, ⌧ 2 PY ; consequently,

P' = ('�)⇤. (5.i)

Similarly one obtains
P†' = ('�)⇤, (5.ii)

for all distributors ' : X //� Y .
The two composites of P and P

† give rise to two 2-monads on Q-Cat [15, 11, 8]. One is the
double presheaf 2-monad (PP

†, s, y), whose multiplication s and unit y are given by

sX = (y†
PP†X · yP†X)�

⇤
: PP

†
PP

†X // PP
†X,

yX = yP†X · y†X : X // PP
†X.

The other is the double copresheaf 2-monad (P†
P, s†, y†), whose multiplication s† and unit y† are

given by
s†X = ((yP†PX · y†

PX)⇤)� : P†
PP

†
PX // P

†
PX,

y†X = y†
PX · yX : X // P

†
PX.

The minimal lax extensions of PP
† and P

†
P may be expressed in terms of the lax extensions

P,P†, as follows:

PP†(') = (PP
† �' )⇤ � (PP

†yX)⇤ = P((P† �' )⇤ � (P†yX)⇤) = P P†' (5.iii)

and
P†P(') = (P†

P
 �' )⇤ � (P†

PyX)⇤ = P†((P �' )⇤ � (PyX)⇤) = P†P', (5.iv)

for all Q-distributors ' : X //� Y .

Proposition 5.1. The minimal lax extensions of the (co)presheaf functors P, P†
and the double

presheaf functors PP
†, P†

P are flat and therefore provide the unique flat extensions to Q-Dist of

the corresponding monads on Q-Cat.

Proof. From (5.i) one obtains P1⇤X = 1⇤
PX , so that P is flat. Likewise, the flatness of P† follows

from (5.ii), and PP
† and P

†
P are flat since P and P

† are, according to (5.iii) and (5.iv).

Example 5.2. We describe the coreflections into ExtMnd(Set/Q0) of the monads of Proposition
5.1 when Q = 2 is the two-element chain. Both oPd and oP†d reduce to the usual powerset
functor P on Set and are provided with the usual monad structure. The lax extensions oPd and

oP
†

d give respectively the lax extension P̌ and P̂ , described in [6] as

A(P̌ r)B () 8x 2 A9y 2 B (x r y) and A(P̂ r)B () 8y 2 B9x 2 A (x r y),

for all relations r : X //7 Y andA ✓ X,B ✓ Y .
Both oPP

†d and oP†
Pd reduce to the usual up-set functor

U : Set // Set, UX = {a ✓ PX | 8A 2 a, A ✓ B =) B 2 a}.

In fact, the monads (PP
†, s, y) and (P†

P, s†, y†) have the up-set monad U = (U,m, e) (see [6]) as
their coreflection into Set/Q0, but oPP†d and oP†Pd reduce to distinct lax extensions Ǔ and Û
of U , given respectively by

a(Ǔr)b () 8A 2 a 9B 2 b 8y 2 B 9x 2 A (x r y),

a(Ûr)b () 8B 2 b 9A 2 a 8x 2 A 9y 2 B (x r y),

for all relations r : X //7 Y and a 2 UX, b 2 UY .
The filter monad F and the ultrafilter monad are submonads of U, and one may obtain the

lax extensions F̂, F̌, as well as the Barr extension of the ultrafilter monad, by initial extensions,
as described in [6].
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A presheaf � : (X, a) //� {|�|} (copresheaf ⌧ : {|⌧ |} //� (X, a)) is conical if there is some
A ✓ X with |x| = |�| (|x| = |⌧ |) for all x 2 A, such that � =

W
x2A a(�, x) (⌧ =

W
x2A a(x,�), re-

spectively). The conical presheaves (copresheaves) of a Q-category X equipped with the structure
inherited from PX (P†X) form a Q-category, denoted by HX (H†X, respectively).

Clearly, HX (H†X) is closed under the formation of joins in Q-Dist(X, {s}) (Q-Dist({s}, X))
of families of (co)presheaves on X of fixed type s:

Lemma 5.3. Let X be a Q-category, and let {�i : i 2 I} be a family of (co)presheaves in HX
(H

†X), with all �i having the same type. Then also
W

i2I �i lies in HX (H
†X, respectively).

For a Q-functor f : X // Y and every conical presheaf � of X, � � f⇤ is a conical presheaf
of Y . Hence, by restricting the domain and codomain of (f⇤)� : PX // PY to HX and HY
respectively, one obtains a Q-functor, again denoted by (f⇤)� : HX // HY , and H becomes a
2-functor H : Q-Cat //Q-Cat. In fact, H belongs to a sub-2-monad of (P,m, e) on Q-Cat with
the unit given by the restrictions yX : X //HX of the Yoneda functors and the multiplication by

sX : HHX //HX, ⌃ 7! ⌃ � (yX)⇤ =
_

i2I

�i,

for all ⌃ 2 HHX with ⌃ =
W

i2I 1
⇤

HX(�,�i). Following the work of [1] when Q is a quantale, the
2-monad (H, h, y) was called the Hausdor↵ doctrine in [14] also for an arbitrary small quantaloid.

Dually, X 7! H
†X advances to a sub-2-monad of (P†, s†, y†), called the co-Hausdor↵ doctrine,

which maps a Q-functor f : X //Y to (f⇤)� : H†X //H
†Y , and is equipped with the unit given

by the co-Yoneda functors y†X : X //H
†X and the multiplication given by

s†X : H†
H

†X //H
†X, ⇥ 7! (y†X)⇤ �⇥ =

_

i2I

⌧i,

for all ⇥ 2 H
†
H

†X with ⇥ =
W

i2I 1
⇤

H†X(⌧i,�). The minimal lax extension H appears in [1, 14]:

Proposition 5.4. (1) The Hausdor↵ doctrine (H, h, y) on Q-Cat admits the flat lax extension H

to Q-Dist given by

H'(↵,�) =
^

x2A

_

y2B

'(x, y),

for all ' : (X, a) //� (Y, b) and ↵ =
W

x2A a(�, x) 2 HX, � =
W

y2B b(�, y) 2 HY .

(2) The co-Hausdor↵ doctrine (H†, s†, y†) on Q-Cat admits the flat lax extension H† to Q-Dist
given by

H
†

'(↵,�) =
^

y2B

_

x2A

'(x, y),

for all ' : (X, a) //� (Y, b) and ↵ =
W

x2A a(x,�) 2 H
†X, � =

W
y2B b(y,�) 2 H

†Y .

Example 5.5. When the quantaloid is a unital quantale V, both oHd and oH†d give the ordinary
powerset functor on Set, with its usual monad structure, and oHd gives its Kleisli extension P̌
to V-Rel, described in [6] (Exercise IV.2.H) by

P̌ r(A,B) =
^

x2A

_

y2B

r(x, y),

for all relations r : X //7 Y and all A ✓ X, B ✓ Y , while oH†d gives another lax extension P̂ ,
described by

P̂ r(A,B) =
^

y2B

_

x2A

r(x, y).

Briefly: (P, P̌ ) is the coreflection of HV = H into ExtMnd(Set), and likewise in the dual case.
Conversely, embedding (P, P̌ ) into ↵YMnd(V-Cat) via Theorem 4.6 gives us back the monad HV

as introduced in [1], and likewise in the dual case.
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In order to establish the existence of sub-2-monads HH
†,H†

H of PP
†,P†

P, respectively, we
assume that the quantaloid Q be completely distributive, that is: all hom lattices Q(p, q) of Q
need to be completely distributive. This assumption will enable us to show the needed closure
property for conical presheaves, as follows.

Lemma 5.6. Let Q be completely distributive and X be a Q-category. Then, for every family

{⌃i : i 2 I} in HH
†X with all ⌃i having the same type,

V
i2I ⌃i lies also in HH

†X.

Proof. Let |⌃i| = p for all i 2 I. For every i 2 I, there is a family (⌧j : j 2 Ji) in H
†X with

|⌧j | = p for all j 2 Ji, such that ⌃i =
W

j2Ji
1⇤
H†X(�, ⌧j). Putting J =

Q
i2I

Ji, with the complete

distributivity we obtain
^

i2I

⌃i =
^

i2I

_

j2Ji

1⇤
H†X(�, ⌧j) =

_

s2J

^

i2I

1⇤
H†X(�, ⌧s(i)) =

_

s2J

1⇤
H†X(�,

_

i2I

⌧s(i)).

Consequently, since each
W

i2I ⌧s(i) is a conical copresheaf of X, whence lying in H
†X,

V
i2I ⌃i

has been presented as a conical presheaf of H†X.

The following Lemma relies on the previous one and will enable us to establish the monad
multiplication for HH

†.

Lemma 5.7. Let Q be completely distributive and X be a Q-category. Then ⌥ � (y†
HH†X · yH†X)⇤

is a conical presheaf of H
†X whenever ⌥ is a conical presheaf of H

†
HH

†X.

Proof. Let ⌥ =
W

i2I 1
⇤

H†HH†X(�,⌅i), with ⌅i =
W

j2Ji
1⇤
HH†X(⌃j ,�) for all i 2 I. Then

⌥ � (y†
HH†X · yH†X)⇤ =

_

i2I

1⇤
H†HH†X(y†

HH†X · yH†X(�),⌅i)

=
_

i2I

1⇤
H†HH†X(y†

HH†X · yH†X(�),
_

j2Ji

1⇤
HH†X(⌃j ,�))

=
_

i2I

^

j2Ji

1⇤
H†HH†X(y†

HH†X · yH†X(�), 1⇤
HH†X(⌃j ,�))

=
_

i2I

^

j2Ji

1⇤
HH†X(yH†X(�),⌃j)

=
_

i2I

^

j2Ji

⌃j .

Since. by Lemma 5.6 ,
V

j2Ji
⌃j is conical for all i 2 I, we conclude that ⌥ � (y†

HH†X · yH†X)⇤ is
conical as well.

The Lemma gives the crucial tool for establishing the double Hausdor↵ monad and the double

co-Hausdor↵ monad on Q-Cat and describing their minimal lax extensions to Q-Dist:

Theorem 5.8. When Q is completely distributive, HH
†
belongs to a sub-2-monad (HH

†, s, y)
of (PP

†, s, y) and admits the flat lax extension HH† to Q-Dist with HH† = HH†. Likewise,

there is a 2-monad (H†
H, s†, y†) on Q-Cat admitting the flat lax extension H†H to Q-Dist with

H†H = H†H.

Proof. Trivially, the units yX of (PP
†, s, y) take values in HH

†X and may therefore serve as the
units for the desired sub-2-monad:

yX = yH†X · y†X : X //HH
†X.

That the monad multiplications sX may be restricted as well to yield Q-functors

sX = (y†
HH†X · yH†X)�

⇤
: HH

†
HH

†X //HH
†X
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is less obvious but follows immediately with Lemma 5.7. It is now clear that (HH
†, h, y) is a

sub-2-monad of (PP
†, s, y). That the minimal lax extension HH† is the composite of the minimal

lax extensions of H and H
† follows as in (5.iii), which also shows that HH† is flat.

Dually, one establishes the sub-2-monad (H†
H, s†, y†) of (P†

P, s†, y†), with its unit and mul-
tiplication given by

y†X = y†
HX · yX : X //H

†
HX,

s†X = ((yH†HX · y†
HX)⇤)� : H†

HH
†
HX //H

†
HX.

The assertion about its minimal lax extension follows as in (5.iv).

Example 5.9. When Q is a unital and completely distributive quantale V, both oH†
Hd and

oHH
†d give the up-set functor U : Set // Set (see Example 5.2); in fact, both the double

Hausdor↵ and double co-Hausdor↵ monad induce the up-set monad U = (U,m, e) on Set. (Note
that, of course, H = HV and H

† = H
†
V depend on V, but we continue to omit the annotation.)

The lax extension oH†Hd = Ǔ is the Kleisli extension to V-Rel of the up-set functor that has
been mentioned in [6] as Exercise IV.2.H. Explicitly, for a V-relation r : X //7 Y ,

Ǔr(A,B) =
^

B2B

_

A2A

^

x2A

_

y2B

r(x, y)

for all A 2 UX,B 2 UY . The lax extension UHH†D = P̂ gives another lax extension of P to
V-Rel, with

Ûr(A,B) =
^

A2A

_

B2B

^

y2B

_

x2A

r(x, y)

for all V-relations r : X //7 Y and A 2 UX,B 2 UY .
Finally, the filter monad F and the ultrafilter monad on Set being submonads of U, one may

obtain the lax extensions F̂ , F̌ to V-Rel, as well the Barr extension of the ultrafilter monad as
initial extensions of Û , Ǔ . The lax algebras pertaining to the Barr extension to V-Rel of the
ultrafilter monad have recently been presented in various forms in [9].
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