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Abstract

David Hilbert’s solvability criterion for polynomial systems in n variables
from the 1890s was linked by Emmy Noether in the 1920s to the decomposition
of ideals in commutative rings, which in turn led Garret Birkho↵ in the 1940s to
his subdirect representation theorem for general algebras. The Hilbert-Noether-
Birkho↵ linkage was brought to light in the late 1990s in talks by Bill Lawvere.
The aim of this article is to analyze this linkage in the most elementary terms
and then, based on our work of the 1980s, to present a general categorical
framework for Birkho↵’s theorem.

Introduction

The first purpose of this article is to exhibit in elementary algebraic terms the
linkage between Hilbert’s celebrated Nullstellensatz [6] for systems of polyno-
mial equations and Birkho↵’s Subdirect Representation Theorem [2] for general
algebras, as facilitated by Noether’s work [15] on the decomposition of ideals in
rings. Hence, in Section 1 we give a brief tour of the development of the Null-

stellensatz through Hilbert, Noether and Birkho↵. We do so not from a strictly
historical perspective; rather, in today’s language we present six versions of the
theorem as marked by these three great mathematicians and show how their
proofs are interrelated, referring to them as the HNB Theorems.

A seventh and an eighth version are given in Section 3, after a discussion
of the categorical notion of subdirect irreducibility in Section 2. We illuminate
the notion by examples, both traditional and unconventional, in particular in
comma categories. We touch upon the dual notion only briefly, but refer the
reader to substantial recent work by Matias Menni [14] on Lawvere’s concept
of cohesion in this context. With a suitable notion of finitariness we formulate
the all-encompassing seventh version of the HNB Theorem without recourse
to any limits or colimits in the ambient category. The morphism version of it
leads to atypical factorizations of morphisms, in the sense that even in standard
categories like that of sets one obtains factorizations of maps in a constructive
manner (without recourse to choice) which, however, may not be obtained in a
functorial way.

Acknowledgement I am indebted to Bill Lawvere for his suggestion to study
the topic of this paper and his subsequent interest in and comment on a prelim-
inary (but extended) version of this work, presented in part at The European
Category Theory Meeting in Haute Bodeux (Belgium) in 2003. I am also grate-
ful to László Márki for his careful reading of an earlier version of this paper
and for detecting an inaccuracy that may be traced back to Birkho↵’s original
paper (see 2.3(4) below).

1



1 From Hilbert via Noether to Birkho↵

1.1 Hilbert

In 1892 David Hilbert proved his famous Nullstellensatz (see [6]) which we record
here in the following form:

HNB Theorem (Version 1) Any system of polynomial equations

f1(x1, . . . , xn) = 0

.

.

. (⇤)
fr(x1, . . . , xn) = 0

in n variables with coe�cients in a field k has a common solution a = (a1, . . . , an)
in F

n
for any algebraically-closed extension field F of k, unless there are poly-

nomials gi 2 k[x1, . . . , xn] with

rX

i=1

gifi = 1.

It is clear that this last provision is needed since otherwise

0 =
rX

i=1

gi(a)fi(a) = 1

for any common solution a of (⇤). Of course algebraic closedness of F is also
indispensable (as the case n = 1 = r shows).

Let us briefly recall the abstract machinery which bridges algebra with geom-
etry. Given any set P ✓ k[x1, . . . , xn] of polynomials one defines the k-algebraic
set (or a�ne k-variety) of P as the set

S(P ) = {a 2 F
n | 8f 2 P : f(a) = 0}

of common zeroes in F
n to the polynomials of P , for a given extension field F

of k. Conversely, given any subset X ✓ F
n, consider the set

J(X) = {f 2 k[x1, . . . , xn] | 8a 2 X : f(a) = 0}

of polynomials in k[x1, . . . , xn] which have the given points as zeroes. One
obtains order-reversing maps

P 7�! S(P )

J(X) � [ X

which are adjoint to each other:

P ✓ J(X)() X ✓ S(P ),

i.e., they form a Galois correspondence. Like any such correspondence, they
establish a bijection between the closed elements on each side, namely:
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— the k-algebraic sets X ✓ F
n, i.e. those X with X = S(J(X)), and

— the sets P = J(X) for some X ✓ F
n, i.e. those P with P = J(S(P )).

Consequently, one studies k-algebraic sets with the help of this correspondence
once one has a good characterisation of the closed sets P ✓ k[x1, . . . , xn]. As a
necessary condition, the sets P = J(X) are ideals in the ring k[x1, . . . , xr] that,
moreover, are radical, i.e., P =

p
P , with

p
P = {f 2 k[x1, . . . , xn] | 9m � 1 : fm 2 P}.

An advanced formulation of the Nullstellensatz says that the closed sets P are
precisely the radical ideals:

HNB Theorem (Version 2) For any proper ideal P E k[x1, . . . , xn] and any

algebraically-closed extension field F of k, the ideal J(S(P )) given by the k-

algebraic set S(P ) ✓ F
n
is precisely the radical of P . Hence, f(a) = 0 for every

common zero a 2 F
n
of all polynomials in P if and only if f

m 2 P for some

m � 1.

Of course, this formulation entails the seemingly more elementary Version
1. The polynomials f1, . . . , fr of (⇤) generate the ideal P = (f1, . . . , fr), which
is proper since, by hypothesis, 1 62 P . In fact, 1 62

p
P , so that Version 2 gives

that
p
P = J(S(P )) is proper, i.e., not the whole ring k[x1, . . . , xn] = J(;),

trivially. But equally trivially one has S(k[x1, . . . , xn]) = ;, so that we can’t
have S(P ) = ; since

p
P 6= k[x1, . . . , xn]! Hence, S(P ) 6= ;. ⇤

Most algebra books show that, conversely, the advanced formulation of the
Nullstellensatz can be derived from the elementary one and then proceed to give
a proof of the elementary version. The reduction is based on a beautiful trick
credited to Rabinowitsch and is described already in van der Waerden’s classical
book on Algebra (see [19]). Here we will elaborate on a more “structural”
proof (see 1.2 below). Let us also point out that replacing the finite systems
of polynomials f1, . . . , fr by arbitrary sets P ✓ k[x1, . . . , xn] only seemingly
adds generality since the set S(P ) = S(J(S(P ))) can be described using a finite
system of generators of the ideal J(S(P )), thanks to:

Hilbert’s Basis Theorem Every ideal in k[x1, . . . , xn] is finitely generated,

that is: the ring k[x1, . . . , xn] is Noetherian, for every commutative Noetherian

ring k.

The proof does not require any advanced tools and can be found in any
su�ciently sophisticated algebra book (see [7], p. 391).

1.2 Noether

In order to prove Version 2 of the HNB Theorem “directly”, we must show

J(S(P )) =
p
P
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for any proper ideal P E [x1, . . . , xn], with S(P ) ✓ F
n for an algebraically

closed extension field F of k. Since the inclusion “◆” is trivial, it su�ces to find
for any polynomial f 62

p
P a point a 2 F

n with a 2 S(P ) but f(a) 6= 0. The
existence of such a point would be guaranteed once we had proved the following
version:

HNB Theorem (Version 3) Let A be a finitely-generated commutative k-

algebra with unit and let F be an algebraically closed extension field of the field

k. Then, for any non-nilpotent element u 2 A there is a k-homomorphism

' : A! F with '(u) 6= 0.

In fact, with Version 3 at our disposal, we would consider

A = k[x1, . . . , xn]/
p
P

which has no non-zero nilpotent elements since
p
P is a radical ideal, put u =

⇡(f) (where ⇡ : k[x1, . . . , xn]! A is the projection and f 62
p
P ), get ' : A! F

with '(u) 6= 0, and put

a = (a1, . . . , an) := ('(⇡(x1)), . . . ,'(⇡(xn))).

Then

p(a) = p('⇡(x1), . . . ,'⇡(xn)) = '⇡(p(x1, . . . , xn)) = '(⇡(p)) = 0

for all p 2 P , while

f(a) = f('⇡(x1), . . . ,'⇡(xn)) = '⇡(f(x1, . . . , xn)) = '(u) 6= 0,

as desired. ⇤
We now claim that a key ingredient to the proof of Version 3 is:

HNB Theorem (Version 4) Let u be a non-nilpotent element of the finitely-

generated commutative unital k-algebra A. Then (depending on u) there exists

an extension field K of k which, as a unital k-algebra, is finitely generated, and

a k-homomorphism � : A! K with �(u) 6= 0.

Indeed, Version 4 easily implies Version 3 if we make use of two basic but
important facts of Algebra (see [1], pp. 57 and 90), which are only needed to
“channel” the variable fields K of Version 4 into the fixed field F of Version 3.

Fact 1. Any extension field K of k which, as a k-algebra, is finitely generated,

is algebraic over k.

Fact 2. Let K be an algebraic extension field of k. Then any embedding k ! F

into an algebraically-closed field F can be extended to an embedding K ! F .

Under the hypothesis of Version 3, obtain K and � from Version 4, where K
is an algebraic extension of k by Fact 1. From Fact 2 one obtains an extension
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 : K ! F of the given embedding k ! F , and ' :=  � will now do the job
for Version 3. ⇤

Let us now “reformulate” Version 4 in the spirit of Emmy Noether’s work:

HNB Theorem (Version 5) Let u be a non-nilpotent element in a commuta-

tive ring A. Then there exists a prime ideal Q in A with u 62 Q.

Proof. Since u is not nilpotent, the zero ideal in A does not meet the set
S = {un | n � 1}. Zorn’s Lemma allows us to find an ideal Q of A which is
maximal w.r.t. the property Q \ S = ;. Such an ideal is indeed prime: for any
elements a, b 2 A outside Q, the ideals (a) + Q, (b) + Q must meet S, hence
u
k 2 (a) +Q and u

l 2 (b) +Q for some k, l � 1; hence u
k+l 2 (ab) +Q, which

is possible only if ab 62 Q. ⇤
One can now proceed to derive Version 4 from Version 5, as follows. For

the k-algebra A as in Version 4 and u 2 A, u 6= 0, obtain Q as in Version
5 and consider the projection � : A ! A/Q and the embedding A/Q ,! L

of the integral domain A/Q into its field of fractions L. In the intermediate
domain R = (A/Q)[�(u)�1] we can choose a maximal ideal M 6= R and form
the projection ⌧ : R ! K := R/M . The field K is still finitely generated as a
k-algebra, and ⌧(�(u)) 6= 0 since the invertible element �(u) of R cannot belong
to M . Hence, with ◆ : A/Q ,! R, � := ⌧◆� does the job for Version 4. ⇤

We remark that, trivially, the assumption of non-nilpotency of u is a neces-
sary condition for the assertion of Version 5: having a prime ideal Q in A with
u 62 Q, one deduces un 62 Q for all n � 1, in particular un 6= 0.

Let us also record here a “more structural” formulation of Version 5:

Corollary P is a radical ideal of a commutative ring R if and only if P is the

intersection of a set of prime ideals in R.

Proof. “if” is trivial (see above), and for “only if” apply Version 5 to A :=
R/P . ⇤

The Corollary represents an infinitary version of one of Noether’s [15] famous
decomposition theorems for ideals, only the existence part of which we record
here.

Noether’s Irreducible Decomposition Theorem Every ideal P in a com-

mutative Noetherian ring R is the intersection of finitely many irreducible ideals.

Here we call an ideal Q E R irreducible if Q 6= R and if Q = I \ J for ideals
I, J E R is possible only if Q = I or Q = J ; briefly: if Q can be presented as
the intersection of finitely many ideals only if Q is one of the intersecting ideals
(observe the case of an empty intersection!).
Proof. Assume that the set of ideals in R which fail to be finite intersections
of irreducible ideals is not empty. Since R is Noetherian, there is a maximal
(w.r.t. ✓) element in this set, call it Q. Neither can we have Q = R (since R

is an empty intersection of irreducible ideals), nor can Q be irreducible. Hence
Q = I \ J with Q 6= I E R and Q 6= J E R. But by the maximality of Q, both
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I and J are finite intersections of ideals, whence also Q is one: contradiction.
⇤

Noether’s Irreducible Decomposition Theorem is one of the two pillars needed
to prove her Primary Decomposition Theorem (the other being the fact that
irreducible ideals are primary); Lasker [11] proved it in 1904 for polynomial
rings and Noether [15] in 1920 in full generality. We also note that Noether
discusses the relationships of her ideal-theoretical results with the Nullstellensatz
especially in Section 10 of her paper [15]. It is evident that the analysis of the
algebraic fundamentals of the Nullstellensatz was one of the main goals of her
paper.

1.3 Birkho↵

In his famous 1944 paper [2] Garrett Birkho↵ recognized that, by applying
Noether’s lattice-theoretic arguments for ideals more generally to congruence
relations of general algebras, one is able to establish key elements of her theory
in this much more general context. Here, by a general algebra A (which he
referred to as just “algebra” or “abstract algebra”, but not “universal algebra”
– a term that he reserves for the study of such algebras) is just a set with a
small collection of finitary operations ! : An! ! A. Any family Pi (i 2 I) of
congruence relations on A (= equivalence relations on A which are subalgebras
of A⇥A) with \

i2I

Pi = �A

(where the identity relation �A is the bottom element in the lattice ConA of
congruences on A) corresponds to an embedding

s : A!
Y

i2I

Si (⇤⇤)

with pis[A] = Si for all i 2 I (where pi is a product projection): having Pi

(i 2 I) consider Si = A/Pi and s with pis = ⇡i : A ! Si the canonical
projection; having Si and s, take Pi to be the congruence relation induced by
the homomorphism pis. We call (⇤⇤) a subdirect representation of A. (Birkho↵
calls (⇤⇤) a “subdirect union”, but note that during the acceptance process the
original title of his paper got changed from “Subdirect products in universal
algebra” to “Subdirect unions in universal algebra”, a term favoured by McCoy
whom Birkho↵ mentions repeatedly.) Of special interest are those algebras A

for which any subdirect representation (⇤⇤) is trivial, in the sense that pis :
A

⇠! Si is an isomorphism for at least one index i; they are called subdirectly

irreducible (sdi). We formulate his main result, commonly known as Subdirect

Representation Theorem, here as:

HNB Theorem (Version 6) Every general algebra A has a subdirect repre-

sentation (⇤⇤) with all algebras Si subdirectly irreducible.
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Proof (Sketch). For every pair (x, y) of distinct elements in A one uses Zorn’s
Lemma to find a congruence Px,y on A which is maximal with the property that
(x, y) 62 Px,y (finiteness of the operations is crucial here). Then, trivially,

\

x 6=y

Px,y = �A,

and one can invoke the machinery outlined earlier and, using maximality of
Px,y, show that Sx,y = A/Px,y is subdirectly irreducible. In fact, Sx,y has a

least non-identical congruence relation, a property which characterizes subdirect

irreducibility. ⇤
We shall repeat this argument in greater detail and generality in Section

3 where we give Version 7 of the HNB-Theorem. Here we discuss only the
question to which extent Version 6 generalizes Version 5, if any. To this end
first we record a proposition mentioned by Birkho↵ with credit to McCoy:

Proposition (Birkho↵ [2] and McCoy [13]) A subdirectly irreducible commuta-

tive ring without non-zero nilpotent elements is a field (and conversely).

Let us recall now that Version 5 produces for a commutative ring A without
nilpotent elements a subdirect representation

A ⇢
Y

i2I

Di

with all Di = A/Qi integral domains, but we cannot be sure about their sub-
direct irreducibility. On the other hand, Version 6 produces the subdirect pre-
sentation (⇤⇤), but the sdi rings Si occurring in there may fail to be integral
domains, unless they have no nilpotent elements. Hence, strictly speaking, Ver-
sion 5 and 6 (restricted to commutative rings) are logically incomparable.

Nevertheless, we regard Birkho↵’s Theorem as a variant of the Nullstellen-

satz, noting also that Version 5 does not necessarily precede Version 6. In fact,
Version 5 (the proof of which uses Zorn’s Lemma [21]) wasn’t established yet
in this form when Noether wrote her paper. Birkho↵’s first aim was to gen-
eralize Noether’s Irreducible Decomposition Theorem to general algebras whose
congruence lattices satisfy the ascending chain condition. Then, with the aim
of removing this restriction, he formulated his principal theorem as in Version
6, immediately discussing its ring-theoretic repercussions.

The categorical Versions 7 and 8 as presented in Section 3 are straight gen-
eralizations of Version 6 but also imply Version 5.

2 Subdirectly irreducible and simple objects

2.1 Subdirect irreducibility

Monomorphisms f : A!
Q
i2I

Si in a category A correspond bijectively to jointly

monic families (fi : A ! Si)i2I of morphisms in A. Our discussion in 1.3
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suggests the following product-free definition of subdirectly irreducible object
in a category A.

Definition.

(1) An object A is (finitely) subdirectly irreducible if every small (finite) jointly
monic family (fi : A ! Si)i2I of morphisms with common domain A

contains at least one monomorphism fi0 : A ! Si0 . We often write sdi

(fsdi) for (finitely) subdirectly irreducible.

(2) A (finite) subdirect representation of an object A is a small (finite) jointly
monic family (fi : A ! Si)i2I of strong epimorphisms fi in A. We say
that A is subdirectly represented by the objects Si (i 2 I) in this case. The
representation is trivial if fi0 is an isomorphism for some i0 2 I.

Remark. (1) Every sdi object is trivially fsdi. The empty family contains no
(mono)morphism, hence cannot be jointly monic when A is fsdi. Hence, for
every fsdi object A there exists a pair of morphisms a, b : P ! A with a 6= b.
Any such pair is called a doubleton of A. Objects without doubletons are called
preterminal. In other words then, fsdi objects, and a fortiori, sdi objects are

never preterminal.
(2) If A has (finite) products, then A is sdi (fsdi) if and only if for every

monomorphism f : A!
Q
i2I

Si into a (finite) product, pi0f is monic for at least

one product projection pi0 .
(3) If A has (strong epi, mono)-factorizations, then A is sdi (fsdi) if and only

if every (finite) subdirect representation of A is trivial.
(4) From (2) and (3) we see that Definition (1) captures Birkho↵’s origi-

nal notion of sdi algebra (see 1.3). Our notion of fsdi object is equivalent to
Birkho↵’s notion of weakly irreducible algebra when A is a category of general
algebras.

Let us first clarify the precise relationship between the two notions intro-
duced by Definition (1). Recall that an (up-)directed poset is a partially ordered
set (X,) with upper bounds to its finite subsets; hence X 6= ;, and for all
x, y 2 X there exists z 2 Z with z � x, z � y. A (down-)directed (or inverse)
diagram in A is a functor D : Iop ! A where I is an up-directed poset (consid-
ered as a category). We call the object A in A directedly subdirectly irreducible

(dsdi) if every monic cone with vertex A over a down-directed diagram in A
contains at least one monomorphism.

Proposition. In a category with finite products, an object is sdi if and only if

it is fsdi and dsdi.

Proof. Sdi trivially implies fsdi and dsdi. Conversely, for a jointly monic
family (fi : A! Si)i2I , consider the induced cone (fF : A! SF )F✓I finite over
the down-directed diagram given by the finite products

SF =
Y

i2F

Si

8



with “bounding” morphisms p
G
F : SG ! SF for F ✓ G given by projections.

This cone is monic, hence it contains a monomorphism fF0 since A is dsdi, and
then there must exist i0 2 F0 with fi0 monic since A is fsdi. ⇤

Remark. Let us call an object A Artinian if for every cone of strong epimor-
phisms with domain A over a down-directed diagram D : Iop ! A there is
i0 2 I with Dj ! Di0 iso for all j � i0. In a category with (strong epi, mono)-
factorizations, every Artinian object is dsdi; one concludes that if every object
is Artinian, then every fsdi object is sdi.

2.2 Doubletons and congruences

Definition. A pair (p1, p2 : K ! A) of morphisms in A is a congruence relation

(or simply a congruence) on A if for any pair (q1, q2 : L! A) of morphisms with
coker(p1, p2) ✓ coker(q1, q2) there is a uniquely determined morphism t : L! K

with p1t = q1, p2t = q2; here we write

coker(p1, p2) = {h | hp1 = hp2}.

Remarks. (1) Every congruence (p1, p2) is in fact a relation, in the sense that
(p1, p2) is jointly monic: whenever p1t = p1s, p2t = p2s, then t = s.

(2) The kernelpair of any morphism is a congruence. Conversely, a congru-
ence is the kernelpair of its coequalizer, provided that the coequalizer exists.

(3) We can set up a category ConA (in fact, a preordered class) whose objects
are the congruences on A, and whose morphisms t : (q1, q2)! (p1, p2) are as in
the Definition above. If the category A has kernelpairs of regular epimorphisms,
then there is, for every object A, a full embedding

A\RegEpi! ConA,

where A\RegEpi is the comma category of regular epimorphisms with domain
A; this is an equivalence of categories if A has coequalizers of congruences.
Hence, congruences (also called e↵ective equivalence relations) provide an alter-
native description of regular epimorphisms, under very mild (co)completeness
hypotheses.

(4) ConA has a least element �A = (1A, 1A), and a largest element rA =
(A⇥A ◆ A) whenever the product exists. For any congruence relation (q1, q2 :
L! A), the induced morphism L! A⇥A is in fact a regular monomorphism
of A.

(5) A morphism f : A! B is monic if and only if its kernelpair (p1, p2) exists
and satisfies p1 = p2; furthermore, any congruence relation (p1, p2) on A with
p1 = p2 is isomorphic to �A and is called discrete. There is a corresponding
fact on rA, provided that A ⇥ A exists: call f constant if fx = fy for all
x, y : X ! A; now, f is constant if and only if its kernelpair exists and is
isomorphic to rA.
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Remarks (3) and (4) prove:

Corollary. If the needed products exist, there is a full embedding

ConA! RegMono/A⇥A.

Hence, if A is wellpowered w.r.t regular monomorphisms and has also kernel-

pairs of regular monomorphisms, then A is also cowellpowered w.r.t. regular

epimorphisms. ⇤

Recall that a doubleton of an object A is any pair of distinct morphisms with
codomain A and common domain. Congruences on A which are doubletons are
those which are not isomorphic to �A = (1A, 1A), i.e. which are non-discrete.

Definition.

(1) A generic doubleton of an object A is a doubleton a, b : P ! A with the
property that every morphism f : A! B with fa 6= fb must be monic.

(2) A is called simple if A has a doubleton, and if all of its doubletons are
generic.

Remarks. (1) One easily sees that A is simple if and only if A is not preter-

minal and every morphism with domain A is constant or monic.
(2) Clearly, every simple object is sdi. From the following Proposition it will

become clear that the converse statement rarely holds true (see also 2.3).
(3) Let A//A be the category whose objects are pairs a, b : P ! A of (not

necessarily distinct) morphisms inA, and whose morphisms t : (a, b)! (c, d) are
A morphisms satisfying ct = a, dt = b. Then the category ConA of congruences
on A is a full subcategory of A//A. A congruence generated by a, b : P ! A

is, by definition, a reflection of (a, b) into ConA, and we denote it by (a, b), in
case of existence. Hence, it is a congruence on A which comes with a morphism
t : (a, b) ! (a, b) such that for any other morphism s : (a, b) ! (p, q) with
a congruence (p, q) one has (a, b)  (p, q). One can construct (a, b) as the
kernelpair of the coequalizer of (a, b), if these (co)limits exist in A.

(4) The preordered class ConA has small-indexed (finite) infima (= products
in the category ConA) if the categoryA has (finite) products, kernelpairs and co-
equalizers of congruences: for each of an I-indexed set of congruences one forms
its coequalizer fi : A ! Bi and then the kernelpair of the induced morphism
f : A !

Q
i2I

Bi. As a consequence we see that ConA has even large-indexed

infima if A is cowellpowered w.r.t. regular epimorphisms and has small-indexed
products, kernelpairs and coequalizers of congruences.

Proposition. Let A be an object of a category A with kernelpairs, coequalizers

of congruences and a terminal object. Then:

(1) A is simple if and only if ConA is equivalent to the two-element chain.
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(2) A is fsdi if and only if ConA\{�A} is closed under finite infima in ConA,

provided that A has finite products.

(3) For the statements

i. ConA\{�A} has a least element,

ii. A has a generic doubleton,

iii. A is sdi,

one always has i ) ii ) iii, while ii ) i holds true if A has coequalizers,

and iii ) i if A has (small-indexed) products and is cowellpowered w.r.t.

regular epimorphisms.

We note that the implication ii ) iii does not even need the general hy-
potheses of the Proposition.

Proof. (1) Note that A ⇥ A exists, as the kernelpair of A ! 1. Now, if
ConA ⇠= 2, A has a doubleton, namely rA. Furthermore, the kernelpair of any
morphism f : A! B which is not monic must be isomorphic to rA, so that f
must be constant. Hence, A is simple by Remark (1). Conversely, assuming A

to be simple, the coequalizer f : A ! B of any non-discrete congruence (p, q)
on A cannot be monic, hence must be constant. Its kernelpair (p, q) is therefore
isomorphic to rA.

(2) According to Remark (4), ConA has finite infima. If ConA\{�A} is
closed under them, we consider a finite jointly monic family (fi : A ! Si)i2I .
Then, �A is the infimum of the kernelpairs of the morphisms fi, at least one
of which must be �A as well, by the assumed closure property. Hence, the
corresponding morphism fi0 must be monic. Conversely, given a finite family of
congruences on A whose infimum is �A, their coequalizers form a jointly monic
family to which one applies the hypothesis.

(3) i) ii: Any least non-discrete congruence (p1, p2) on A serves as a generic
doubleton. Indeed, the kernelpair (q1, q2) of any morphism f : A ! B with
fp1 6= fp2 must be discrete since q1 6= q2 would imply (p1, p2)  (q1, q2) and
then fp1 = fp2; hence, f must be monic.

ii ) iii: Consider a generic doubleton a, b : P ! A and any monic family
(fi : A ! Si)i2I . Then fi0a 6= fi0b for at least one i0 2 I and since (a, b) is
generic, fi0 must be monic.

ii ) i: Starting with a generic doubleton a, b : P ! A, one shows that its
generated congruence (a, b) is a least element in ConA\{�A}. Certainly, a 6= b;
furthermore, the coequalizer f of any other non-discrete congruence (q1, q2) on
A must satisfy fa = fb since otherwise f would be monic and (q1, q2) discrete.
Hence (a, b)  (q1, q2).

iii ) i: We may assume ConA to be small. A least element in ConA\{�A}
may be constructed as the infimum of all non-discrete congruences on A by
Remark (4). Indeed, if this infimum were discrete, then their coequalizers would
form a jointly monic family, hence at least one of these would have to be monic,
which is impossible. ⇤
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Remarks. Let B be a reflective subcategory of a category A. For any object
B of B one has:

(1) If B is sdi in A, then B is also sdi in B.

(2) If B has a generic doubleton in A, then B has also one in B.

(3) In (1) the converse proposition holds true in each of the following cases: 1.
all reflexion morphisms are monic, 2. the reflector preserves small jointly
monic families, 3. the reflector has a left adjoint.

(4) If strong epimorphisms are regular in A, then for any subdirect represen-

tation (B
ei! A) in A one obtains a subdirect representation of B in B by

composing each ei with a reflexion morphism.

2.3 Some examples

(1) Sets. The fsdi objects in Set are precisely the two-element sets, and these are
also sdi, even simple, as an easy inspection of the congruence lattices reveals.

The following three examples are mentioned already by Birkho↵ [2].
(2) Distributive lattices and Boolean algebras. The two-element chain is (up

to isomorphism) the only fsdi object in both DLat and Boole, hence sdi and even
simple. In fact, any element of an fsdi object in DLat must be 0 or 1 since the
meet of the congruences induced by

a ^ � : L! L, a _ � : L! L

is trivial, so that one of the two congruences must be trivial. For L in Boole
one considers the congruences

x ⇠ y () (x _ y) ^ (x ^ y)0  a, x ⇠0
y () (x _ y) ^ (x ^ y)0  a

0

instead, with ( )0 denoting complementation.
(3) K-Vector spaces. In VecK the ground field K is (up to isomorphism) the

only fsdi object, in fact sdi and simple. Indeed, for any vector space, ConV ⇠=
SubV , and for V to admit non-zero subspaces with trivial intersection V should
have dimension at least 2.

(4) Abelian groups. Here we find our first example of an fsdi object which is
not sdi (Z, the integers), and of an sdi object which is not simple (Z4, the four-
element cyclic group). The fsdi objects of AbGrp include the additive subgroups
of the rationals Q; these are the so-called rank 1 torsion-free Abelian groups
which are of fundamental importance in the study of torsion-free Abelian groups.
However, L. Márki called my attention to the obviously erroneous claim of
Lemma 3 in [2] that also the subgroups of Q/Z be fsdi; indeed, as a torsion
group Q/Z is the coproduct of its primary components and thus decomposes
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into finite direct products in many non-trivial ways. The sdi objects are precisely
the cyclic groups Zpn and the quasi-cyclic multiplicative subgroups

Zp1 = {z 2 C | 9k � 0 : zp
k

= 1}

of the complex numbers (also presentable as the additive subgroups Z(p1) =n
m
pk

���m, k 2 Z, k � 0
o
 Q/Z), for some prime p, and n � 1. Of these, only the

cyclic groups Zp are simple.
(5) Commutative rings. We already saw in Proposition 1.3 that the only sdi

objects in CRng without nilpotent elements are the fields. A complete charac-
terization of sdi objects R in CRng was given by McCoy (see [12]), as follows.
There are two cases depending on whether the set D of zero divisors in R is the
whole ring or not. If D 6= R, then R is sdi if and only if

1. D is a maximal ideal,

2. J = {x 2 R | Dx = 0} is a non-zero principal ideal (j),

3. D = {y 2 R | Jy = 0},

4. for z 2 D\J there is w 2 D\J with zw = j.

If D = R, then R is sdi if and only if

1. there is a prime p such that for every x 2 R with Rx = 0 there is some k

with p
k
x = 0,

2. J = {x 2 R | Rx = 0, px = 0} is a non-zero principal ideal (j),

3. for every z 2 R with zR 6= 0 there is w 2 R with zw = j.

Remarks.

(1) A subdirect representation of a set X by sdi objects is provided by the
X-indexed family of maps

�x : X ! 2 = {0, 1} (x 2 X)

with �x(y) = 0 if and only if y = x, provided that |X| � 2, and by the
empty family otherwise.

(2) If (fi : X ! Si)i2I is a subdirect representation by sdi objects in Set and
X is finite with n elements, then I has at least n� 1 elements.

(3) The projections

⇡p : Z! Zp = Z/(p) (p prime)

provide a subdirect representation in CRng by sdi objects, and so does the
family

e⇡p : Z! Zp2 = Z/(p2) (p prime)

Note in particular that such representations are not unique.

13



2.4 Comma categories

It is easy to characterize simple and (f)sdi objects in a comma category A/T ,
based on Proposition 2.2 and the following trivial Lemma.

Lemma. Let a : A ! T be a morphism in a category A with kernelpairs and

their coequalizers. Then the preordered class Con(A, a) of congruences of the

object (A, a) in A/T is isomorphic to the preordered subclass of ConA given by

those congruences of A below (or isomorphic to) the kernelpair of a.

Corollary. Let a : A! T be a morphism in a complete and weakly cowellpow-

ered category A with coequalizers, and let p1, p2 : K ! A be its kernelpair.

Then

(1) (A, a) is simple in A/T if and only if a is not monic and the only congru-

ence of A below (p1, p2) is �A.

(2) (A, a) is fsdi in A/T if and only if a is not monic and the intersection of

any two non-discrete congruences of A below (p1, p2) is non-discrete.

(3) (A, a) is sdi in A/T if and only if there is a least non-discrete congruence

of A below (p1, p2). ⇤

Performing the same task in

T\A = (Aop
/T )op

is even easier: given an object (A, a : T ! A) in T\A, every regular epimorphism
f : A ! B in A gives a regular epimorphism f : (A, a) ! (B, b) in T\A, and
conversely, provided that the kernelpair of f exists in A or that A has finite
coproducts. Hence, simple and (f)sdi objects (A, a) in T\A are given precisely
by simple and (f)sdi objects A in A, respectively, under the (co)completeness
and smallness (i.e., cowellpoweredness) assumption of Proposition 2.2.

Examples. (1) (A, a) is sdi (even simple) in Set/T if and only if the map
a : A ! T has exactly one fibre which is sdi in Set while all other fibres are
preterminal; that is: if there is t0 2 T such that |a�1

t0| = 2 and |a�1
t|  1 for

all t 2 T , t 6= t0.
(2) (A, a) is sdi (even simple) in VecK/T if and only if the K-linear map

a : A! T has a kernel of dimension 1.
(3) (A, a) is sdi (simple) in Grp/T if the kernel of the group homomorphism

a : A! T is sdi (simple, respectively) in Grp.
(4) For A the category of commutative unital rings, R\A is the category

of commutative unital R-algebras. Hence, a commutative unital R-algebra is
simple (fsdi, sdi) if and only if it has the respective property as a commutative
unital ring.

Remark. For any category A and T 2 obA one has:

14



(1) No object (A, a) of A/T can have a doubleton if a is monic in A.

(2) If u, v : R! A is a generic doubleton of A inA, then u, v : (P, au)! (A, a)
is a generic doubleton of (A, a) in A/T for any a with au = av.

2.5 The dual notions: fat and bare points

An object P of a category is a bare (fat) point of A if P is simple (subdirectly
irreducible) in Aop; any monomorphism P ! A in A is called a bare (fat;
respectively) point of A in A. Bare and fat points are characterized by the dual
of Proposition 2.2. Denoting by

Reg SubA = RegMono/A

the regular subobjects of A in A we observe that Reg SubA represents the con-
gruences of A in Aop when A has cokernelpairs and their equalizers. Hence:

Corollary. In a cocomplete category A with equalizers an object

(1) P is a bare point of A if and only if Reg SubP is equivalent to the two-

element chain, and

(2) P is a fat point of A if and only if Reg SubA\{1P } has a largest element;

equivalently, if there are distinct morphisms u, v : P ! Q such that any

morphism f : A! P with uf 6= vf is epic.

Examples. (1) In Set the only fat points are the singleton sets, and these are
bare.

(2) In Grp, Reg SubA = SubA since all monomorphisms are regular: this is a
nice exercise in group theory. For a group A to admit a largest proper subgroup,
A must be cyclic of prime order. Hence, the fat points of Grp are precisely the
groups Zp, p prime, and these are actually bare.

We see now that the infinite cyclic group Z does not have a subdirect repre-

sentation by sdi objects in Grpop. In fact, such a representation would have to
be given by a family of fat points of Z. Since there is no monomorphism Zp ! Z
this family would have to be empty; however, the empty family with codomain
Z is not epic in Grp.

These statements remain unchanged if we trade Grp for AbGrp.

2.6 Presheaves

We characterize the sdi objects of SetC
op

amongst the representable functors,
for any small category C, as follows:

Proposition. C(�, C) : Cop ! Set is sdi in SetC
op

if and only if there exists

a doubleton u, v : P ! C in C with the property that for any other doubleton
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g, h : D ! C in C one may find morphisms d0, d1, . . . , dn : P ! D, n � 0, such
that

u 2{gd0, hd0},
{gd0, hd0} \ {gd1, hd1} 6= ;,
{gd1, hd1} \ {gd2, hd2} 6= ;,

.

.

.

{gdn�1, hdn�1} \ {gdn, hdn} 6= ;,
v 2{gdn, hdn}.

Proof. Let C(�, C) be sdi in SetC
op

. According to Proposition 2.2 there exists
a generic doubleton �, ⌧ : H ! C(�, C), and since he representables form a
generating class, there is ⇡ : C(�, P ) ! H with ⇡� 6= ⇡⌧ ; by the Yoneda
Lemma, we can write ⇡� = C(�, u), ⇡⌧ = C(�v) with u, v : P ! C in C.
Consider any other doubleton g, h : D ! C in C and form the coequalizer
diagram

C(�, D)
C(�,g)

◆
C(�,h)

C(�, C)
↵! F.

Since ↵ is not monic, for the generic doubleton (�, ⌧) we have ↵� = ↵⌧ , hence
↵P C(P, u) = ↵P C(P, v) and then ↵P (u) = ↵P (v). In other words, u and v are
equivalent under the equivalence relation generated by

{(C(P, g)(d), C(P, h)(d)) | d 2 C(P,C)}.

What this means has been stated explicitly in the Proposition.
Conversely, let us assume the existence of a doubleton u, v : P ! C in C

with the stated property. It su�ces to show that C(�, u), C(�, v) : C(�, P ) !
C(�, C) is generic. Indeed, given any natural transformation ↵ : C(�, C) !
F with ↵C(�, u) 6= ↵C(�, v), we show that ↵D : C(D,C) ! FD is monic
for every object D, as follows: ↵ corresponds to an element a 2 FC with
(Fu)(a) 6= (Fv)(a); if we had g 6= h in C(D,C) with ↵D(g) = ↵D(h), then
(Fg)(a) = (Fh)(a), and therefore

(Fu)(a) = (Fd0)(Fg)(a) = (Fd0)(Fh)(a)

= (Fd1)(Fg)(a) = (Fd1)(Fh)(a)

...

= (Fdn)(Fg)(a) = (Fdn)(Fh)(a)

= (Fv)(a). ⇤

Remark. SetC
op

may well possess sdi objects which are not representable.
Consider, for example, C to be discrete, with two objects, i.e., SetC

op

= Set⇥Set.
Since

Con(X,Y ) ⇠= ConX ⇥ ConY ,
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the object (X,Y ) is fsdi if and only if (|X| = 2 and |Y |  1) or (|X|  1 and
|Y | = 2), and these are also simple and therefore sdi. Hence, there are exactly
four isomorphism types of fsdi objects, all of which are simple and therefore sdi,
but neither of which is representable.

3 The categorical HNB Theorem

3.1 Noether’s Irreducible Decomposition Theorem

It is quite evident that, by mimicking the arguments given for ideals of a commu-
tative ring, we should be able to establish Noether’s Irreducible Decomposition
Theorem for strong quotients of an object in a category, provided that the object
is Noetherian in the following sense:

Definition. An object A in a weakly cowellpowered (= cowellpowered with
respect to strong epimorphisms) category A is Noetherian if every non-empty set
of strong quotients of A contains a maximal element. Hence, in every non-empty
set of objects of A\StrongEpi (the comma category of strong epimorphisms with
domain A) we find a strong epimorphism e : A ! B with the property that
every strong epimorphism f : B ! C must be an isomorphism.

Theorem. Every strong quotient object of a Noetherian object A in a weakly

cowellpowered category A with (strong epi, mono)-factorizations admits a finite

subdirect representation by fsdi objects.

Proof. Suppose that the class of quotient objects of A which fail to admit a
finite subdirect representation by fsdi objects is not empty, and let e : A ! B

be maximal in that class. Then B cannot be fsdi (since otherwise 1B : B ! B

would be a suitable representation) and must therefore admit a non-trivial finite
subdirect representation (fi : B ! Si)i2I (see Remark (3) of 2.1). Since none of
the fi is an isomorphism, by maximality of B every Si admits a finite subdirect
representation (gij : Si ! Tij)j2Ji by fsdi objects Tij . Then

figij : B ! Tij (i 2 I, j 2 Ji)

is a finite subdirect representation of B by fsdi objects, in contradiction to the
choice of B. ⇤

3.2 Finitary objects

In order to establish Birkho↵’s Subdirect Representation Theorem (see 1.3) cat-
egorically we should, in view of Theorem 3.1, work in a weakly cowellpowered
category with (strong epi, mono)-factorizations. However, it is clear from Ex-
ample (2) of 2.5 that this is not su�cient: we need to capture the categorical
consequences of the fact that Birkho↵ deals with finitary algebras in order to
establish his theorem.

Definition.
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(1) Let the up-directed diagram D : I ! A be given by the morphisms
fij : Ai ! Aj (i  j 2 I). A doubleton of D is a doubleton a, b : P ! Ai0

in A for some i0 2 I such that fi0ja 6= fi0jb for all j � i0. A cocone
D ! �B, given by morphisms hi : Ai ! B (i 2 I), is said to detect the
doubleton if hi0a 6= hi0b.

(2) An object P of A is finitary if any doubleton with domain P of an up-
directed diagram gets detected by at least one of its cocones.

Remarks. (1) Clearly, if some cocone detects a doubleton of an up-directed
diagram, so does its colimit (existence granted).

(2) Any cocone (hi)i2I of any up-directed diagram (fij)ij with

ker hi =
[

j�i

ker fij (+)

for all i 2 I (see 2.1) detects all doubletons of the diagram. Here we write
ker f = {(x, y)|fx = fy}.

(3) The colimit (hi)i2I of every up-directed diagram (fij)ij in Set satisfies
(+).

(4) For any doubleton with domain P of an up-directed system in A with a
colimit, the colimit detects the doubleton if the colimit is preserved by A(P,�) :
A! Set.

Since finitely-presentable objects are precisely those whose representables
preserve directed colimits, we obtain:

Proposition.

(1) Every finitely-presentable object in a category with directed colimits is fini-

tary.

(2) Every category with directed colimits preserved by a given faithful right

adjoint functor into some small discrete power of Set has a generator

(= generating set) consisting of finitely-presentable (hence, of finitary)

objects. ⇤

Remark. If P is a finitary object in the category A with up-directed colimits,
then for every p : P ! T in A, (P, p) is a finitary object in A/T .

3.3 HNB categories and theorems

Definition. A is a Hilbert-Noether-Birkho↵ (HNB) category if

(HNB1) A has (strong epi, mono)-factorizations,

(HNB2) A is weakly cowellpowered,
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(HNB3) A has a generator consisting of finitary objects.

Remarks.

(1) Folklore theorems show that (HNB2) implies (HNB1) if A has all small
connected colimits. (HNB1) comes also for free if A is wellpowered and has all
small connected limits. Note that in the presence of connected limits (HNB3)
implies wellpoweredness of A if the generator of (HNB3) is strong. (A generator
G in A is strong if a monomorphism u : B ! A is an isomorphism whenever
every morphism with domain in G and codomain A factors through u.) Finally,
(HNB3) implies (HNB2) if strong epimorphisms in A are regular.

(2) Every locally finitely-presentable category is HNB (see Proposition 3.2);
in particular every quasi-variety of finitary general algebras and every presheaf
category.

(3) The category of topological spaces is HNB; in fact, a singleton space
provides a one-object finitely-presentable generator.

(4) IfA has finite products, thenA is HNB if and only if all comma categories
A/T are HNB. In fact, for “only if” observe that in the presence of finite products

— a morphism in A/T is (strongly) epic if and only if it is (strongly) epic as
a morphism in A,

— for a finitary object P in A every morphism P ! T becomes a finitary
object in A/T ,

— if G is a generator of A, then the set of A-morphisms with domain in G

and codomain T becomes a generator of A/T .

Although the notion of HNB category does not entail any existence require-
ment for limits and colimits, it allows for a proof of a categorical HNB Theorem,
as first given in [17] and published in [18]:

HNB Theorem (Version 7) In an HNB category every object has a subdirect

representation by subdirectly irreducible objects.

Proof. Let G be the generator given by (HNB3), and consider any object A.
With the help of Zorn’s Lemma, for every G-doubleton x, y : G ! A we want
to find a maximal element ex,y : A ! Sx,y in a representative set Ex,y of all
strong epimorphisms e with ex 6= ey. Indeed, for any directed diagram

Bi Bj
fij

//

A

Bi

ei

����
��
��
��
��
�
A

Bj

ej

��?
??

??
??

??
??

(1)

(i  j 2 I) in the set Ex,y and any fixed index i0 2 I ( 6= ;), since G is finitary
the doubleton ei0x, ei0y gets detected by some cocone hi : Bi ! C, hence
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hi0ei0x 6= hi0ei0y. Factoring the morphism hi0ei0 = hjej (StrongEpi,Mono), its
strong epi factor e is an upper bound for the directed diagram, which concludes
the existence proof for ex,y:

Bj B

A

Bj

ej

����
��
��
��
��
�
A

B

e

��?
??

??
??

??
??

Bj

C

hj

��?
??

??
??

??
?

Bj B
tj //_________ B

C

m

����
��
��
��
��
�

(2)

The family (ex,y)x,y is, by construction, jointly monic: for any doubleton a, b :
P ! A we find z : G ! P with G 2 G and x := az 6= bz =: y, hence ex,ya 6=
ex,yb. Furthermore, the object Sx,y is sdi since ex,yx, ex,yy is a generic doubleton
of Sx,y. Indeed, the strongly epic factor d of any morphism f : Sx,y ! E with
fex,yx 6= fex,yy satisfies dex,yx 6= dex,yy and must, by maximality of ex,y, be
an isomorphism, which means that f must be monic. ⇤

Corollary. An object in an HNB category is sdi if and only if it has a generic

doubleton.

Proof. An object with a generic doubleton in any category is sdi (see Propo-
sition 2.2). Conversely, as just proved, an sdi object in an HNB category has
a subdirect representation by objects with generic doubletons. Since this rep-
resentation must be trivial, the object itself must have a generic doubleton.
⇤

Remarks.

(1) The subdirect representation rank r(A) of an object A in an HNB category
A is the least cardinal number |I| occurring in any of the subdirect rep-
resentations (fi : A ! Si)i2I of A by sdi objects. One shows that if the
product A⇥B exists in A and has strong epimorphic projections, then

r(A⇥B)  r(A) + r(B).

(2) One concludes from Remark (2) of 2.3 that r(X) = n� 1 in Set for every
n-element set X, n � 1.

(3) One easily shows that for a K-vector space V the subdirect representation
rank r(V ) is its dimension.
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3.4 Residually small HNB categories

The categorical impact of the HNB Theorem is especially strong if the category
in question has only a set of non-isomorphic sdi objects.

Definition. A category A is residually small if it contains a set of objects such
that any sdi object of A is isomorphic to an object of the set.

The HNB Theorem 3.3 proves the first part of the following Proposition:

Proposition. Every residually small HNB category has a cogenerator consisting

of sdi objects. Conversely, every wellpowered HNB category with a cogenerator

is residually small.

Proof. Given a cogenerator G of A, for any sdi object S of A there is a generic
doubleton a, b : P ! S and therefore a morphism f : S ! C with C 2 G and
fa 6= fb, which actually must be monic. Hence, sdi objects are subobjects
of objects in G, and there is only a set of them (up to isomorphism) if A is
wellpowered. ⇤

Hence, a residually small HNB category has both a generator and a cogen-
erator; if one adds to this the existence of some limits or colimits, then the
category has actually all limits and colimits that one can reasonably expect to
exist:

Theorem. For a residually small HNB category A the following conditions are

equivalent:

(i) A is total (so that its Yoneda embedding has a left adjoint);

(ii) A is hypercomplete (see [3]);

(iii) A has all small limits and intersections of large families of monomor-

phisms;

(iv) A is cototal;

(v) A is hypercocomplete;

(vi) A has all small colimits and cointersections of large families of epimor-

phisms.

Proof. For (i) ) (ii) ) (iii) see [3], [9]. (iii) ) (iv) follows from the dual of
Day’s Theorem [5] (as noted in Corollary 3.6 of [4]) since A has a cogenerator.
(iv) ) (v) ) (vi) ) (i) is dual to (i) ) (ii) ) (iii) ) (iv). ⇤

Corollary. Let A be a small-complete, wellpowered and residually-small HNB

category, let F be any functor with domain A. Then F has a left adjoint if it

preserves all limits, and F has a right adjoint if it preserves all colimits.

Proof. A total and cototal category is compact and cocompact in the sense of
Isbell [8] (see [9]). ⇤
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3.5 Examples

(1) Abelian groups and R-modules. According to the characterization given in
2.3(4), AbGrp is a residually small HNB category. Alternatively, one may show
residual smallness by proving that (the additive group) Q/Z is a (single object)
cogenerator of AbGrp. More generally, for a unital ring R,

homZ(R,Q/Z)

can be made into a right R-module by

(fr)(s) = f(rs)

for all f : R ! Q/Z, r 2 R, s 2 R, and then becomes a cogenerator of the
category ModR of right R-modules, according to a classical result of module
theory. Hence, ModR is a residually small HNB category and, as such, total and
cototal.

(2) Groups. While Grp, like any variety of general algebras, is an HNB cate-
gory, so that every group admits a subdirect representation by sdi objects, Grp
fails to be residually small. In fact, there is even a proper class of simple groups:
classically, for every field k the group PSL(3, k) is simple, and there are fields of
arbitrary large cardinality. Consequently, Grp fails to have a cogenerator. Grp
is cototal but fails to be hypercomplete (see [8], [3]). Hence, in Theorem 3.4
residual smallness is an essential assumption.

Although Grpop is residually small (see Example (2) of 2.5), not every group
has a subdirect representation in Grpop. In fact, since Grp fails to have a cogen-
erator, Grpop does not satisfy (HNB3), which is therefore an essential condition
for the HNB Theorem (Version 7) to hold. A more refined statement arises from
the following example.

(3) Compact Abelian groups. The category A of compact Abelian groups is
dually equivalent to AbGrp. Under this equivalence the sphere S

1 in A corre-
sponds to the infinite cyclic group Z. We saw already in 2.5(2) that Z does not
have a subdirect representation by sdi objects in Grpop, and neither in AbGrpop.
Hence S1 has no such representation in A either, although A is residually small.
This example is due to Wiegandt [20] and shows that the requirement of fini-
tariness for the objects of the generator in (HNB3) is essential for the HNB
Theorem to hold. This also shows that A fails to be locally finitely presentable.

(4) Residually small varieties of general algebras (defined by a set ⌦ of fini-
tary operations and a set of equations). These were first characterized by Taylor
[16] who gave a precise upper bound for the maximal size of an sdi algebra S in
a residually small variety:

|S|  2k, k = @0 + |⌦|.

Consequently, in a residually small variety one finds at most 22
k

sdi algebras.
Taylor provided examples showing that both bounds are best possible.

It is interesting to note in this context that the number of simple algebras
in a variety is not an indicator for residual smallness. There is an example of
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a variety due to McKenzie which has only two non-isomorphic simple algebras
but fails to be residually small.

For an extensive table of examples of residually small varieties, see [10].

3.6 Subdirectly irreducible factorization of morphisms

We wish to exhibit more fully the e↵ect of the HNB Theorem (Version 7) for
comma categories.

Definition.

(1) A multifactorization of a morphism f : A ! B in a category A is given
by a small family of morphisms pi, si (i 2 I) such that

A B
f

//

Si

A

??

pi

��
��
��
��
��
�
Si

B

si

��?
??

??
??

??
??

(3)

commutes for every i 2 I. The multifactorization is monic if the family
(pi)i2I is jointly monic, and it is trivial if there is some i0 2 I with pi0

monic.

(2) A morphism f is sdi if every monic multifactorization of f is trivial. An
sdi factorization of f is a monic multifactorization (9) of f with each pi a
strong epimorphism and each si an sdi morphism.

Remarks.

(1) A morphism f : A ! B is sdi if and only if (A, f) is an sdi object in
A/B. An sdi factorization of f is precisely a subdirect representation of the
object (A, f) in A/B by sdi objects, provided that A has finite products.

(2) The empty multifactorization of f is monic if and only if f is a monomor-
phism, i.e., a preterminal object in A/B. Such morphisms have an empty sdi
factorization.

(3) A multifactorization of a morphism f may of course be described equiv-
alently by the ordinary factorization of f through the fibred product of the
morphisms fi, or the fibred coproduct of the morphisms pi.

Since the comma categories of an HNB category with finite products are
HNB again (see Remark (4) of 3.3) we can apply the HNB Theorem (Version
7) and obtain:

HNB Theorem (Version 8) In an HNB category with finite products every

morphism has a subdirectly irreducible factorization.

Of course, existence of finite products granted, Version 8 in fact entails
Version 7, since A/T ⇠= A for T terminal in A.
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Examples. (1) Sdi morphisms of Set were characterized in Example (1) of 2.4.
We can now generalize Remark (1) of 2.3 and establish an sdi factorization of a
map f : X ! T by:

X T
f

//

f [X] + 1

X

??

px

��
��
��
��
��
f [X] + 1

T

sx

��?
??

??
??

??
??

(4)

It is indexed by those x 2 X with |f�1
f(x)| � 2, and

px(y) =

(
0 if y = x,

f(y) if y 6= x,

sx(t) =

(
f(x) if t = 0,

t if t 2 f [X];

here 1 = {0}, and 0 62 f [X].
It is easy to see that, even in the case T = 1 (see Remark 2.3(1)), this

construction is not functorial. In fact, it is easy o see that there is no functor
that assigns to a setX a product of sdi objects (i.e., a power of 2) which provides
a natural subdirect representation (so that X is naturally embedded into the
product).

(2) Sdi morphisms of VecK were described in Example (2) of 4.4 as those
K-linear maps whose kernel is isomorphic to the field K. An sdi factorization of
f : V !W in VecK is established by fixing a basis (xi)i2I of ker f and extending
it to a basis (xj)j2J of V , with I ✓ J , and then defining a multifactorization of
f , as follows:

V W
f

//

im f �K

V

??

pi

��
��
��
��
��
�

im f �K

W

si

��?
??

??
??

??
?

(i 2 I) (5)

pi(xj) =

(
1 2 K if j = i,

f(xi) if j 2 J, j 6= i,

si||im f
= inclusion, si||K = 0. (6)

(3) Let f : M ! N be a homomorphism of R-modules, for any ring R, and
assume that ker f is a direct summand of M :

M = U � ker f

for some submodule U of M . Let (pi : ker f ! Si)i2I be a subdirect represen-
tation of ker f in ModR by sdi objects. Then an sdi factorization of f can be
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obtained as

M N
f

//

im f � Si

M

??
ef�pi

��
��
��
��
��

im f � Si

N

si

��?
??

??
??

??
?

(7)

with ef : U ! im f the restriction of f , and with si defined as in Example (2).
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