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Abstract

The paper discusses interactions between order and topology on a given set which
do not presuppose any separation conditions for either of the two structures, but
which lead to the existing notions established by Nachbin in more special situations.
We pursue this discussion at the much more general level of lax algebras, so that
our categories do not concern just ordered topological spaces, but also sets with two
interacting orders, approach spaces with an additional metric, etc.
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1 Introduction

Contrary to widespread perception, in his beautiful monograph Topology and
Order [N2] Nachbin did not formally introduce a notion of topological ordered
space, or of ordered topological space. He did introduce normally (pre)ordered
and compact ordered spaces, but even the original article [N1] contains no for-
mal definition in the general case, despite the fact that its first paragraph is
entitled “On topological ordered spaces”. Rather, he simply refers to a topo-
logical space equipped with a preorder, which normally is assumed to be closed
(as a subset of the product space). About the reasons I can only speculate.
But since he often cites the case of the discrete order as the one giving the cor-
responding ordinary topological notion or result, whereas a topological space
with a closed discrete (or any) order must necessarily be HausdorÆ, I conclude
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that he tried to avoid formalizing a general definition that in the discretely or-
dered case would not return the general notion of topological space. This con-
clusion is consistent with the fact that the monograph carefully avoids inherent
separation conditions whenever posssible, working with preorders rather than
orders, thus avoiding “antisymmetry”, or working with semi-metrics rather
than metrics, thus avoiding symmetry and the separation condition that only
equal points may have distance 0.

In this article we discuss three possible candidates for a notion of ordered topo-
logical space. (We prefer this name over topological ordered space.) These can-
didates emerge rather naturally when we look at the fundamental adjunction
linking order and topology:

Ord >
A

//

Top
S

oo

Here Ord denotes the category of preordered sets (= sets with a reflexive and
transitive relation) and monotone maps. In fact, in order to avoid excessive use
of prefixes, we will refer to its objects simply as ordered sets, using separated
ordered sets for what Nachbin calls ordered sets and what most other authors
refer to as partially ordered sets. The full embedding A provides an ordered set
(X,∑) with the AlexandroÆ topology ø∑ generated by the principal downsets
# x (x 2 X), while its coreflector S endows a topological space (X, ø) with
the (dual of the) specialization order :

x ∑ø y :, ẋ ! y , Nx ∑ Ny , y 2 {x} .

(Here ẋ is the principal filter over x, and Nx is the neighbourhood filter of
x; ∑ for filters is to be read as “finer than”.) We take the position that,
whatever notion of ordered topological space one wants to adopt, it should
include arbitrary topological spaces (X, ø) endowed with the order ∑ø and,
consequently, arbitrary ordered sets (X,∑) topologized by ø∑.

Our first description of the specialization order indicates that it may be useful
here to think of topological spaces in terms of convergence. It was Barr [B]
who first proved that a topological space may be described as a set X with a
relation !: ØX p!X between the set ØX of ultrafilters on X and the set X,
satisfying two simple axioms which show best the extent to which arbitrary
topological spaces generalize AlexandroÆ spaces, i.e. ordered sets:

Reflexivity: ẋ ! x ,
Transitivity: X ! y, y ! z ) ßX ! z ,

for all x, z 2 X, y 2 ØX, X 2 ØØX. Here ßX denotes the Kowalsky sum of
X, defined by B 2 ßX , B] 2 X, with B] = {x 2 ØX|B 2 x} the set of
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ultrafilters on B µ X. Furthermore, the convergence relation ! has been
extended to !: ØØX p!ØX, by

X ! y , 8B 2 y : {x 2 ØX|9y 2 B : x ! y} 2 X .

Seal [S] showed that ØX may in fact be replaced by the set ∞X of all filters
on X: With the same definitions, a relation !: ∞X p!X satisfying the two
axioms will still describe Top, where again we take the morphisms to be the
maps preserving the convergence relation.

Any order ∑ that a topological space (X,!) may carry can be extended to
(ultra)filters via

x ∑ y , 8B 2 y : # B 2 x

(with # B =
S

x2B # x); when the order is discrete, this is of course just the
“finer than” order. Now, when∑ is the specialization order∑ø , we observe that
the two relations ! and ∑ are linked by the following fundamental property:

Modularity: x ∑ y, y ! y, y ∑ z ) x ! z .

In fact, quite trivially, any ordered set with a topology generated by a system
of down-closed open sets satisfies the modularity condition. Hence, the Scott
topology on (the dual of) an ordered set satisfies it, and so does every discretely
ordered topological space. However, the real line with its natural order and
Euclidean topology does not. In fact, no HausdorÆ space with a non-discrete
order satisfies the Modularity condition. Hence, instead of permitting non-
HausdorÆness, the condition dictates non-HausdorÆness, except in the case of
the discrete order.

While we will underline in this paper the central role of the Modularity con-
dition, as that of a mediator between order and topology, it is clear that it
cannot serve as a generally acceptable notion. Two distinct weakenings arise
naturally, as follows:

Closedness: x ∑ y, y ! y ) 9x : x ! x, x ∑ y ,
Openness: x ! x, x ∑ y ) 9y : x ∑ y, y ! y .

For a HausdorÆ space X, Closedness makes the order ∑ closed as a subset
of X £ X, and any such order satisfies the Closedness condition when X is
compact. For compact HausdorÆ spaces, Closedness is also equivalently ex-
pressed by the preservation condition (B µ X closed ) " B closed), con-
trasting with the following necessary preservation condition for Openness:
(A µ X open ) # A open); it is equivalent to Openness in the case of filter
convergence. The real line and the Euclidean plane (with its coordinatewise
natural order) satisfy both conditions. The emerging categories COrdTop
and OOrdTop of closed-ordered topological spaces and open-ordered topolog-
ical spaces both contain the category ModTop of modular topological spaces
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as a full bireflective subcategory but fail to possess some of the good properties
that ModTop enjoys as a topological category over Ord (and Set).

The setting in which we discuss these categories and their functorial interac-
tions is much more general than these introductory remarks may suggest. We
work in the context of so-called (T,V)-categories (or lax (T,V)-algebras) with
a quantale V and a Set-monad T suitably extended to the category V-Rel
of sets and V-relations. The precise set of axioms is taken from [S], which is
based on work presented previously in [CH1], [CT], [CHT]. Ordered topologi-
cal structures occur in this context when V is the 2-chain and T the filter- or
ultrafilter monad of Set, suitably extended to Rel. There are many aspects
even in this special case on which we cannot elaborate in this introductory
paper, most prominently the question of how continuous lattices fare in our
setting. Also, we indicate only briefly how this work provides the basis for a
study of sets equipped with a metric and an approach structure [Lo] th! at
are adequately linked, i.e. of the case the case when V = [0,1] is Lawvere’s
extended real half-line [L] and T the ultrafilter monad.

2 Syntax

Let V = (V, k,≠) be a commutative unital quantale; hence V is a complete
lattice and (V , k,≠) is a commutative monoid such that the binary operation
≠ distributes over arbitrary suprema : v ≠ W

wi =
W

v ≠ wi. Our two primary
examples are the 2-chain 2 = ({? < >},>,^) and the extended half-line
P+ = ([0,1]op, 0, +), with [0,1]op = ([0,1],∏). A V-relation r : X p!Y from
a set X to a set Y is a function r : X £ Y ! V ; its composite with s : Y p!Z
is defined by

(s · r)(x, z) =
_

y2Y

r(x, y)≠ s(y, z) .

This defines the category V-Rel, which is in fact a 2-category: its hom-sets
carry the pointwise order

r ∑ r0 , 8x 2 X, y 2 Y : r(x, y) ∑ r0(x, y) .

There is also an involution (r 7! r±) with r±(y, x) = r(x, y) which is con-
travariant on 1-cells but covariant on 2-cells.

Every mapping f : X ! Y can be considered as a V-relation f± : X p!Y via

f±(x, y) =

8
<

:
k if f(x) = y ,

? else .

This defines a functor Set ! V-Rel which is faithful precisely when k > ?
(i.e., when V has at least 2 elements). We will assume k > ? henceforth and
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write f instead of f±. The converse V-relation f ± : Y p!X is right adjoint to f
in V-Rel: f · f± ∑ 1Y , 1X ∑ f± · f .

In addition to the quantale V we consider a monad T = (T, e, m) of Set (i.e.
an endofunctor T with natural transformations e : 1Set ! T , m : TT ! T
satisfying m(Te) = m(eT ) = 1T , m(Tm) = m(mT )) and functions

V-Rel(X, Y ) ! V-Rel(TX, TY ) , r 7! T̂ r ,

such that:

(1) T̂ s · T̂ r ∑ T̂ (s · r), r ∑ r0 ) T̂ r ∑ T̂ r0,
(2) Tf ∑ T̂ f , (Tf)± ∑ T̂ (f ±),
(3) eY · r ∑ T̂ r · eX , mY · T̂ T̂ r ∑ T̂ r · mX ,

for all r, r0 : X p!Y , s : Y p!Z, and f : X ! Y . Note that from (2) one has in
particular 1TX ∑ T̂1X , so that then (1) says that

T̂ : V-Rel ! V-Rel

is a lax functor which coincides with T on objects, whereas (3) stipulates that
e : 1V-Rel ! T̂ , m : T̂ T̂ ! T̂ be op-lax natural transformations. We will refer
to T̂ as a lax extension of T. We note that (3) may be equivalently expressed
by:

(30) r · e±X ∑ e±Y · T̂ r, T̂ T̂ r · m±
X ∑ m±

Y · T̂ r .

There are some important identities that one may derive from (1)-(3), as fol-
lows:

Proposition 1. For all r, s, f as above and g : Z ! Y one has:

1. (See [S].) T̂ (s·f) = T̂ s·T̂ f = T̂ s·Tf , T̂ (g±·r) = T̂ (g±)·T̂ r = (Tg)±·T̂ r .
2. (See [T2].) T̂1X = T̂ (e±X) · m±

X .

Proof. 1.

T̂ (s · f) ∑ T̂ (s · f) · Tf ± · Tf (adjunction)

∑ T̂ (s · f) · T̂ (f ±) · Tf (by (2))

∑ T̂ (s · f · f±) · Tf (by (1))

∑ T̂ s · Tf (adjunction)

∑ T̂ s · T̂ f (by (2))

∑ T̂ (s · f) (by (1)) .

The second identity follows similarly.
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2. From mX · TeX = 1TX = 1±TX one obtains:

T̂1X = T̂1X · (TeX)± · m±
X

∑ T̂1X · T̂ (e±X) · m±
X (by (2))

∑ T̂ (e±X) · m±
X (by (1))

∑ T̂ (e±X · T̂1X) · m±
X (by (1),(2))

∑ (TeX)± · T̂ T̂1X · m±
X (by (1))

∑ (TeX)± · m±
X · T̂1X = T̂1X (by (3)) .

Example 1. Writing Rel instead of 2-Rel we can translate the natural
bijection Rel(X, Y ) ª= Rel(Y,X), r 7! r±, to

Set(X,PY ) ª= Set(Y,PX) = Setop(PX, Y ) ,

showing the self-adjointness of the contravariant powerset functor P ` Pop,
with

P : Set ! Setop , (f : X ! Y ) 7! (Pf : B 7! f°1(B)) .

The induced monad P2 = (PopP , e, m) is given by:

P2f : P2X °! P2Y, eX : X °! P2X, mX : P2P2X °! P2X

x 7! {B|f°1(B) 2 x} x 7! ẋ X 7! ßX

with ẋ and ßX defined as in the Introduction. There are subfunctors

1Set ! Ø ! ∞ ! ± ! P2

which give submonads of P2, with

x 2 ±X , X 2 x and (A 2 x, A µ B ) B 2 x) ,

x 2 ∞X , x 2 ±X and (A 2 x, B 2 x ) A \B 2 x) ,

x 2 ØX , x 2 ∞X and (A [B 2 x ) A 2 x or B 2 x) .

It is not di±cult to prove that if T is any of 1, Ø, ∞, ±, then we may define a
lax extension of the corresponding Set monad to Rel by

x(T̂ r)y , 8B 2 y 9A 2 x : A µ r±(B)

, 8B 2 y 9A 2 x 8x 2 A 9y 2 B : xry ,

6



where r : X p!Y , writing xry when r(x, y) = >. (We note that T may not be
taken to be P2 since in each of (2),(3) the second inequality may no longer be
satisfied.)

3 Strict Semantics

Let V be as in Section 2. A V-category X = (X, a) is a set X with a V-
relation that is reflexive (1X ∑ a) and transitive (a · a ∑ a). A V-functor
f : (X, a) ! (Y, b) is a map f : X ! Y with f · a ∑ b · f . This defines
the category V-Cat. For V = 2, this is the category Ord, and with V = P+

one obtains the category Met whose objects (X, a : X £X ! [0,1]) are just
required to satisfy a(x, x) = 0 and a(x, z) ∑ a(x, y)+a(y, z) for all x, y, z 2 X,
and whose morphisms f : (X, a) ! (Y, b) satisfy b(f(x), f(x0)) ∑ a(x, x0) for
all x, x0 2 X; see [L], [CHT].

Let us now consider a Set-monad T = (T, e, m) with a lax extension T̂ . We
can augment T into a monad of V-Cat, by putting

T (X, a) = (TX, T̂ a) .

Indeed, this is again a V-category since

1TX ∑ T̂1X ∑ T̂ a , T̂ a · T̂ a ∑ T̂ (a · a) = T̂ a .

And for a V-functor f : (X, a) ! (Y, b), since

Tf · T̂ a ∑ T̂ (f · a) ∑ T̂ (b · f) = T̂ b · Tf ,

Tf : T (X, a) ! T (Y, b) is again a V-functor. Finally, condition (3) for T̂ makes
eX and mX V-functors. Hence:

Proposition 2. T is a monad of V-Cat.

Considering the respective Eilenberg-Moore categories over Set and V-Cat,
one obtains the commutative diagram

SetT >
eD

//

`UT

≤≤

(V-Cat)T
eV

oo

`UT

≤≤

Set >
D

//

F T

OO

V-Cat
V

oo

F T

OO
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Here V is the forgetful functor which exhibits V-Cat as a topological category
over Set (see [CHT]), and D is its left adjoint X 7! (X, 1X). An object (X, a, c)
in (V-Cat)T is composed of objects (X, a) 2 V-Cat and (X, c) 2 SetT (i.e.,
c : TX ! X satisfies c·eX = 1X , c·Tc = c·mX) such that c : T (X, a) ! (X, a)
is a V-functor (i.e. c · T̂ a ∑ a · c); morphisms of (V-Cat)T must live simultane-
ously in V-Cat and in SetT. The lifted adjunction fD a eV : (X, a, c) 7! (X, c)
is obtained from:

Proposition 3. eV is (like V ) a topological functor. In particular, eV has both
a right adjoint and a left adjoint.

Proof. In fact, having a family of morphisms fi : (X, c) ! (Yi, di) in SetT

with all (Yi, bi, di) 2 (V-Cat)T, we may simply consider the V -initial structure
a =

V
i f

±
i · bi · fi on X and observe that (X, a, c) lies in (V-Cat)T:

c · T̂ a ∑ V
i c · T̂ (f ±i · bi · fi) (by 1.)

∑ V
i c · (Tfi)± · T̂ bi · Tfi (Prop. 1)

∑ V
i f

±
i · di · T̂ bi · Tfi (from fi · c = di · Tf)

∑ V
i f

±
i · bi · di · Tfi (from di · T̂ bi ∑ bi · di)

=
V

i f
±
i · bi · fi · c = a · c (from fi · c = di · Tf) .

The right adjoint of eV is constructed by eV -initially lifting the empty family,
i.e. by putting a to be constantly the top element > in V , and to obtain
its left adjoint fD one considers the family of all morphisms (X, c) ! (Y, d)
with (Y, b, d) 2 (V-Cat)T. Hence, fD(X, c) = (X, a, c) with a the least V-Cat
structure on X that makes (X, a, c) live in (V-Cat)T.

We hasten to remark that only when the lax extension T̂ of T is flat, that is
when T̂1X = 1TX (and then T̂ f = Tf , T̂ (f±) = (Tf)± in (2) of Section 2, by
Prop. 1), are we sure that fD(X, c) may be easily computed as (X, 1X , c).

Corollary 1. (V-Cat)T is complete and cocomplete, and eV preserves all limits
and colimits.

Example 2. For T = Ø, SetT is the category CompHaus of compact
HausdorÆ spaces ([M]), and with V = 2 we then obtain the category

(V-Cat)T = OrdCompHaus
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of ordered compact HausdorÆ spaces, i.e. of compact HausdorÆ spaces X which
carry a (pre)order making ultrafilter convergence monotone:

x ! x, y ! y, x ∑ y =) x ∑ y .

The extension T̂ a of the order a of X as considered in Example 1 gives precisely
the order on ØX as considered in the Introduction. We also note that the
extension is flat.

Let us now clarify that Nachbin’s compact ordered spaces are precisely those
objects of OrdCompHaus whose order is separated; we denote the corre-
sponding full subcategory by SepOrdCompHaus. This follows easily from:

Proposition 4. In a topological space X provided with an order ∑, consider
the following conditions:

(i) for x ∑ y in ØX and y ! y there is x ∑ y with x ! x (Closedness);
(ii) for every closed set F µ X, " F is also closed;
(iii) {(x, y)|x ∑ y} is closed in X £X;
(iv) " x is closed for all x 2 X.

Then the implications (i) ) (ii) and (iii) ) (iv) hold, while (i) ) (iii) and
(ii)) (iv) hold when X is HausdorÆ, and (iv) ) (i) holds when X is compact.

Proof. (i) ) (ii). Let F be closed and consider y ! y with " F 2 y. Since

F \ # B 6= ; , " F \ B 6= ; ,

F belongs to any ultrafilter x containing the filter {# B|B 2 y}. Trivially,
x ∑ y, so that x ! x for some x ∑ y, by hypothesis. But x 2 F since F is
closed, and hence y 2 " F .

(iii) ) (iv). See Prop. 1, p. 26 of [N2].

(i) ) (iii). Consider z 2 Ø(X £ X) with G = {(x, y)|x ∑ y} 2 z and z !
(x, y), so that with x = Tp1(z), y = Tp2(z) one has x ! x, y ! y (where
p1, p2 : X £ X ! X are the projections). We claim x ∑ y; indeed, if B 2 y,
then X £ B 2 z and then # B = p1((X £ B) \ G) 2 x. Consequently x ! x0

for some x0 ∑ y. When X is HausdorÆ, with x ! x one obtains x0 = x and
therefore (x, y) 2 G.

(ii) ) (iv) is trivial when X is a T1 space.

(iv) ) (i). Assume x ∑ y and y ! y. When X is compact one has x ! x,
and " x is closed, by hypothesis. Since for all B 2 y one has # B 2 x, so that
# B \ " x 6= ; and then even B \ " x 6= ;, y restricts to " x, so that its limit
y must lie in " x.
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Compactness without separation conditions does not yield equivalence of the
conditions in Prop. 4. For example, the Sierpinski space X = {0 ∑ 1} endowed
with {1} open satisfies conditions (i),(ii) but neither of (iii), (iv). If, instead,
we make {0} the only non-trivial open set while keeping the order, also (iv)
holds true while (iii) still fails.

The reflector of Ord onto the full subcategory SepOrd (obtained by X 7!
X / ª with (x ª y , x ∑ y and y ∑ x)) may be lifted to a reflector of
OrdCompHaus onto SepOrdCompHaus: it follows from condition (iii) of
Prop. 4 (which equivalently says that whenever x 6∑ y there are neighbour-
hoods V of x and W of y with V = " V , W = # W , and V \W = ;) that
the quotient space X / ª is HausdorÆ, and the quotient is also easily seen to
satisfy condition (ii) of Prop. 4. Hence:

Corollary 2. Nachbin’s compact ordered spaces form a quotient-reflective sub-
category of OrdCompHaus. Hence, the subcategory is complete and cocom-
plete.

4 Lax Versus Strict Semantics

Let V and T be as in Section 2, with a lax extension T̂ . The category

(T,V)-Cat

of (T,V)-categories (or lax (T,V)-algebras) has as objects pairs (X, c) with
a set X and a V-relation c : TX p!X with 1X ∑ c · eX and c · T̂ c ∑ c · mX ;
a morphism f : (X, c) ! (Y, d) must satisfy f · c ∑ d · Tf or, equivalently,
f · c ∑ d · T̂ f . In fact, one has d · Tf = d · T̂ f since

d · Tf ∑ d · T̂ (1Y · f) (by (2))

= d · T̂1Y · Tf (by Prop. 1)

= d · T̂ (e±Y ) · m±
Y · Tf (by Prop. 1)

∑ d · T̂ d · m±
Y · Tf (since e±Y ∑ d)

∑ d · mY · m±
Y · Tf (since d · T̂ d ∑ d · mY )

∑ d · Tf (adjunction) .

For T the identity monad (and T̂ = 1), (T,V)-Cat = V-Cat. For V = 2 and
T either the ultrafilter monad or the filter monad (extended as in Example
1), (T,V)-Cat is the category Top of topological spaces, as shown by Barr
[B] and Seal [S]. In general, (T,V)-Cat is a topological category over Set (see
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[CHT]) which may be linked to V-Cat by the following adjunction which,
under more restrictive conditions on T and V, was established in [CH2]:

V-Cat >
A

//

(T,V)-Cat
S

oo

with S(X, c) = (X, c · eX), A(X, a) = (X, e±X · T̂ a). Verification that A(X, a)
is a (T,V)-category requires the full range of conditions (1)-(3):

1X ∑ e±X · eX ∑ e±X · T̂1X · eX ∑ (e±X · T̂ a) · eX ,

(e±X · T̂ a) · T̂ (e±X · T̂ a) = e±X · T̂ a · T̂ (e±X) · T̂ T̂ a (by Prop. 1)

∑ e±X · T̂ (a · e±X) · T̂ T̂ a

∑ e±X · T̂ (e±X · T̂ a) · T̂ T̂ a

= e±X · (TeX)± · T̂ T̂ a · T̂ T̂ a (by Prop. 1)

∑ e±X · mX · T̂ T̂ (a · a) (since (TeX)± ∑ mX)

∑ (e±X · T̂ a) · mX . 2

Of course, for V = 2 and T = Ø or ∞ we get back the adjunction considered in
the Introduction. We now establish the (T,V)-generalization of the category
ModTop: the category

(T,V)-ModCat

has objects (X, a, c) with (X, a) 2 V-Cat, (X, c) 2 (T,V)-Cat,and

a · c ∑ c and c · T̂ a ∑ c ;

hence, in the language of [L], c : T (X, a) ! (X, a) is a V-module. A morphism
in (T,V)-ModCat must simultaneously live in V-Cat and in (T,V)-Cat.

Lemma 1. For a (T,V)-category (X, c) and any V-relation a : X p!X, the
following are equivalent:

(i) a ∑ c · eX ;
(ii) a · c ∑ c and c · T̂ a ∑ c ;
(iii) a · c ∑ c .

Proof. (i) ) (ii). From (i) we obtain

a · c ∑ c · eX · c ∑ c · T̂ c · eTX ∑ c · mX · eTX = c ,

c · T̂ a ∑ c · T̂ (c · eX) = c · T̂ c · TeX ∑ c · mX · TeX = c .

(iii) ) (i). From (iii) one derives a ∑ a · c · eX ∑ c · eX .
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The Lemma says in particular that (X, a, c) is in ModTop whenever the topo-
logical space (X, c) is provided with an order a that is contained in the (dual
of the) specialization order given by (X, c), i.e. when x ∑ y w.r.t. a implies
ẋ ! y for all x, y 2 X.

Theorem 1. (T,V)-ModCat is a topological category over V-Cat, and the
adjunction A a S factors through (T,V)-ModCat.

Proof. Initial structures with respect to the forgetful functor eU : (T,V)-ModCat !
V-Cat are obtained by lifting those structures that are initial with respect to
the topological functor U : (T,V)-Cat ! Set. Hence, having morphisms
fi : (X, a) ! (Yi, bi) in V-Cat with all (Yi, bi, di) 2 (T,V)-ModCat, one
considers the U -initial (T,V)-category structure

c =
^

i

f±i · di · Tfi

on X which is easily seen to satisfy a · c ∑ c. Hence, by Lemma 1, (X, a, c) is
an object of (T,V)-Cat and provides the desired eU -initial lifting.

We now establish a commutative diagram of adjunctions

V-Cat >
Ā

//

Va

≤≤

>
A

%%

KKKKKKKKKKKKKKKKKKKKKKK
(T,V)-ModCat

eU
oo

aZ

≤≤

Set >
E

//

D

OO

(T,V)-Cat
U

oo

S̄

OO

S

eeKKKKKKKKKKKKKKKKKKKKKKK

Here S̄ and Ā are liftings of S and A:

S̄(X, c) = (X, c · eX , c) , Ā(X, a) = (X, a, e±X · T̂ a) .

The modularity condition for S̄(X, c) follows from

(c · eX) · c ∑ c · T̂ c · eTX ∑ c · mX · eTX = c .

In the diagram, of the forgetful functors U, eU, V, Z, all but Z are topological.
Trivially,

ZĀ = A, eUS̄ = S, V S = U, and AD = E : X 7! (X, e±X · T̂1X);

all other verifications are left to the reader.
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Since eUĀ = 1 and ZS̄ = 1 we note:

Corollary 3. Ā is a full coreflective embedding and S̄ a full reflective embed-
ding.

We now revisit the adjunction

V-Cat >
F T

//

(V-Cat)TUT
oo

of Section 3 and show that it factors through (T,V)-ModCat as well. To this
end we consider the “composition functor”

C : (V-Cat)T ! (T,V)-ModCat , (X, a, c) 7! (x, a, a · c) .

Since eUC = UT, it su±ces to show that C has a left adjoint, and for that, ac-
cording to the generalized version of Wyler’s “Taut Lift Theorem” ([W1],[T1]),
we just need to show that every source of morphisms in (V-Cat)T factors into
an epimorphism followed by a UT-initial family fi : (X, a, c) ! (Y, bi, di) which
is mapped to a eU -initial family by C. Indeed, standard factorization techniques
show that the family (fi) may be chosen to be monic (hence surely UT-initial)
and eV -initial, so that a =

V
i f

±
i · bi · fi (see Prop. 3). The C-image of (fi) is

eU -initial since fi : (X, a · c) ! (Yi, bi · di) is U -initial (see Thm. 1); indeed,

^

i

f ±i · (bi · di) · Tfi =
^

i

f±i · bi · fi · c = a · c .

This shows that C has a left adjoint W , and it completes the proof of:

Theorem 2. The adjunction F T a UT factors as

V-Cat >
Ā

//

(T,V)-ModCat >
W

//

eU
oo

(V-Cat)TC
o o

.

In summary, (V-Cat)T behaves very nicely as a category over V-Cat: the
forgetful functor is monadic and factors through the topological category
(T,V)-ModCat. However, the situation is less satisfactory when we want
to consider (V-Cat)T as a category over (T,V)-Cat, by composing C with
the functor Z : (T,V)-ModCat ! (T,V)-Cat of Theorem 1. In fact, since
we are composing a right adjoint functor with a left adjoint, no good preser-
vation properties are to be expected of the composite functor which, however,
is still a concrete functor over V-Cat since the diagram
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(V-Cat)T ZC
//

UT
&&

MMMMMMMMMM
(T,V)-Cat

S
wwppppppppppp

V-Cat

commutes. Indeed, ZC(X, a, c) = (X, a · c), hence SZC(X, a, c) = (X, a ·
c · eX) = (X, a). The reader should note that ZC does not simply forget
structure. In fact, for (X, a, c) 2 (V-Cat)T, (X, c) will generally fail to be
in (T,V)-Cat, unless the extension T̂ is flat (as defined in 3). In that case,
however, T̂ c = Tc when c is a map, so that one has a functor

(V-Cat)T ! (T,V)-Cat , (X, a, c) 7! (X, c) .

The extension provided by Example 1 is flat when T = Ø (and yields the
forgetful functor OrdCompHaus ! Top), but not when T = ∞ or ±. A
thorough discussion of the case V = 2 and T = ∞, where SetT is the category
of continuous lattices (see [D], [W2], [GHKLMS]), must appear elsewhere.

5 More Lax Semantics

A closed V-structured (T,V)-category (X, a, c) must satisfy (X, a) 2 V-Cat,
(X, c) 2 (T,V)-Cat, and

c · T̂ a ∑ a · c and T̂ (a · c) ∑ T̂ a · T̂ c .

These are the objects of the category

(T,V)-CCat

whose morphisms are maps that are morphisms in both V-Cat and (T,V)-Cat.
Before considering the standard example, let us first point out:

Proposition 5. (T,V)-ModCat is a full bireflective subcategory of (T,V)-CCat.

Proof. For (X, a, c) 2 (T,V)-ModCat we have quite trivially

c · T̂ a ∑ c = 1X · c ∑ a · c and T̂ (a · c) ∑ T̂ c = T̂1X · T̂ c ∑ T̂ a · T̂ c .

The reflector K is (again) given by composition of structures: for (X, a, c) 2
(T,V)-CCat, put K(X, a, c) = (X, a, a·c). This object lives in (T,V)-ModCat,
and f : (X, a, c) ! (Y, b, d) with (Y, b, d) 2 (T,V)-ModCat is a morphism
precisely when f : (X, a, a · c) ! (Y, b, d) is a morphism:

f · c ∑ f · a · c ∑ b · f · c ∑ b · d · Tf ∑ d · Tf .

14



Example 3. For V = 2 and T = Ø extended as in Example 1, (T,V)-CCat
is the category COrdTop mentioned in the Introduction, characterized by
the Closedness condition, i.e. property (i) of Prop. 4. (We note that for T =
Ø, ∞, or ±, the condition T̂ (a · c) ∑ T̂ a · T̂ c is redundant; for T = Ø it is
satisfied for all relations a, c since T̂ : Rel ! Rel is actually a functor, but
also for T = ∞ or ± it still holds when a is reflexive and transitive.) The
category COrdTop has products that are formed as in Ord and in Top, but
the corresponding statement for equalizers fails. However, its full subcategory
COrdHaus of those objects whose topology is HausdorÆ is complete, with
both products and equalizers formed as in Ord and in Top.

An open V-structured (T,V)-category (X, a, c) must satisfy (X, a) 2 V-Cat,
(X, c) 2 (T,V)-Cat, and

a · c ∑ c · T̂ a .

A morphism of such objects is again a map that lives in both V-Cat and
(T,V)-Cat. The resulting category is denoted by

(T,V)-OCat .

Quite similarly to Proposition 5 one can prove:

Proposition 6. (T,V)-ModCat is a full bireflective subcategory of (T,V)-OCat.

Proof. The reflector L is given by L(X, a, c) = (X, a, c · T̂ a). Indeed, for a mor-
phism f : (X, a, c) ! (Y, b, d) in (T,V)-OCat with (Y, b, d) 2 (T,V)-ModCat
one has (with Prop. 1):

f · (c · T̂ a) ∑ d · Tf · T̂ a ∑ d · T̂ (f · a) ∑ d · T̂ (b · f) = d · T̂ b · Tf ∑ d · Tf .

Example 4. For V = 2 and T = Ø extended as in Example 1, (T,V)-OCat
is the category OOrdTop whose objects must satisfy the Openness condi-
tion for ultrafilters of the Introduction. These objects satisfy the preservation
condition

U open ) # U open .

If we take T = ∞, then (T,V)-OCat contains precisely those topological spaces
with an order such that the preservation condition is satisfied. Indeed, assum-
ing the preservation condition, if x ! x and x ∑ y for a filter x, the neighbour-
hood filter y := Ny of y trivially satisfies y ! y, and also x ∑ y since for every
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open neighbourhood U of y, the down-set # U is an open neighbourhood of x
and, hence, lies in x.

We also note that for T = ∞, the category (T,V)-OCat is easily seen to have
products (formed as in Ord and in Top) but fails to have all equalizers.

6 Outlook

The generality of our approach reaches far beyond ordered topological struc-
tures. For V = 2 and T = 1 (and T̂ = 1), our categories describe sets with
two interacting orders, similarly to the interaction of convergence and order.
One enters truly new territory when V is taken to be P+ (see Section 2). With
T = 1, the category (T,V)-ModCat becomes

ModMet

whose objects (X, a, c) are such that (X, a), (X, c) 2 Met and c(x, y) ∑ a(x, y)
for all x, y 2 X. (If a and c are metrics in the ordinary sense, by Lemma 1
this inequality means equivalently that c : X £ X ! [0,1] as a function of
the metric space (X, a) is non-expanding.) The functors Ā and S̄ of Theorem
1 both describe the embedding

Met ! ModMet , (X, a) 7! (X, a, a) ,

(and so does C of Theorem 2), which therefore is both reflective and coreflec-
tive: (X, a, c) 7! (X, c) is the reflector, (X, a, c) 7! (X, a) is the coreflector.
(All of these statements remain valid for general V .)

Via (X, a, c) 7! (X, c±, a±) the categories (T,V)-CCat and (T,V)-OCat are
easily seen to be isomorphic and described as

MetMet

whose objects (X, a, c) must satisfy

infu(c(x, u) + a(u, z)) ∑ a(x, y) + c(y, z)

for all x, y, z 2 X, in addition to (X, a), (X, c) 2 Met.

The next step now is to consider V = P+, T = Ø, with the extension T̂ r for
r : X p!Y defined by

T̂ r(x, y) = sup
A2x,B2y

inf
x2A,y2B

r(x, y) .
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As first shown in [CH1], (T,V)-Cat is precisely Lowen’s category App of ap-
proach spaces, which may therefore be thought of as sets X provided with
a function c : ØX £ X ! [0,1] which measures “degrees of convergence”
(c(x, x) = 0 means “x converges to x” while c(x, x) = 1 says “x does not
converge to x”, but there is a continuum of intermediate degrees of con-
vergence). Less esoterically, an approach space comes with a function ± :
X £ PX ! [0,1] which must satisfy a set of conditions that one naturally
would expect point-set distances to satisfy (see [Lo]). Now, an object (X, a, c)
of (T,V)-ModCat =

ModApp

is an approach space (X, c) provided with a metric a (i.e. (X, a) 2 Met) such
that c(ẋ, y) ∑ a(x, y) for all x, y 2 X.

A thorough investigation of this category and of its supercategories (T,V)-CCat
and (T,V)-OCat must appear elsewhere.
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