Monoidal Topology

Walter Tholen

York University, Toronto, Canada

1st Pan-Pacific International Conference on Topology and Applications, Min Nan Normal University, Zhang Zhou, China, 25–30 November 2015

Tychonoff's Theorem

$$\prod_{i \in I} X_i \text{ compact if all } X_i \text{ compact}$$

Proof:

Geometric Argument Convergence Argument:

Most Books: Engelking, ... Few Books: Willard, ...

Involved Trivial

Why?

Tychonoff's Theorem

$$\prod_{i \in I} X_i \text{ compact if all } X_i \text{ compact}$$

Proof:

Geometric Argument Convergence Argument:

Most Books: Engelking, ... Few Books: Willard, ...

Involved Trivial

Why?

Tychonoff's Theorem

$$\prod_{i \in I} X_i \text{ compact if all } X_i \text{ compact}$$

Proof:

Geometric Argument Convergence Argument:

Most Books: Engelking, ... Few Books: Willard, ...

Involved Trivial

Why?

Initial toplogy

$$f_i: X \longrightarrow Y_i, Y_i \in \mathsf{Top}\,(i \in I)$$

• Collect all
$$f_i^{-1}(V), V \subseteq Y_i$$
 open • $\mathfrak{x} \to y :\Leftrightarrow \forall i \in I : f_i[\mathfrak{x}] \longrightarrow f_i(y)$

$$p : x \to y : \Leftrightarrow \forall i \in I : f_i[x] \longrightarrow f_i(y)$$

• Generate a topology from these! This is (the conv. of) a topology!

Initial toplogy

$$f_i: X \longrightarrow Y_i, Y_i \in \mathsf{Top}\,(i \in I)$$

Geometric Description:

- Collect all $f_i^{-1}(V)$, $V \subseteq Y_i$ open
- Convergence Description:
- $\bullet \ \mathfrak{x} \to y : \Leftrightarrow \forall i \in I : f_i[\mathfrak{x}] \longrightarrow f_i(y)$
- Generate a topology from these!
- This **is** (the conv. of) a topology!

By contrast:

Final toplogy

$$f_i: X_i \longrightarrow Y, X_i \in \mathsf{Top}\,(i \in I)$$

Geometric Description:

•
$$V \subseteq Y$$
 open: \Leftrightarrow $\forall i \in I : f_i^{-1}(V) \subseteq X_i$ open

This is a topology

Convergence Description:

- Collect all $f_i[x] \to f_i(y)$ for $x \to y$ in X_i
- Generate (the conv. of) a topology!

Final toplogy

$$f_i: X_i \longrightarrow Y, X_i \in \mathsf{Top}\,(i \in I)$$

Geometric Description:

• $V \subseteq Y$ open: \Leftrightarrow $\forall i \in I : f_i^{-1}(V) \subseteq X_i$ open

This is a topology!

Convergence Description:

- ullet Collect all $f_i[\mathfrak{x}] o f_i(y)$ for $\mathfrak{x} o y$ in X_i
- Generate (the conv. of) a topology!

First conclusions by a categorical topologist

- Appreciate the importance of topological functors, such as
 Top → Set, Unif → Set, TopGrp → Grp, ...
- While it is beautiful to have self-duality of topological functors: all "initials" (infs) exist ⇔ all "finals" (sups) exist, ...
- ... it may not always be convenient to express infs in terms of sups, or conversely.
- Treat opens/closeds/neighbourhoods and convergence side by side!

This talk is about a categorical formalization of convergence that has many predecessors :

- ≥ 1968: Manes, Wyler, Gähler, Möbus, Höhle, Flagg, Kopperman, ...
- ≥ 2002: Clementino, Hofmann, Seal, T,
- Monoidal Topology, Cambridge University Press, 2014

First conclusions by a categorical topologist

- Appreciate the importance of topological functors, such as
 Top → Set, Unif → Set, TopGrp → Grp, ...
- While it is beautiful to have self-duality of topological functors: all "initials" (infs) exist ⇔ all "finals" (sups) exist, ...
- ... it may not always be convenient to express infs in terms of sups, or conversely.
- Treat opens/closeds/neighbourhoods and convergence side by side!

This talk is about a categorical formalization of convergence that has many predecessors:

- \geq 1968: Manes, Wyler, Gähler, Möbus, Höhle, Flagg, Kopperman, ...
- ≥ 2002: Clementino, Hofmann, Seal, T,
- Monoidal Topology, Cambridge University Press, 2014

First conclusions by a categorical topologist

- Appreciate the importance of topological functors, such as Top → Set, Unif → Set, TopGrp → Grp, ...
- While it is beautiful to have self-duality of topological functors: all "initials" (infs) exist ⇔ all "finals" (sups) exist, ...
- ... it may not always be convenient to express infs in terms of sups, or conversely.
- Treat opens/closeds/neighbourhoods and convergence side by side!

This talk is about a categorical formalization of convergence that has many predecessors :

- \geq 1968: Manes, Wyler, Gähler, Möbus, Höhle, Flagg, Kopperman, ...
- \geq 2002: Clementino, Hofmann, Seal, T,
- Monoidal Topology, Cambridge University Press, 2014

The "Two-Axiom Miracle" in Algebra

Example: M-sets (M a monoid) $M \times X \xrightarrow{a} X$, $a(\alpha, x) = \alpha \cdot x$

- $M \times X$ (with the obvious action) is the free M-set over a set X.
- Eilenberg-Moore: One may replace $M \times X$ by the free group, free ring, free Lie algebra, or any free algebra in a variety, to see that...
- ... the Two-Axiom Miracle continues throughout Algebra.

The "Two-Axiom Miracle" in Algebra

Example: M-sets (M a monoid) $M \times X \xrightarrow{a} X$, $a(\alpha, x) = \alpha \cdot x$

- $M \times X$ (with the obvious action) is the free M-set over a set X.
- Eilenberg-Moore: One may replace $M \times X$ by the free group, free ring, free Lie algebra, or any free algebra in a variety, to see that...
- ... the Two-Axiom Miracle continues throughout Algebra.

The "Two-Axiom Miracle" in Algebra

Example: M-sets (M a monoid) $M \times X \xrightarrow{a} X$, $a(\alpha, x) = \alpha \cdot x$

- $M \times X$ (with the obvious action) is the free M-set over a set X.
- Eilenberg-Moore: One may replace $M \times X$ by the free group, free ring, free Lie algebra, or any free algebra in a variety, to see that...
- ... the Two-Axiom Miracle continues throughout Algebra.

Manes 1968: compact Hausdorff spaces

Replace $M \times X$ by $\beta X = \text{set of ultrafilters on } X$:

$$\beta X \xrightarrow{\beta f} \beta Y$$

$$\downarrow b$$

$$X \xrightarrow{f} Y$$

$$e_X(x) = \dot{x}$$
 $m_X(\mathfrak{X}) = \Sigma \mathfrak{X}$ ("Kowalsky sum"): $\beta f(\mathfrak{x}) = f[\mathfrak{x}]$ ("image") $A \in \Sigma \mathfrak{X} \Leftrightarrow \{\mathfrak{x} \in \beta X \mid A \in \mathfrak{x}\} \in \mathfrak{X}$ $B \in f[\mathfrak{x}] \Leftrightarrow f^{-1}(B) \in \mathfrak{x}$ $A \in \beta a(\mathfrak{X}) = a[\mathfrak{X}]$ ("image" of \mathfrak{X}) $\Leftrightarrow \{\mathfrak{x} \in \beta X \mid a(\mathfrak{x}) \in A\} \in \mathfrak{X}$

$$\beta f(\mathfrak{x}) = f[\mathfrak{x}]$$
 ("image")
 $B \in f[\mathfrak{x}] \Leftrightarrow f^{-1}(B) \in \mathfrak{x}$

$$\lim \dot{x} = x \qquad \lim(\lim \mathfrak{X}) = \lim \Sigma \mathfrak{X}$$

$$\dot{x} \to x \qquad \qquad \mathfrak{X} \to \mathfrak{y} \text{ and } \mathfrak{y} \to z \Rightarrow \Sigma \mathfrak{X} \to z$$

$$f(\lim \mathfrak{x}) = \lim(f[\mathfrak{x}])$$

$$\mathfrak{x} \to y \Rightarrow f[\mathfrak{x}] \to f(y)$$

Manes 1968: compact Hausdorff spaces

Replace $M \times X$ by $\beta X = \text{set of ultrafilters on } X$:

$$\beta X \xrightarrow{\beta f} \beta Y$$

$$\downarrow b$$

$$X \xrightarrow{f} Y$$

$$e_X(x) = \dot{x}$$
 $m_X(\mathfrak{X}) = \Sigma \mathfrak{X}$ ("Kowalsky sum"): $\beta f(\mathfrak{x}) = f[\mathfrak{x}]$ ("image") $A \in \Sigma \mathfrak{X} \Leftrightarrow \{\mathfrak{x} \in \beta X \mid A \in \mathfrak{x}\} \in \mathfrak{X}$ $B \in f[\mathfrak{x}] \Leftrightarrow f^{-1}(B) \in \mathfrak{x}$ $A \in \beta a(\mathfrak{X}) = a[\mathfrak{X}]$ ("image" of \mathfrak{X}) $\Leftrightarrow \{\mathfrak{x} \in \beta X \mid a(\mathfrak{x}) \in A\} \in \mathfrak{X}$

$$\beta f(\mathfrak{x}) = f[\mathfrak{x}]$$
 ("image")
 $B \in f[\mathfrak{x}] \Leftrightarrow f^{-1}(B) \in \mathfrak{x}$

$$\lim \dot{x} = x \qquad \lim(\lim \mathfrak{X}) = \lim \Sigma \mathfrak{X} \qquad \qquad f(\lim \mathfrak{X}) = \lim(f[\mathfrak{x}])$$

$$\dot{x} \to x \qquad \qquad \mathfrak{X} \to \mathfrak{y} \text{ and } \mathfrak{y} \to z \Rightarrow \Sigma \mathfrak{X} \to z \qquad \qquad \mathfrak{x} \to y \Rightarrow f[\mathfrak{x}] \to f(y)$$

$$f(\lim \mathfrak{x}) = \lim(f[\mathfrak{x}])$$

$$\mathfrak{x} \to y \Rightarrow f[\mathfrak{x}] \to f(y)$$

Barr 1970: arbitrary topological spaces?

Replace the map $\beta X \xrightarrow{a} X$ by a relation $\beta X \xrightarrow{a} X$.

Recall that a relation a is a map precisely when

- defined everywhere: existence of convergence points: compactness;
- defined uniquely: uniqueness of convergence points: Hausdorffness.

What are the axioms on *a* characterizing it as a topological convergence relation?

Barr 1970: arbitrary topological spaces?

Replace the map $\beta X \xrightarrow{a} X$ by a relation $\beta X \xrightarrow{a} X$.

Recall that a relation a is a map precisely when

- defined everywhere: existence of convergence points: compactness;
- defined uniquely: uniqueness of convergence points: Hausdorffness.

What are the axioms on *a* characterizing it as a topological convergence relation?

Barr 1970: arbitrary topological spaces?

Replace the map $\beta X \xrightarrow{a} X$ by a relation $\beta X \xrightarrow{a} X$.

Recall that a relation a is a map precisely when

- defined everywhere: existence of convergence points: compactness;
- defined uniquely: uniqueness of convergence points: Hausdorffness.

What are the axioms on *a* characterizing it as a topological convergence relation?

The "Two-Axiom Miracle" continues in Topology!

a conv. rel. of a top. sp. $X \Leftrightarrow$

- \bullet $\dot{X} \rightarrow X$
- $\mathfrak{X} \to \mathfrak{y}$ and $\mathfrak{y} \to Z \Rightarrow \Sigma \mathfrak{X} \to Z$

$$f: X \longrightarrow Y \text{ continuous} \Leftrightarrow (\mathfrak{x} \to y \Rightarrow f[\mathfrak{x}] \to f(y))$$

The "Two-Axiom Miracle" continues in Topology!

a conv. rel. of a top. sp. $X \Leftrightarrow$

- $\dot{X} \rightarrow X$
- $\mathfrak{X} \to \mathfrak{y}$ and $\mathfrak{y} \to Z \Rightarrow \Sigma \mathfrak{X} \to Z$

 $f: X \longrightarrow Y$ continuous \Leftrightarrow $(\mathfrak{x} \to y \Rightarrow f[\mathfrak{x}] \to f(y))$

What does βa mean when a is just a relation?

More generally:

For a relation $r: X \longrightarrow Y$, what does $\beta r: \beta X \longrightarrow Y$ mean?

Present
$$r$$
 as a span $r = \begin{pmatrix} r_1 & R \\ X & Y \end{pmatrix}$

The *Barr extension* of β to a relation r is given by

What does βa mean when a is just a relation?

More generally:

For a relation $r: X \longrightarrow Y$, what does $\beta r: \beta X \longrightarrow Y$ mean?

Present
$$r$$
 as a span $r = \begin{pmatrix} r_1 & R \\ X & Y \end{pmatrix}$

The *Barr extension* of β to a relation r is given by:

Filters instead of ultrafilters?

YES One may replace βX by $\gamma X = \text{set of filters on } X$ and describe topological spaces with the same two axioms, but:

Filters instead of ultrafilters?

YES One may replace βX by $\gamma X = \text{set of filters on } X$ and describe topological spaces with the *same* two axioms, but:

NO It is *not* sufficient to just mimic Barr's extension to relations!

More significantly:

One loses the ability to do meaningfully topology in this environment

See: Seal 2005, "Monoidal Topology" 2014

From β to any **Set**-monad *T*

- $e_X: X \longrightarrow TX$ nat. $m_X: TTX \longrightarrow TX$ nat. $Tf: TX \longrightarrow TY$ functorial
- Two axioms making (T, m, e) look like a monoid: "monad"
- Provision for "extending" T from maps to relations

T-relational spaces (X, a) and *continuous* maps $f: (X, a) \longrightarrow (Y, b)$:

$$X \xrightarrow{e_X} TX$$

$$\downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \chi$$

$$\begin{array}{c|c}
TX & \xrightarrow{Tf} & TY \\
\downarrow a & & \downarrow b \\
X & & \downarrow f & Y
\end{array}$$

$$e_X(x)$$
 ax $(\mathfrak{X}(Ta)\mathfrak{y}$ and \mathfrak{y} az $\Rightarrow m_X(\mathfrak{X})$ az $(\mathfrak{x}$ ay \Rightarrow $Tf(\mathfrak{x})$ b $f(y))$

From β to any **Set**-monad *T*

- $e_X: X \longrightarrow TX$ nat. $m_X: TTX \longrightarrow TX$ nat. $Tf: TX \longrightarrow TY$ functorial
- + Two axioms making (T, m, e) look like a monoid: "monad"
- + Provision for "extending" ${\it T}$ from maps to relations

T-relational spaces (X, a) and *continuous* maps $f: (X, a) \longrightarrow (Y, b)$:

$$e_X(x) ax \quad (\mathfrak{X}(Ta)\mathfrak{y} \text{ and } \mathfrak{y} az \Rightarrow m_X(\mathfrak{X}) az) \quad (\mathfrak{x} ay \Rightarrow Tf(\mathfrak{x}) bf(y))$$

(T,2)-Cat

$$T = M \times (-)$$
: $M ext{-Ord}$ = " $M ext{-ordered sets}$ " $X \leq_{e_M} X$, $(X \leq_{\alpha} y \text{ and } y \leq_{\beta} z \Rightarrow X \leq_{\beta\alpha} z)$

$$T = \beta$$
: **Top** = topological spaces

 $r: X \times Y \longrightarrow 2$ to become $r: X \times Y \longrightarrow V$ for V unital (commutative) *quantale* = complete lattice with monoid structure $V = (V, \otimes, k)$ s.th.

$$u \otimes \bigvee_{i \in I} v_i = \bigvee_{i \in I} u \otimes v_i, \quad (\bigvee_{i \in I} v_i) \otimes u = \bigvee_{i \in I} v_i \otimes u$$

$$(s \cdot r)(x, z) = \bigvee_{y \in Y} s(y, z) \otimes r(x, y)$$

- $V = 2 = \{0 < 1\}$ with $u \otimes v = u \wedge v, k = 1$
- $V = ([0, \infty], \ge)$ with $u \otimes v = u + v, k = 0$ (Lawvere 1973)
- $V = (2^M, \subseteq)$ with $A \otimes B = \{\alpha\beta \mid \alpha \in A, \beta \in B\}, k = \{e_M\}$

 $r: X \times Y \longrightarrow 2$ to become $r: X \times Y \longrightarrow V$ for V unital (commutative) *quantale* = complete lattice with monoid structure $V = (V, \otimes, k)$ s.th.

$$u \otimes \bigvee_{i \in I} v_i = \bigvee_{i \in I} u \otimes v_i, \quad (\bigvee_{i \in I} v_i) \otimes u = \bigvee_{i \in I} v_i \otimes u$$

$$(s \cdot r)(x,z) = \bigvee_{y \in Y} s(y,z) \otimes r(x,y)$$

- $V = 2 = \{0 < 1\}$ with $u \otimes v = u \wedge v, k = 1$
- $V = ([0, \infty], \ge)$ with $u \otimes v = u + v, k = 0$ (Lawvere 1973)
- $V = (2^M, \subseteq)$ with $A \otimes B = \{\alpha\beta \mid \alpha \in A, \beta \in B\}, k = \{e_M\}$

 $r: X \times Y \longrightarrow 2$ to become $r: X \times Y \longrightarrow V$ for V unital (commutative) *quantale* = complete lattice with monoid structure $V = (V, \otimes, k)$ s.th.

$$u \otimes \bigvee_{i \in I} v_i = \bigvee_{i \in I} u \otimes v_i, \quad (\bigvee_{i \in I} v_i) \otimes u = \bigvee_{i \in I} v_i \otimes u$$

$$(s\cdot r)(x,z)=\bigvee_{y\in Y}s(y,z)\otimes r(x,y)$$

- $V = 2 = \{0 < 1\}$ with $u \otimes v = u \wedge v, k = 1$
- $V = ([0, \infty], \ge)$ with $u \otimes v = u + v, k = 0$ (Lawvere 1973)
- $V = (2^M, \subseteq)$ with $A \otimes B = \{\alpha\beta \mid \alpha \in A, \beta \in B\}, k = \{e_M\}$

 $r: X \times Y \longrightarrow 2$ to become $r: X \times Y \longrightarrow V$ for V unital (commutative) *quantale* = complete lattice with monoid structure $V = (V, \otimes, k)$ s.th.

$$u \otimes \bigvee_{i \in I} v_i = \bigvee_{i \in I} u \otimes v_i, \quad (\bigvee_{i \in I} v_i) \otimes u = \bigvee_{i \in I} v_i \otimes u$$

$$(s \cdot r)(x,z) = \bigvee_{y \in Y} s(y,z) \otimes r(x,y)$$

- $V = 2 = \{0 < 1\}$ with $u \otimes v = u \wedge v, k = 1$
- $V = ([0, \infty], \ge)$ with $u \otimes v = u + v, k = 0$ (Lawvere 1973)
- $V = (2^M, \subseteq)$ with $A \otimes B = \{\alpha\beta \mid \alpha \in A, \beta \in B\}, k = \{e_M\}$

V-Cat = (Id, V)-Cat (T=Id)

$$\begin{array}{c|ccc}
X & \xrightarrow{a} & X \\
& \downarrow & & \downarrow \\
& \downarrow & & \downarrow \\
X & \xrightarrow{a} & X
\end{array}$$

 $a \cdot a < a$

 $f \cdot a < b \cdot f$

$$1_X \le a$$
$$k \le a(x,x)$$

$$a(y,z)\otimes a(x,y)\leq a(x,z)$$
 $a(x,y)\leq b(f(x),f(y))$

- V = 2:
- $V = 2^{M}$:
- $V = [0, \infty]^{op}$:

$$0 \ge a(x,x)$$

V-Cat = Met = (generalized) metric spaces

$$a(y,z) + a(x,y) \ge a(x,z) \quad a(x,y) \ge b(f(x),f(y))$$

V-Cat = (Id, V)-Cat (T=Id)

$$1_X \le a$$

 $k \le a(x,x)$

- V = 2:
- $V = 2^M$:
- $V = [0, \infty]^{\text{op}}$: $0 \ge a(x, x)$

$$a \cdot a \le a$$
 $f \cdot a \le b \cdot f$
 $a(y,z) \otimes a(x,y) \le a(x,z)$ $a(x,y) \le b(f(x),f(y))$

V-Cat = Ord = (pre)ordered sets

V-Cat = $(M \times (-), 2)$ -Cat = M-ordered sets

V-Cat = Met = (generalized) metric spaces

V-Cat = (Id, V)-Cat (T=Id)

 $a \cdot a < a$

 $f \cdot a < b \cdot f$

$$1_X \le a$$
$$k \le a(x,x)$$

$$a(y,z)\otimes a(x,y)\leq a(x,z)$$
 $a(x,y)\leq b(f(x),f(y))$

$$V$$
-Cat = Ord = (pre)ordered sets

•
$$V = 2^M$$
:

$$V$$
-Cat = $(M \times (-), 2)$ -Cat = M -ordered sets

•
$$V = [0, \infty]^{op}$$
:

$$0 \geq a(x,x)$$

$$a(y,z) + a(x,y) \ge a(x,z)$$
 $a(x,y) \ge b(f(x),f(y))$

Why "V-Cat"? Eilenberg and Kelly 1966

General case: (V, \otimes, k) (symmetric) monoidal-closed category

A V-category (X, a) has a set X of objects with "hom-objects" $a(x, y) = hom_X(x, y) \in V$ and V-arrows $k \longrightarrow a(x,x)$ $a(y,z) \otimes a(x,y) \longrightarrow a(x,z)$ subject to natural "monoidal" conditions

V-functor
$$f:(X,a)\longrightarrow (Y,b)$$
 is an "object map" $f:X\longrightarrow Y$ equpped with *V*-arrows

$$a(x,y) \longrightarrow b(f(x),f(y))$$

Why "V-Cat"? Eilenberg and Kelly 1966

General case: (V, \otimes, k) (symmetric) monoidal-closed category

A V-category (X, a) has a set X of objects with "hom-objects" $a(x, y) = \hom_X(x, y) \in V$ and V-arrows $k \longrightarrow a(x, x) \qquad a(y, z) \otimes a(x, y) \longrightarrow a(x, z)$ subject to natural "monoidal" conditions

V-functor $f:(X,a) \longrightarrow (Y,b)$ is an "object map" $f:X \longrightarrow Y$ equpped with V-arrows

$$a(x,y) \longrightarrow b(f(x),f(y))$$

subject to natural conditions

V =**Set**: V**-Cat** = **Cat** = the category of small ordinary categories

Why "V-Cat"? Eilenberg and Kelly 1966

General case: (V, \otimes, k) (symmetric) monoidal-closed category

A V-category (X, a) has a set X of objects with "hom-objects" $a(x, y) = \hom_X(x, y) \in V$ and V-arrows $k \longrightarrow a(x, x) \qquad a(y, z) \otimes a(x, y) \longrightarrow a(x, z)$ subject to natural "monoidal" conditions

V-functor $f:(X,a) \longrightarrow (Y,b)$ is an "object map" $f:X \longrightarrow Y$ equpped with V-arrows

$$a(x,y) \longrightarrow b(f(x),f(y))$$

subject to natural conditions

 $V = \mathbf{Set}$: $V - \mathbf{Cat} = \mathbf{Cat} = \mathbf{the}$ category of small ordinary categories

(T, V)-Cat

(T, V)-spaces (X, a) and continuous maps $f: (X, a) \longrightarrow (Y, b)$:

- $k \leq a(e_X(x), x)$
- $Ta(\mathfrak{X},\mathfrak{y})\otimes a(\mathfrak{y},z)\leq a(m_X(\mathfrak{X}),z)$
- $e_X(x), x)$ $a(\mathfrak{x}, y) \leq b(If(\mathfrak{x}), f(y))$

(T, V)-Cat

(T, V)-spaces (X, a) and continuous maps $f: (X, a) \longrightarrow (Y, b)$:

• $k \leq a(e_X(x), x)$

 $a(\mathfrak{x},y) \leq b(Tf(\mathfrak{x}),f(y))$

• $Ta(\mathfrak{X},\mathfrak{y})\otimes a(\mathfrak{y},z)\leq a(m_X(\mathfrak{X}),z)$

Topologicity

Basic Theorem

- \bullet (T, V)-Cat is topological over Set, hence complete, cocomplete, *etc*.
- The forgetful functor has both a left- and a right adjoint (discrete and indiscrete structures);
- its fibres are complete lattices.

Initial structure *a* on *X* with respect to $f_i: X \longrightarrow (Y_i, b_i)$:

$$a(\mathfrak{x},y) = \bigwedge_{i \in I} b_i(Tf_i(\mathfrak{x}), f_i(y))$$

Principal Examples

T/V 2 $[0,\infty]^{op}$

Id Ord Met

Top App = approach spaces: Lowen 1997 a(x, y) = measure of convergence of x to y, two axio

Alternative axiomatization by point-set distance

Topologicity

Basic Theorem

- \bullet (T, V)-Cat is topological over Set, hence complete, cocomplete, etc.
- The forgetful functor has both a left- and a right adjoint (discrete and indiscrete structures);
- its fibres are complete lattices. Initial structure a on X with respect to $f_i: X \longrightarrow (Y_i, b_i)$:

$$a(\mathfrak{x},y) = \bigwedge_{i \in I} b_i(Tf_i(\mathfrak{x}), f_i(y))$$

Principal Examples

T/V 2 $[0,\infty]^{op}$

Id Ord Met

Top App = approach spaces: Lowen 1997 a(x, y) = measure of convergence of x to y, two axiomsAlternative axiomatization by point-set distance

Topologicity

Basic Theorem

- \bullet (T, V)-Cat is topological over Set, hence complete, cocomplete, *etc*.
- The forgetful functor has both a left- and a right adjoint (discrete and indiscrete structures);
- its fibres are complete lattices. Initial structure a on X with respect to $f_i: X \longrightarrow (Y_i, b_i)$:

$$a(\mathfrak{x},y) = \bigwedge_{i \in I} b_i(Tf_i(\mathfrak{x}), f_i(y))$$

Principal Examples

$$T/V$$
 2 $[0,\infty]^{op}$ Id **Ord Met**

Top App = approach spaces: Lowen 1997 a(x, y) = measure of convergence of x to y, two axioms Alternative axiomatization by point-set distance

Let's do Topology!

$$\begin{array}{ll} (X,a) \ \textit{Hausdorff:} & a \cdot a^\circ \leq 1_X & (\bot < a(\mathfrak{z},x) \otimes a(\mathfrak{z},y) \Rightarrow x = y) \\ (X,a) \ \textit{compact:} & a^\circ \cdot a \geq 1_{TX} & \forall \mathfrak{z} \in TX \ (k \leq \bigvee_{x \in X} a(\mathfrak{z},x)) \end{array}$$

Silent hypotheses on V:

- V commutative
- $k = \top > \bot$ (V is "integral" and non-trivial)
- $(k \le \bigvee_{i \in I} u_i \Leftrightarrow k \le \bigvee_{i \in I} u_i \otimes u_i)$ (*V* is "superior")
- $(u \lor v = \top \text{ and } u \otimes v = \bot \Rightarrow u = \top \text{ or } v = \top) \text{ (V is "lean")}$

Okay for $V = 2, [0, \infty]^{op}$, or any linearly ordered frame, but not for $V = 2^M$

Let's do Topology!

$$\begin{array}{ll} (X,a) \ \textit{Hausdorff:} & a \cdot a^\circ \leq 1_X & (\bot < a(\mathfrak{z},x) \otimes a(\mathfrak{z},y) \Rightarrow x = y) \\ (X,a) \ \textit{compact:} & a^\circ \cdot a \geq 1_{TX} & \forall \mathfrak{z} \in TX \ (k \leq \bigvee_{x \in X} a(\mathfrak{z},x)) \end{array}$$

Silent hypotheses on V:

- V commutative
- $k = \top > \bot$ (V is "integral" and non-trivial)
- $(k \le \bigvee_{i \in I} u_i \Leftrightarrow k \le \bigvee_{i \in I} u_i \otimes u_i)$ (V is "superior")
- $(u \lor v = \top \text{ and } u \otimes v = \bot \Rightarrow u = \top \text{ or } v = \top) \text{ (V is "lean")}$

Okay for $V = 2, [0, \infty]^{op}$, or any linearly ordered frame, but not for $V = 2^M$

Let's do Topology!

$$(X,a)$$
 Hausdorff: $a \cdot a^{\circ} \leq 1_{X}$ $(\bot < a(\mathfrak{z},x) \otimes a(\mathfrak{z},y) \Rightarrow x = y)$ (X,a) compact: $a^{\circ} \cdot a \geq 1_{TX}$ $\forall \mathfrak{z} \in TX \ (k \leq \bigvee_{x \in X} a(\mathfrak{z},x))$

Silent hypotheses on V:

- V commutative
- $k = \top > \bot$ (V is "integral" and non-trivial)
- $(k \le \bigvee_{i \in I} u_i \Leftrightarrow k \le \bigvee_{i \in I} u_i \otimes u_i)$ (V is "superior")
- $(u \lor v = \top \text{ and } u \otimes v = \bot \Rightarrow u = \top \text{ or } v = \top) \text{ (V is "lean")}$

Okay for $V = 2, [0, \infty]^{op}$, or any linearly ordered frame, but not for $V = 2^M$

Compact + Hausdorff is algebraic

T	V	(T, V) -Cat $_{Comp}$	(T, V)-Cat _{Haus}
Id	2	Ord	discrete ordered sets
Id	$[0,\infty]^{\mathrm{op}}$	Met	discrete (generalized) metric spaces
β	2	Comp	Haus
β	$[0,\infty]^{\text{op}}$	$App_{0\text{-}\mathrm{Comp}}$	approach spaces whose induced
		r	pseudotopology is Hausdorff

Manes' Theorem generalized:

$$(T, V)$$
-Cat_{CompHaus} = (T, V) -Cat_{Comp} \cap (T, V) -Cat_{Haus} = Set' = Eilenberg-Moore algebras w.r.t. T

Proof (Lawvere, Clementino-Hofmann) $(a \cdot a^{\circ} \leq 1_X \text{ and } 1_{TX} \leq a^{\circ} \cdot a) \Leftrightarrow a \dashv a^{\circ} \Leftrightarrow a \text{ is (induced by) a map.}$

Compact + Hausdorff is algebraic

T	V	(T, V) -Cat $_{Comp}$	(T, V)-Cat _{Haus}
Id	2	Ord	discrete ordered sets
Id	$[0,\infty]^{\mathrm{op}}$	Met	discrete (generalized) metric spaces
β	2	Comp	Haus
β	$[0,\infty]^{\text{op}}$	$App_{0 ext{-}\mathrm{Comp}}$	approach spaces whose induced
			pseudotopology is Hausdorff

Manes' Theorem generalized:

$$(T, V)$$
-Cat_{CompHaus} = (T, V) -Cat_{Comp} $\cap (T, V)$ -Cat_{Haus} = Set^T = Eilenberg-Moore algebras w.r.t. T

Proof (Lawvere, Clementino-Hofmann) $(a \cdot a^{\circ} \leq 1_X \text{ and } 1_{TX} \leq a^{\circ} \cdot a) \Leftrightarrow a \dashv a^{\circ} \Leftrightarrow a \text{ is (induced by) a map.}$

Compact + Hausdorff is algebraic

T	V	(T, V) -Cat $_{Comp}$	(T, V)-Cat _{Haus}
Id	2	Ord	discrete ordered sets
Id	$[0,\infty]^{\mathrm{op}}$	Met	discrete (generalized) metric spaces
β	2	Comp	Haus
β	$[0,\infty]^{\text{op}}$	$App_{0\text{-}Comp}$	approach spaces whose induced
		ı	pseudotopology is Hausdorff

Manes' Theorem generalized:

$$(T, V)$$
-Cat_{CompHaus} = (T, V) -Cat_{Comp} $\cap (T, V)$ -Cat_{Haus} = Set^T = Eilenberg-Moore algebras w.r.t. T

Proof (Lawvere, Clementino-Hofmann) $(a \cdot a^{\circ} \leq 1_X \text{ and } 1_{TX} \leq a^{\circ} \cdot a) \Leftrightarrow a \dashv a^{\circ} \Leftrightarrow a \text{ is (induced by) a map.}$

Tychonoff's Theorem

V completely distributive

$$(\forall i \in I : X_i = (X_i, a_i) \text{ compact}) \Rightarrow (X, a) = \prod_{i \in I} X_i \text{ compact}$$

Proof (Schubert 2005) For all $\mathfrak{z} \in TX$:

$$\bigvee_{x \in X} a(\mathfrak{z}, x) = \bigvee_{x \in X} \bigwedge_{i \in I} a_i(Tp_i(\mathfrak{z}), p_i(x)) = \bigwedge_{i \in I} \bigvee_{x_i \in X_i} a_i(Tp_i(\mathfrak{z}), x_i) \ge k$$

$$(X, a: TX \rightarrow X)$$

• $1_X \leq a \cdot e_X$

T1:
$$1_X \ge a \cdot e_X$$
 $(T = \beta, V = 2:)$ $(\dot{x} \rightarrow y \Rightarrow x = y)$

• $a \cdot Ta \le a \cdot m_X$ core compact: $a \cdot Ta \ge a \cdot m_X$

$$(T = \beta, V = 2:)$$
 $(\Sigma \mathfrak{X} \to Z \Rightarrow \exists \mathfrak{y} : \mathfrak{X} \to \mathfrak{y} \to Z)$

- $\Leftrightarrow \forall x \in B \subseteq X \text{ open}$ $\exists A \subseteq X \text{ open } (x \in A << B)$
- $\Leftrightarrow X$ exponentiable in **Top**
- $\Leftrightarrow \forall Y \exists Y^X \forall Z \exists \text{ nat. bij. corr.}$ $(Z \longrightarrow Y^X \Leftrightarrow Z \times X \longrightarrow Y)$

$$(X, a: TX \rightarrow X)$$

• $1_X \leq a \cdot e_X$

T1:
$$1_X \ge a \cdot e_X$$
 $(T = \beta, V = 2:)$ $(\dot{x} \rightarrow y \Rightarrow x = y)$

• $a \cdot Ta \le a \cdot m_X$ core compact:

$$a \cdot Ta \ge a \cdot m_X$$

$$(T = \beta, V = 2:) \quad (\Sigma \mathfrak{X} \to Z \Rightarrow \exists \mathfrak{y} : \mathfrak{X} \to \mathfrak{y} \to Z)$$

- $\Leftrightarrow \forall x \in B \subseteq X \text{ open}$ $\exists A \subseteq X \text{ open } (x \in A << B)$
- $\Leftrightarrow X$ exponentiable in **Top**
- $\Leftrightarrow \forall Y \exists Y^X \forall Z \exists \text{ nat. bij. corr.}$ $(Z \longrightarrow Y^X \Leftrightarrow Z \times X \longrightarrow Y)$

$$(X, a: TX \rightarrow X)$$

• $1_X \leq a \cdot e_X$

T1:
$$1_X \ge a \cdot e_X$$
 $(T = \beta, V = 2:)$ $(\dot{x} \rightarrow y \Rightarrow x = y)$

• $a \cdot Ta \le a \cdot m_X$ core compact:

$$a \cdot Ta \ge a \cdot m_X$$

$$(T = \beta, V = 2:) \quad (\Sigma \mathfrak{X} \to z \Rightarrow \exists \mathfrak{y} : \mathfrak{X} \to \mathfrak{y} \to z)$$

$$\Leftrightarrow \forall x \in B \subseteq X \text{ open}$$

 $\exists A \subseteq X \text{ open } (x \in A << B)$

 $\Leftrightarrow X$ exponentiable in **Top** $\Leftrightarrow \forall Y \exists Y^X \forall Z \exists$ nat. bij. corr. $(Z \longrightarrow Y^X \Leftrightarrow Z \times X \longrightarrow Y)$

$$(X, a: TX \rightarrow X)$$

• $1_X \leq a \cdot e_X$

T1:
$$1_X \ge a \cdot e_X$$
 $(T = \beta, V = 2:)$ $(\dot{x} \rightarrow y \Rightarrow x = y)$

• $a \cdot Ta \le a \cdot m_X$ core compact:

$$a \cdot Ta \ge a \cdot m_X$$

$$(T = \beta, V = 2:) \quad (\Sigma \mathfrak{X} \to Z \Rightarrow \exists \mathfrak{y} : \mathfrak{X} \to \mathfrak{y} \to Z)$$

$$\Leftrightarrow \forall x \in B \subseteq X \text{ open}$$

 $\exists A \subseteq X \text{ open } (x \in A << B)$

 $\Leftrightarrow X$ exponentiable in **Top**

 $\Leftrightarrow \forall Y \exists Y^X \forall Z \exists \text{ nat. bij. corr.}$ $(Z \longrightarrow Y^X \Leftrightarrow Z \times X \longrightarrow Y)$

Preparation: Induced "order"

on
$$\beta X$$
:

Top \longrightarrow **Ord**

$$X \mapsto (\beta X, \leq)$$

$$\mathfrak{x} \leq \mathfrak{y} :\Leftrightarrow \forall A \subseteq X \text{ closed}$$

$$(A \in \mathfrak{x} \Rightarrow A \in \mathfrak{y})$$

"Adjoint significance" of \leq **Top** \longrightarrow **OrdCompHaus**

on
$$TX$$
:
 (T, V) -Cat $\longrightarrow V$ -Cat
 $(X, a) \mapsto (TX, \hat{a})$
 $\hat{a} = (TX \xrightarrow{m_X^\circ} TTX \xrightarrow{Ta} TX)$

$$(T, V)$$
-Cat $\longrightarrow V$ -Cat^T
 $(X, a) \mapsto (TX, \hat{a}, m_X)$

Preparation: Induced "order"

on
$$\beta X$$
:

Top \longrightarrow **Ord**

$$X \mapsto (\beta X, \leq)$$

$$\mathfrak{x} \leq \mathfrak{y} : \Leftrightarrow \forall A \subseteq X \text{ closed}$$

 $(A \in \mathfrak{x} \Rightarrow A \in \mathfrak{y})$

"Adjoint significance" of ≤: Top → OrdCompHaus

on
$$TX$$
:
 (T, V) -Cat $\longrightarrow V$ -Cat
 $(X, a) \mapsto (TX, \hat{a})$
 $\hat{a} = (TX \xrightarrow{m_X^o} TTX \xrightarrow{Ta} TX)$

$$(T, V)$$
-Cat $\longrightarrow V$ -Cat^T
 $(X, a) \mapsto (TX, \hat{a}, m_X)$

 $X \in \mathbf{Top} \text{ normal} \Leftrightarrow$

 $(X, a) \in (T, V)$ -Cat normal

$$:\Leftrightarrow \hat{a}\cdot\hat{a}^{\circ}\leq \hat{a}^{\circ}\cdot\hat{a}$$

$$:\Leftrightarrow \hat{a}^{\circ}\cdot\hat{a}\leq \hat{a}\cdot\hat{a}^{\circ}$$

 \Leftrightarrow (TX, \hat{a}°) normal V-space

 $X \in \mathbf{Top} \text{ normal} \Leftrightarrow$

 $(X,a) \in (T,V)$ -Cat normal

$$:\Leftrightarrow \hat{a}\cdot\hat{a}^{\circ}\leq \hat{a}^{\circ}\cdot\hat{a}^{\circ}$$

X extrem'ly disconnected \Leftrightarrow (X, a) extremally disconnected

$$:\Leftrightarrow \hat{a}^{\circ}\cdot\hat{a}\leq \hat{a}\cdot\hat{a}^{\circ}$$

 \Leftrightarrow (TX, \hat{a}) ext. disc. V-space \Leftrightarrow (TX, \hat{a}°) normal V-space

 $X \in \mathbf{Top} \text{ normal} \Leftrightarrow$

 $(X,a) \in (T,V)$ -Cat normal

$$:\Leftrightarrow \hat{a}\cdot\hat{a}^{\circ}\leq \hat{a}^{\circ}\cdot\hat{a}$$

X extrem'ly disconnected \Leftrightarrow (X, a) extremally disconnected

$$:\Leftrightarrow \hat{a}^{\circ}\cdot\hat{a}\leq \hat{a}\cdot\hat{a}^{\circ}$$

 \Leftrightarrow (TX, \hat{a}) ext. disc. V-space \Leftrightarrow (TX, \hat{a}°) normal V-space

Note: (X, a) compact Hausdorff $\Rightarrow (X, a)$ normal

The categorical imperative: What about morphisms?

$$\begin{array}{lll} f: (X,a) \longrightarrow (Y,b) \\ \bullet & f \cdot a \leq b \cdot Tf \\ \bullet & a \cdot (Tf)^{\circ} \leq f^{\circ} \cdot b \end{array} \qquad \begin{array}{lll} f \ proper :\Leftrightarrow & f \cdot a \geq b \cdot Tf \\ f \ open :\Leftrightarrow & a \cdot (Tf)^{\circ} \geq f^{\circ} \cdot b \end{array}$$

$$f: X \longrightarrow Y \qquad \text{proper} \qquad \text{open}$$

$$x \leq z \qquad z \leq x$$

$$\begin{vmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ f(x) \leq y \qquad y \leq f(x) \end{vmatrix}$$

$$f(x) \leq y \qquad y \leq f(x)$$

$$f[x] \longrightarrow y \qquad y \longrightarrow f(x)$$

The categorical imperative: What about morphisms?

$$\begin{array}{lll} f: (X,a) \longrightarrow (Y,b) \\ \bullet & f \cdot a \leq b \cdot Tf \\ \bullet & a \cdot (Tf)^{\circ} \leq f^{\circ} \cdot b \end{array} \qquad \begin{array}{ll} f \ proper :\Leftrightarrow & f \cdot a \geq b \cdot Tf \\ f \ open :\Leftrightarrow & a \cdot (Tf)^{\circ} \geq f^{\circ} \cdot b \end{array}$$

$$f: X \longrightarrow Y \qquad \text{proper} \qquad \text{open}$$

$$x \leq z \qquad z \leq x$$

$$\begin{vmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ f(x) \leq y \qquad y \leq f(x) \end{vmatrix}$$

$$f(x) \leq y \qquad y \leq f(x)$$

$$\text{Top } (\beta, 2)\text{-Cat} \qquad \begin{vmatrix} & & & & \\ & & &$$

Basic Stability Properties for proper/open maps

- Isomorphisms are proper/open
- proper/open maps are closed under composition
- g ⋅ f proper/open, g injective ← f proper/open
- $g \cdot f$ proper open, f surjective $\Rightarrow g$ proper/open

In addition: Proper/open is stable under pullback:

f proper/open $\Rightarrow p_2$ proper/open

Under mild hypotheses on T, V:

$$(X, a) \longrightarrow 1$$
 proper $\Leftrightarrow (X, a)$ compact

Theorem (Clementino-T 2007)
$$f:(X,a)\longrightarrow (Y,b)$$
 proper \Leftrightarrow
• f has compact fibres
• $Tf:(X,\hat{a})\longrightarrow (Y,\hat{b})$ proper

(in **Top, App, ...**)
 \Leftrightarrow
• f has compact fibres
• f is closed
 \Leftrightarrow f is $stably$ closed

Corollary

• X compact $\Leftrightarrow \forall Z: X \times Z \longrightarrow Z$ closed (equ'ly: proper)

 $\bullet(X \xrightarrow{f} Y)$ proper $\Leftrightarrow \forall (Z \longrightarrow Y) : (X \times_Y Z \longrightarrow Z)$ closed (proper)

Under mild hypotheses on T, V:

$$(X, a) \longrightarrow 1$$
 proper $\Leftrightarrow (X, a)$ compact

Theorem (Clementino-T 2007)

$$f:(X,a) \longrightarrow (Y,b)$$
 proper \Leftrightarrow

- f has compact fibres
- $Tf: (X, \hat{a}) \longrightarrow (Y, \hat{b})$ proper

(in **Top**, **App**, ...)
$$\Leftrightarrow$$
 • f has compact fibres

- f is closed

$$\Leftrightarrow \forall Z: X \times Z \longrightarrow Z \text{ closed (equ'ly: proper}$$

$$\bullet(X \xrightarrow{r} Y)$$
 proper

$$\bullet(X \xrightarrow{f} Y)$$
 proper $\Leftrightarrow \forall (Z \longrightarrow Y) : (X \times_Y Z \longrightarrow Z)$ closed (proper)

Under mild hypotheses on T, V:

$$(X, a) \longrightarrow 1$$
 proper $\Leftrightarrow (X, a)$ compact

Theorem (Clementino-T 2007)
$$f: (X, a) \longrightarrow (Y, b)$$
 proper \Leftrightarrow

- f has compact fibres
- $Tf: (X, \hat{a}) \longrightarrow (Y, \hat{b})$ proper

- - f is closed
- f is stably closed

$$\Leftrightarrow \forall Z: X \times Z \longrightarrow Z \text{ closed (equ'ly: proper)}$$

$$\bullet(X \xrightarrow{t} Y)$$
 proper

$$\bullet(X \xrightarrow{f} Y)$$
 proper $\Leftrightarrow \forall (Z \longrightarrow Y) : (X \times_Y Z \longrightarrow Z)$ closed (proper)

Under mild hypotheses on T, V:

$$(X, a) \longrightarrow 1$$
 proper $\Leftrightarrow (X, a)$ compact

Theorem (Clementino-T 2007)

$$f:(X,a) \longrightarrow (Y,b)$$
 proper \Leftrightarrow

- f has compact fibres
- $Tf: (X, \hat{a}) \longrightarrow (Y, \hat{b})$ proper

- - f is closed
- f is stably closed

Corollary

•X compact

- $\Leftrightarrow \forall Z: X \times Z \longrightarrow Z \text{ closed (equ'ly: proper)}$
- $\bullet (X \xrightarrow{f} Y)$ proper $\Leftrightarrow \forall (Z \longrightarrow Y) : (X \times_Y Z \longrightarrow Z)$ closed (proper)

Tychonoff-Frolík-Bourbaki Theorem

Conclusion: proper = fibred version of compact Consequently: categorically proven statements for compact objects transfer to proper morphisms, and conversely.

Theorem: *V* completely distributive. Then:

$$f_i: X_i \longrightarrow Y_i$$
 proper $(i \in I) \Rightarrow \prod_{i \in I} f_i: \prod_{i \in I} X_i \longrightarrow \prod_{i \in I} Y_i$ proper

Note, by contrast (not by categorical dualization!):

$$f_i: X_i \longrightarrow Y_i$$
 open $(i \in I) \Rightarrow \coprod_{i \in I} f_i: \coprod_{i \in I} X_i \longrightarrow \coprod_{i \in I} Y_i$ open

Tychonoff-Frolík-Bourbaki Theorem

Conclusion: proper = fibred version of compact Consequently: categorically proven statements for compact objects transfer to proper morphisms, and conversely.

Theorem: *V* completely distributive. Then:

$$f_i: X_i \longrightarrow Y_i$$
 proper $(i \in I) \Rightarrow \prod_{i \in I} f_i: \prod_{i \in I} X_i \longrightarrow \prod_{i \in I} Y_i$ proper

Note, by contrast (*not* by categorical dualization!):

$$f_i: X_i \longrightarrow Y_i$$
 open $(i \in I) \Rightarrow \coprod_{i \in I} f_i: \coprod_{i \in I} X_i \longrightarrow \coprod_{i \in I} Y_i$ open

Tychonoff-Frolík-Bourbaki Theorem

Conclusion: proper = fibred version of compact Consequently: categorically proven statements for compact objects transfer to proper morphisms, and conversely.

Theorem: *V* completely distributive. Then:

$$f_i: X_i \longrightarrow Y_i$$
 proper $(i \in I) \Rightarrow \prod_{i \in I} f_i: \prod_{i \in I} X_i \longrightarrow \prod_{i \in I} Y_i$ proper

Note, by contrast (*not* by categorical dualization!):

$$f_i: X_i \longrightarrow Y_i$$
 open $(i \in I) \Rightarrow \coprod_{i \in I} f_i: \coprod_{i \in I} X_i \longrightarrow \coprod_{i \in I} Y_i$ open

Some Remarks

Starting with an axiomatically given class of "closed morphisms" one establishes a categorical theory of compactness and Hausdorff separation:

Pénon 1972, T 1999, Clementino-Giuli-T 2004, Clementino-Colebunders-T 2014, ...

Recently this approach has been exploited for the category **TopGrp** of topological groups by He-T, extending the Dikranjan-Uspenskij product theorem for categorically compact groups to *categorically proper* homomorphisms of topological groups.

Some Remarks

Starting with an axiomatically given class of "closed morphisms" one establishes a categorical theory of compactness and Hausdorff separation:

Pénon 1972, T 1999, Clementino-Giuli-T 2004, Clementino-Colebunders-T 2014, ...

Recently this approach has been exploited for the category **TopGrp** of topological groups by He-T, extending the

Dikranjan-Uspenskij product theorem for categorically compact groups to categorically proper homomorphisms of topological groups.

YES:

All topological notions presented depend on T, V, not just on (T, V)-**Cat**.

This is so already for **Top** when presented via filter convergence instead of ultrafilter convergence! But

NO:

It is possible to always replace V by 2 (i.e., have no "fuzziness"!) if

- you are only interested in the category itself and
- you accept a more complicated *T*:

Theorem (Hofmann-Lowen 2014)

Given T, V, there is a monad $\Pi = \Pi(T, V)$ such that

$$(T, V)$$
-Cat $\cong (\Pi, 2)$ -Cat

Special case: $T = Id \Rightarrow \Pi = P_V = V$ – presheaf monad:

$$V$$
-Cat $\cong (P_V, 2)$ -Cat

YES:

All topological notions presented depend on T, V, not just on (T, V)-**Cat**.

This is so already for **Top** when presented via filter convergence instead of ultrafilter convergence! But

NO:

It is possible to always replace V by 2 (i.e., have no "fuzziness"!) if

- you are only interested in the category itself and
- you accept a more complicated T:

Theorem (Hofmann-Lowen 2014) Given T, V, there is a monad $\Pi = \Pi(T, V)$ such that

$$(T, V)$$
-Cat $\cong (\Pi, 2)$ -Cat

Special case: $T = Id \Rightarrow \Pi = P_V = V$ – presheaf monad:

V-Cat $\cong (P_V, 2)$ -Cat

YES:

All topological notions presented depend on T, V, not just on (T, V)-**Cat**.

This is so already for **Top** when presented via filter convergence instead of ultrafilter convergence! But

NO:

It is possible to always replace V by 2 (i.e., have no "fuzziness"!) if

- you are only interested in the category itself and
- you accept a more complicated T:

Theorem (Hofmann-Lowen 2014)

Given T, V, there is a monad $\Pi = \Pi(T, V)$ such that

$$(T, V)$$
-Cat $\cong (\Pi, 2)$ -Cat

Special case: $T = Id \Rightarrow \Pi = P_V = V$ – presheaf monad:

V-Cat $\cong (P_V, 2)$ -Cat

YES:

All topological notions presented depend on T, V, not just on (T, V)-Cat.

This is so already for **Top** when presented via filter convergence instead of ultrafilter convergence! But

NO:

It is possible to always replace V by 2 (i.e., have no "fuzziness"!) if

- you are only interested in the category itself and
- you accept a more complicated T:

Theorem (Hofmann-Lowen 2014)

Given T, V, there is a monad $\Pi = \Pi(T, V)$ such that

$$(T, V)$$
-Cat $\cong (\Pi, 2)$ -Cat

Special case: $T = Id \Rightarrow \Pi = P_V = V$ – presheaf monad:

$$V$$
-Cat $\cong (P_V, 2)$ -Cat

Q2: Should one consider a quantaloid Q instead of V?

YES

First indication:

Take Q = DV (Stubbe, Zhang, ...) and obtain:

$$(T, Q)$$
-Cat = {partial (T, V) -spaces}

In particular:

$$D[0,\infty]^{\mathrm{op}}$$
-**Cat** = {partial metric spaces}

(T 2015: AMS-Portugal Meeting, Porto, 2015)

Q2: Should one consider a quantaloid Q instead of V?

YES

First indication:

Take Q = DV (Stubbe, Zhang, ...) and obtain:

$$(T, Q)$$
-Cat = {partial (T, V) -spaces}

In particular:

$$D[0,\infty]^{\mathrm{op}}$$
-**Cat** = {partial metric spaces}

(T 2015: AMS-Portugal Meeting, Porto, 2015)

Your questions?

THANK YOU!