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Tychonoff’s Theorem

∏
i∈I

Xi compact if all Xi compact

Proof:
Geometric Argument Convergence Argument:

Most Books: Engelking, ... Few Books: Willard, ...

Involved Trivial

Why?
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Initial toplogy

fi : X // Yi ,Yi ∈ Top (i ∈ I)

Geometric Description: Convergence Description:

• Collect all f−1
i (V ),V ⊆ Yi open • x→ y :⇔ ∀i ∈ I : fi [x] // fi(y)

• Generate a topology from these! This is (the conv. of) a topology!

By contrast:
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Final toplogy

fi : Xi // Y ,Xi ∈ Top (i ∈ I)

Geometric Description: Convergence Description:

• V ⊆ Y open:⇔ • Collect all fi [x]→ fi(y) for x→ y in Xi
∀i ∈ I : f−1

i (V ) ⊆ Xi open

This is a topology! • Generate (the conv. of) a topology!
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First conclusions by a categorical topologist

Appreciate the importance of topological functors, such as
Top // Set,Unif // Set,TopGrp //Grp, ...
While it is beautiful to have self-duality of topological functors:
all “initials” (infs) exist⇔ all “finals” (sups) exist, ...
... it may not always be convenient to express infs in terms of
sups, or conversely.
Treat opens/closeds/neighbourhoods and convergence side by
side!

This talk is about a categorical formalization of convergence
that has many predecessors :
≥ 1968: Manes, Wyler, Gähler, Möbus, Höhle, Flagg, Kopperman, ...
≥ 2002: Clementino, Hofmann, Seal, T, ....
Monoidal Topology, Cambridge University Press, 2014
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The “Two-Axiom Miracle” in Algebra

Example: M-sets (M a monoid) M × X a // X , a(α, x) = α · x

X M × X
(eM ,1X ) //X

X

1X

""

M × X

X

a

��
M × X Xa

//

M ×M × X

M × X

m×1X

��

M ×M × X M × X
1M×a // M × X

X

a

��
X Y

f
//

M × X

X

a

��

M × X M × Y
1M×f // M × Y

Y

b

��

eM · x = x (αβ) · x = α · (β · x) f (α · x) = α · f (x)

M×X (with the obvious action) is the free M-set over a set X .
Eilenberg-Moore: One may replace M×X by the free group, free
ring, free Lie algebra, or any free algebra in a variety, to see that...
... the Two-Axiom Miracle continues throughout Algebra.
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Manes 1968: compact Hausdorff spaces

Replace M×X by βX = set of ultrafilters on X :

X βX
eX //X

X

1X

""

βX

X

a=lim

��
βX Xa

//

ββX

βX

mX

��

ββX βX
βa // βX

X

a

��
X Y

f
//

βX

X

a

��

βX βY
βf // βY

Y

b

��

eX (x) = ẋ mX (X) = ΣX (“Kowalsky sum”): βf (x) = f [x] (“image”)
A ∈ ΣX⇔ {x ∈ βX | A ∈ x} ∈ X B ∈ f [x]⇔ f−1(B) ∈ x
A ∈ βa(X) = a[X] (“image” of X)

⇔ {x ∈ βX | a(x) ∈ A} ∈ X

lim ẋ = x lim(limX) = lim ΣX f (limx) = lim(f [x])
ẋ → x X→ y and y→ z ⇒ ΣX→ z x→ y ⇒ f [x]→ f (y)
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Barr 1970: arbitrary topological spaces?

Replace the map βX a // X by a relation βX a //7 X .

Recall that a relation a is a map precisely when

defined everywhere: existence of convergence points:
compactness;
defined uniquely: uniqueness of convergence points:
Hausdorffness.

What are the axioms on a characterizing it as a topological
convergence relation?
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The “Two-Axiom Miracle” continues in Topology!

a conv. rel. of a top. sp. X ⇔ f : X // Y continuous⇔
• ẋ → x (x→ y ⇒ f [x]→ f (y))
• X→ y and y→ z ⇒ ΣX→ z

X βX
eX //X

X

1X

""

βX

X

a

��
βX Xa

//

ββX

βX

mX

��

ββX βX
βa // βX

X

a

��
X Y

f
//

βX

X

a

��

βX βY
βf // βY

Y

b

��

≤ −

p

p

−≥ − −≤
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What does βa mean when a is just a relation?

More generally:
For a relation r : X //7 Y , what does βr : βX //7 Y mean?

Present r as a span r =

(
X Y

R

X

r1
��

R

Y

r2
��

)
The Barr extension of β to a relation r is given by:

X Yr
//

R

X

??r◦1
R

Y

r2

��
p βX βY

βr
//

βR

βX

??(βr1)
◦

βR

βY

βr2

��
p

r = r2 · r◦1 7−→ βr := (βr2) · (βr1)◦

x r y ⇔ ∃p ∈ R : x(βr)y :⇔ ∃p ∈ βR :
r1(p) = x r1[p] = x
r2(p) = y r2[p] = y
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Filters instead of ultrafilters?

YES One may replace βX by γX = set of filters on X
and describe topological spaces with the same two axioms,
but:

NO It is not sufficient to just mimic Barr’s extension to relations!

More significantly:
One loses the ability to do meaningfully topology in this
environment

See: Seal 2005, “Monoidal Topology” 2014
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From β to any Set-monad T

eX : X // TX nat. mX : TTX // TX nat. Tf : TX // TY functorial
+ Two axioms making (T ,m,e) look like a monoid: “monad”
+ Provision for “extending” T from maps to relations

T -relational spaces (X ,a) and continuous maps f : (X ,a) // (Y ,b):

X TX
eX //X

X

1X

""

TX

X

a

��
TX Xa

//

TTX

TX

mX

��

TTX TXTa // TX

X

a

��
X Y

f
//

TX

X

a

��

TX TYTf // TY

Y

b

��

≤ −

p

p

−≥ − −≤

eX (x) a x (X (Ta) y and ya z ⇒ mX (X) a z) (xa y ⇒ Tf (x) b f (y))
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(T ,2)-Cat

T = Id: Ord = (pre)ordered sets
x ≤ x , (x ≤ y and y ≤ z ⇒ x ≤ z)

T = M ×(−): M-Ord = “M-ordered sets”
x ≤eM x , (x ≤α y and y ≤β z ⇒ x ≤βα z)

T = β: Top = topological spaces
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From Boolean relations to quantale-valued relations

r : X × Y // 2 to become r : X × Y // V for
V unital (commutative) quantale
= complete lattice with monoid structure V = (V ,⊗, k) s.th.

u ⊗
∨
i∈I

vi =
∨
i∈I

u ⊗ vi , (
∨
i∈I

vi)⊗ u =
∨
i∈I

vi ⊗ u

V -relational composition of r : X //7 Y followed by s : Y //7 Z :

(s · r)(x , z) =
∨

y∈Y

s(y , z)⊗ r(x , y)

V = 2 = {0 < 1} with u ⊗ v = u ∧ v , k = 1
V = ([0,∞],≥) with u ⊗ v = u + v , k = 0 (Lawvere 1973)
V = (2M ,⊆) with A⊗ B = {αβ | α ∈ A, β ∈ B}, k = {eM}
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V -Cat = (Id,V )-Cat (T=Id)

X X
eX=1X //X

X

1X

""

X

X

a

��
X Xa

//

X

X

mX=1X

��

X Xa // X

X

a

��
X Y

f
//

X

X

a

��

X Yf // Y

Y

b

��

≤ −

p

p

−≥ − −≤

1X ≤ a a · a ≤ a f · a ≤ b · f
k ≤ a(x , x) a(y , z)⊗ a(x , y) ≤ a(x , z) a(x , y) ≤ b(f (x), f (y))

V = 2: V -Cat = Ord = (pre)ordered sets
V = 2M : V -Cat = (M×(−),2)-Cat = M-ordered sets
V = [0,∞]op: V -Cat = Met = (generalized) metric spaces

0 ≥ a(x , x) a(y , z) + a(x , y) ≥ a(x , z) a(x , y) ≥ b(f (x), f (y))
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Why “V -Cat”? Eilenberg and Kelly 1966

General case: (V ,⊗, k) (symmetric) monoidal-closed category

A V -category (X ,a) has a set X of objects with “hom-objects”
a(x , y) = homX (x , y) ∈ V and V -arrows

k // a(x , x) a(y , z)⊗ a(x , y) // a(x , z)
subject to natural “monoidal” conditions

V -functor f : (X ,a) // (Y ,b) is an “object map” f : X // Y
equpped with V -arrows

a(x , y) // b(f (x), f (y))
subject to natural conditions
V = Set: V -Cat = Cat = the category of small ordinary categories
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(T ,V )-Cat

(T ,V )-spaces (X ,a) and continuous maps f : (X ,a) // (Y ,b):

X TX
eX //X

X

1X

""

TX

X

a

��
TX Xa

//

TTX

TX

mX

��

TTX TXTa // TX

X

a

��
X Y

f
//

TX

X

a

��

TX TYTf // TY

Y

b

��

≤ −

p

p

−≥ − −≤

• k ≤ a(eX (x), x) a(x, y) ≤ b(Tf (x), f (y))
• Ta(X, y)⊗ a(y, z) ≤ a(mX (X), z)
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Topologicity

Basic Theorem
•(T ,V )-Cat is topological over Set, hence complete, cocomplete, etc.
• The forgetful functor has both a left- and a right adjoint (discrete and
indiscrete structures);
• its fibres are complete lattices.
Initial structure a on X with respect to fi : X // (Yi ,bi):

a(x, y) =
∧
i∈I

bi(Tfi(x), fi(y))

Principal Examples
T/V 2 [0,∞]op

Id Ord Met
β Top App = approach spaces: Lowen 1997

a(x, y) = measure of convergence of x to y , two axioms
Alternative axiomatization by point-set distance
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Let’s do Topology!

(X ,a) Hausdorff: a · a◦ ≤ 1X (⊥ < a(z, x)⊗ a(z, y)⇒ x = y)
(X ,a) compact: a◦ · a ≥ 1TX ∀z ∈ TX (k ≤

∨
x∈X a(z, x))

Silent hypotheses on V :

V commutative
k = > > ⊥ (V is “integral” and non-trivial)
(k ≤

∨
i∈I ui ⇔ k ≤

∨
i∈I ui ⊗ ui) (V is “superior”)

(u ∨ v = > and u ⊗ v = ⊥ ⇒ u = > or v = >) (V is “lean”)

Okay for V = 2, [0,∞]op, or any linearly ordered frame,
but not for V = 2M
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Compact + Hausdorff is algebraic

T V (T ,V )-CatComp (T ,V )-CatHaus
Id 2 Ord discrete ordered sets
Id [0,∞]op Met discrete (generalized) metric spaces
β 2 Comp Haus
β [0,∞]op App0-Comp approach spaces whose induced

pseudotopology is Hausdorff

Manes’ Theorem generalized:
(T ,V )-CatCompHaus = (T ,V )-CatComp ∩ (T ,V )-CatHaus = SetT

= Eilenberg-Moore algebras w.r.t. T

Proof (Lawvere, Clementino-Hofmann)
(a · a◦ ≤ 1X and 1TX ≤ a◦ · a)⇔ a a a◦ ⇔ a is (induced by) a map.
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Tychonoff’s Theorem

V completely distributive
(∀i ∈ I : Xi = (Xi ,ai) compact)⇒ (X ,a) =

∏
i∈I Xi compact

Proof (Schubert 2005) For all z ∈ TX :

∨
x∈X

a(z, x) =
∨

x∈X

∧
i∈I

ai(Tpi(z),pi(x)) =
∧
i∈I

∨
xi∈Xi

ai(Tpi(z), xi) ≥ k
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Equationally-def’d properties cont’d: T1, core-compact

(X ,a : TX //7 X )
• 1X ≤ a · eX T1: 1X ≥ a · eX

(T = β,V = 2 :) (ẋ → y ⇒ x = y)

• a · Ta ≤ a ·mX core compact: a · Ta ≥ a ·mX

(T = β,V = 2 :) (ΣX→ z ⇒ ∃y : X→ y→ z)

⇔ ∀x ∈ B ⊆ X open
∃A ⊆ X open (x ∈ A << B)

⇔ X exponentiable in Top
⇔ ∀Y∃Y X∀Z∃ nat. bij. corr.

(Z // Y X ⇔ Z×X // Y )
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Normal, extremally disconnected

Preparation: Induced “order”

on βX : on TX :
Top //Ord (T ,V )-Cat // V -Cat
X 7→ (βX ,≤) (X ,a) 7→ (TX , â)

x ≤ y :⇔ ∀A ⊆ X closed â = (TX
m◦

X //7 TTX Ta //7 TX )
(A ∈ x⇒ A ∈ y)

“Adjoint significance” of ≤:
Top // OrdCompHaus (T ,V )-Cat // V -CatT

(X ,a) 7→ (TX , â,mX )
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Normal, extremally disconnected

X ∈ Top normal⇔ (X ,a) ∈ (T ,V )-Cat normal

x

z

x yy

z

x y

w

x

w

y∀ ∃ :⇔ â · â◦ ≤ â◦ · â

X extrem’ly disconnected⇔ (X ,a) extremally disconnected

x y

w

x

w

y x

z

x yy

z

∀ ∃ :⇔ â◦ · â ≤ â · â◦

⇔ (TX , â) ext. disc. V -space
⇔ (TX , â◦) normal V -space

Note: (X ,a) compact Hausdorff⇒ (X ,a) normal
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The categorical imperative: What about morphisms?

f : (X ,a) // (Y ,b)
• f · a ≤ b · Tf f proper :⇔ f · a ≥ b · Tf
• a · (Tf )◦ ≤ f ◦ · b f open :⇔ a · (Tf )◦ ≥ f ◦ · b

f : X // Y proper open

Ord = 2-Cat
f (x) y

x

f (x)

x zz

y≤

≤

y f (x)

z

y

z xx

f (x)≤

≤

Top (β,2)-Cat
f [x] y//

x

f [x]

x z// z

y y f (x)//

z

y

z x// x

f (x)
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Basic Stability Properties for proper/open maps

Isomorphisms are proper/open
proper/open maps are closed under composition
g · f proper/open, g injective⇐ f proper/open
g · f proper open, f surjective⇒ g proper/open

In addition: Proper/open is stable under pullback:

X Y
f

//

X ×Y Z

X

p1

��

X ×Y Z Z
p2 // Z

Y

g

��

f proper/open⇒ p2 proper/open
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Kuratowski-Mrówka Theorem

Under mild hypotheses on T ,V :
(X ,a) // 1 proper ⇔ (X ,a) compact

Theorem (Clementino-T 2007)
f : (X ,a) // (Y ,b) proper⇔ • f has compact fibres

• Tf : (X , â) // (Y , b̂) proper
(in Top, App, ...) ⇔ • f has compact fibres

• f is closed
⇔ f is stably closed

Corollary
•X compact ⇔ ∀Z : X × Z // Z closed (equ’ly: proper)

•(X f // Y ) proper ⇔ ∀(Z // Y ) : (X ×Y Z // Z ) closed (proper)
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Tychonoff-Frolı́k-Bourbaki Theorem

Conclusion: proper = fibred version of compact
Consequently: categorically proven statements for compact objects
transfer to proper morphisms, and conversely.

Theorem: V completely distributive. Then:

fi : Xi // Yi proper (i ∈ I)⇒
∏
i∈I

fi :
∏
i∈I

Xi //
∏
i∈I

Yi proper

Note, by contrast (not by categorical dualization!):

fi : Xi // Yi open (i ∈ I)⇒
∐
i∈I

fi :
∐
i∈I

Xi //
∐
i∈I

Yi open
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Some Remarks

Starting with an axiomatically given class of “closed morphisms”
one establishes a categorical theory of
compactness and Hausdorff separation:

Pénon 1972, T 1999,
Clementino-Giuli-T 2004, Clementino-Colebunders-T 2014, ...

Recently this approach has been exploited for the category
TopGrp of topological groups by He-T, extending the
Dikranjan-Uspenskij product theorem for categorically compact groups
to categorically proper homomorphisms of topological groups.
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Q1: Do we really need the V of (T ,V )-Cat?

YES:
All topological notions presented depend on T ,V ,
not just on (T ,V )-Cat.
This is so already for Top when presented via filter convergence
instead of ultrafilter convergence! But
NO:
It is possible to always replace V by 2 (i.e., have no “fuzziness”!) if
• you are only interested in the category itself and
• you accept a more complicated T :
Theorem (Hofmann-Lowen 2014)
Given T ,V , there is a monad Π = Π(T ,V ) such that

(T ,V )-Cat ∼= (Π,2)-Cat

Special case:T = Id⇒ Π = PV = V−presheaf monad:

V -Cat ∼= (PV ,2)-Cat

Walter Tholen (York University) Monoidal Topology Zhang Zhou, 25–30 Nov. 2015 30 / 32



Q1: Do we really need the V of (T ,V )-Cat?

YES:
All topological notions presented depend on T ,V ,
not just on (T ,V )-Cat.
This is so already for Top when presented via filter convergence
instead of ultrafilter convergence! But
NO:
It is possible to always replace V by 2 (i.e., have no “fuzziness”!) if
• you are only interested in the category itself and
• you accept a more complicated T :
Theorem (Hofmann-Lowen 2014)
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Q2: Should one consider a quantaloid Q instead of V?

YES
First indication:
Take Q = DV (Stubbe, Zhang, ...) and obtain:

(T ,Q)-Cat = {partial (T ,V )-spaces}

In particular:

D[0,∞]op−Cat = {partial metric spaces}

(T 2015: AMS-Portugal Meeting, Porto, 2015)
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Your questions?

THANK YOU !
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