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Tychonoff’s Theorem

H X; compact if all X; compact
iel
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Tychonoff’s Theorem

H X; compact if all X; compact

iel

Proof:
Geometric Argument

Most Books: Engelking, ...

Involved

Why?

Convergence Argument:

Few Books: Willard, ...

Trivial

Walter Tholen (York University)
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Initial toplogy

fi:X—Y,YieTop(iel)
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Initial toplogy

fi:X—Y,YieTop(iel)

Geometric Description: Convergence Description:
o Collectall f7'(V),VC Yiopen er—y:&Viel: fif] —f(y)
e Generate a topology from these! This is (the conv. of) a topology!

By contrast:
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Final toplogy

fi: Xi—Y,XjeTop (i €l)
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Final toplogy

fi: Xi—Y,XjeTop (i €l)

Geometric Description: Convergence Description:

e V C Yopens e Collect all fi[x] — fi(y) forr — y in X;
vie l: (V) C X; open

This is a topology! e Generate (the conv. of) a topology!
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First conclusions by a categorical topologist

@ Appreciate the importance of topological functors, such as
Top — Set, Unif — Set, TopGrp — Grp, ...

@ While it is beautiful to have self-duality of topological functors:
all “initials” (infs) exist < all “finals” (sups) exist, ...
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First conclusions by a categorical topologist

@ Appreciate the importance of topological functors, such as
Top — Set, Unif — Set, TopGrp — Grp, ...

@ While it is beautiful to have self-duality of topological functors:
all “initials” (infs) exist < all “finals” (sups) exist, ...

@ ... it may not always be convenient to express infs in terms of
sups, or conversely.

@ Treat opens/closeds/neighbourhoods and convergence side by
side!
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First conclusions by a categorical topologist

@ Appreciate the importance of topological functors, such as
Top — Set, Unif — Set, TopGrp — Grp, ...

@ While it is beautiful to have self-duality of topological functors:
all “initials” (infs) exist < all “finals” (sups) exist, ...

@ ... it may not always be convenient to express infs in terms of
sups, or conversely.

@ Treat opens/closeds/neighbourhoods and convergence side by
side!

This talk is about a categorical formalization of convergence
that has many predecessors :

> 1968: Manes, Wyler, Gahler, MGbus, Hohle, Flagg, Kopperman, ...
> 2002: Clementino, Hofmann, Seal, T, ....

Monoidal Topology, Cambridge University Press, 2014
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The “Two-Axiom Miracle” in Algebra

Example: M-sets (M a monoid) M x X —2>~X, a(a,x)=a-x
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The “Two-Axiom Miracle” in Algebra

Example: M-sets (M a monoid) M x X —2>~X, a(a,x)=a-x

en-X=Xx (af) - x=a-(8-x) fla- X) = a - f(X)
X X MxMx XA Mxx Mx X2l pmxy
X M x X X X y

a
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The “Two-Axiom Miracle” in Algebra

Example: M-sets (M a monoid) M x X —2>~X, a(a,x)=a-x

en-X=Xx (af) - x=a-(8-x) fla- X) = a - f(X)
X0 X MxMx XM X MxX M pmxy
a mx1y a a |b
1x
X Mx X X X Y

a

@ Mx X (with the obvious action) is the free M-set over a set X.

@ Eilenberg-Moore: One may replace M x X by the free group, free
ring, free Lie algebra, or any free algebra in a variety, to see that...

@ ... the Two-Axiom Miracle continues throughout Algebra.
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Manes 1968: compact Hausdorff spaces

Replace M x X by 58X = set of ultrafilters on X:

Bf

X% .3x 88X 8X BX 1%
a=lim my a a b

1x
X BX X X 1%

a

ex(x) =x mx(X) = XX (“Kowalsky sum”): Bf(x) = flx] ( |mage
AcrXx e {repBX|AcryeXx Beflflef'(B)er
A € pa(X) = a[X] (“image” of X)
s{repX|ak)eAleXx
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Manes 1968: compact Hausdorff spaces

Replace M x X by 58X = set of ultrafilters on X:

Bf

X — - X BBX BX X BY
a=lim my a a b

1x
X BX X X Y

a

ex(x) =x mx(X) = XX (“Kowalsky sum”): Bf(x) = flx] ( |mage
AcrXx e {repBX|AcryeXx Beflflef'(B)er
A € pa(X) = a[X] (“image” of X)
s{repX|ak)eAleXx

limx =x  lim(limX) = lim XX f(limg) = lim(f[x])
X=X X—pandy—-z=XX—2Z r—y=ft] = f(y)
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Barr 1970: arbitrary topological spaces?

Replace the map 83X —2> X by a relation SX —&= X.
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Barr 1970: arbitrary topological spaces?

Replace the map 83X —2> X by a relation SX —&= X.

Recall that a relation a is a map precisely when
@ defined everywhere: existence of convergence points:
compactness;

@ defined uniquely: uniqueness of convergence points:
Hausdorffness.
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Barr 1970: arbitrary topological spaces?

Replace the map 83X —2> X by a relation SX —&= X.

Recall that a relation a is a map precisely when
@ defined everywhere: existence of convergence points:
compactness;

@ defined uniquely: uniqueness of convergence points:
Hausdorffness.

What are the axioms on a characterizing it as a topological
convergence relation?
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The “Two-Axiom Miracle” continues in Topology!

aconv. rel. of atop. sp. X & f: X —=Y continuous <
o X—x =y =M= 1))
e X—oypandy—>z=>XX—Zz
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The “Two-Axiom Miracle” continues in Topology!

aconv. rel. of atop. sp. X & f: X —=Y continuous <
o X—x =y =M= 1))
e X—oypandy—>z=>XX—Zz

Ba

X —% . BX BBX — - BX BX BY
1X S %a " 2 %a a% S ">b
X BX —— > X X —— 1%
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What does fa mean when ais just a relation?

More generally:
For a relation r : X — Y, what does 3r : X —=Y mean?

Present r as a spanr = PR
X Y
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What does fa mean when ais just a relation?

More generally:
For a relation r : X — Y, what does 3r : X —=Y mean?

Present ras a spanr = (

The Barr extension of § to a relation r is given by:

XG"//R\riY (BH)/ \fz
S

ﬂX—t—>ﬁY

r=ry-rg —  pBri= (ﬂrz) (Bri)°
xry<dpeR: (Br)y < 3Jp e SR
r(p) = x rlpl =r

r(p) =y ralp] =1y
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Filters instead of ultrafilters?

YES One may replace X by vX = set of filters on X
and describe topological spaces with the same two axioms,
but:
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Filters instead of ultrafilters?

YES One may replace X by vX = set of filters on X
and describe topological spaces with the same two axioms,
but:

NO ltis not sufficient to just mimic Barr’s extension to relations!
More significantly:
One loses the ability to do meaningfully topology in this

environment

See: Seal 2005, “Monoidal Topology” 2014
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From /3 to any Set-monad T

ex: X—TXnat. my:TTX—TX nnat. Tf: TX— TY functorial
+ Two axioms making (T, m, e) look like a monoid: “monad”
+ Provision for “extending” T from maps to relations
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From /3 to any Set-monad T

ex: X—TXnat. my:TTX—TX nnat. Tf: TX— TY functorial
+ Two axioms making (T, m, e) look like a monoid: “monad”
+ Provision for “extending” T from maps to relations

T-relational spaces (X, a) and continuous maps f : (X,a)— (Y, b):

X—2 . T1x TTX—PF 71X ™X—"T 7Ty
— a myx > a a < b
1 X - -
X X —— X X 1%

f

ex(x)ax (X(Ta)pandpaz= mx(X)az) (ray= Tf(x)bf(y))

Walter Tholen (York University)
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(T,2)-Cat

T =1d: Ord = (pre)ordered sets
x<x, (x<yandy<z=x<2)

T=Mx(-): M-Ord =“M-ordered sets”
X<ey X, (X<pyandy <gz= x<p, 2)

T =75 Top = topological spaces
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From Boolean relations to quantale-valued relations

r-XxY—2 tobecome r:XxY-—V
V unital (commutative) quantale

= complete lattice with monoid structure V = (V, ®, k) s.th.

for

va\/vi=\Juav, (\/weu=\/veu
el icl el icl
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From Boolean relations to quantale-valued relations

r-XxY—2 tobecome r:XxY-—V
V unital (commutative) quantale

= complete lattice with monoid structure V = (V, ®, k) s.th.

for

va\/vi=\Juav, (\/weu=\/veu

iel iel iel iel

V-relational composition of r : X —+ Y followed by s : Y -+ Z:

(s-n(x.2)=\/ sly.2)®r(x.y)

yeYy
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From Boolean relations to quantale-valued relations

r-XxY—2 tobecome r:XxY-—V
V unital (commutative) quantale

= complete lattice with monoid structure V = (V, ®, k) s.th.

for

va\/vi=\Juav, (\/weu=\/veu

iel iel iel iel

V-relational composition of r : X —+ Y followed by s : Y -+ Z:

(s-n(x.2)=\/ sly.2)®r(x.y)

yeYy

o V=2={0<1}withudv=uAv,k=1
@ V =([0,00],>) with u® v = u+ v,k =0 (Lawvere 1973)
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From Boolean relations to quantale-valued relations

r-XxY—2 tobecome r:XxY-—V
V unital (commutative) quantale

= complete lattice with monoid structure V = (V, ®, k) s.th.

for

va\/vi=\Juav, (\/weu=\/veu

icl iel icl icl
V-relational composition of r : X —+ Y followed by s : Y -+ Z:

(s-n(x.2)=\/ sly.2)®r(x.y)

yeYy

o V=2={0<1}withudv=uAv,k=1
@ V =([0,00],>) withu® v =u+v,k =0 (Lawvere 1973)
o V=02" C)with Aw B={af|ac A Bec B} k={ey}

Walter Tholen (York University)

Monoidal Topology
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V-Cat = (Id,V)-Cat  (T=Id)

X == x X— 2 .Xx X y
< %a my=1x > «La a% < %b
1X - -
X X#X X ; Y
1x<a a-a<a f-a<b-f
k < a(x, x) a(y,z)®a(x,y) < a(x,z) a(x,y) < b(f(x),f(y))
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V-Cat = (Id,V)-Cat  (T=Id)

x &= x X—2 X X—1 -y
< «‘ a my=1x > «L a a% < % b
1X - -
X X—5—>X X - Y
1x<a a-a<a f-a<b-f
k < a(x, x) aly,z) @ a(x,y) < a(x,z) a(x,y) < b(f(x),f(y))

e V=2 V-Cat = Ord = (pre)ordered sets
o V=2M: V-Cat = (Mx(—),2)-Cat = M-ordered sets
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V-Cat = (Id,V)-Cat  (T=Id)

X eX:1X

1x<a
k < a(x, x)
o V=2
o V=2M:
@ V =10, c0]:
0 > a(x, x)

X—3& X X f 1%
my=1x 2 %a a% S %b
X#X X ; Y

a-a<a f-a<b-f
aly,z) @ a(x,y) < a(x,z) a(x,y) < b(f(x),f(y))
V-Cat = Ord = (pre)ordered sets
V-Cat = (M x(—),2)-Cat = M-ordered sets
V-Cat = Met = (generalized) metric spaces
aly,z) +alx,y) > a(x,z) a(x,y) = b(f(x),f(y))

Walter Tholen (York University)
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Why “V-Cat”? Eilenberg and Kelly 1966

General case: (V,®, k) (symmetric) monoidal-closed category

A V-category (X, a) has a set X of objects with “hom-objects”
a(x,y) = homy(x, y) € V and V-arrows

k —a(x, x) aly,z)® a(x,y)—a(x, z)
subject to natural “monoidal” conditions
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Why “V-Cat”? Eilenberg and Kelly 1966

General case: (V,®, k) (symmetric) monoidal-closed category

A V-category (X, a) has a set X of objects with “hom-objects”
a(x,y) = homy(x, y) € V and V-arrows

k —a(x, x) aly,z)® a(x,y)—a(x, z)
subject to natural “monoidal” conditions

V-functor f : (X,a)— (Y, b) is an “object map” f : X — Y
equpped with V-arrows

a(x,y) —b(f(x), (y))
subject to natural conditions

Walter Tholen (York University) Monoidal Topology Zhang Zhou, 25-30 Nov. 2015



Why “V-Cat”? Eilenberg and Kelly 1966

General case: (V,®, k) (symmetric) monoidal-closed category

A V-category (X, a) has a set X of objects with “hom-objects”

a(x,y) = homy(x, y) € V and V-arrows
k%a(x,x) a(y,z)®a(x,y)%a(x,z)
subject to natural “monoidal” conditions

V-functor f : (X,a)— (Y, b) is an “object map” f : X — Y

equpped with V-arrows
a(x,y) —b(f(x), (y))

subject to natural conditions
V = Set: V-Cat = Cat = the category of small ordinary categories

Zhang Zhou, 25-30 Nov. 2015
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(T, V)-Cat

(T, V)-spaces (X, a) and continuous maps f : (X,a)— (Y, b):

X—2 71X TTX—P 71X TX—1 Ty
— a mx > a a < b
1 X - -
X X —— X X f 1%
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(T, V)-Cat

(T, V)-spaces (X, a) and continuous maps f : (X,a)— (Y, b):

X—2 71X TTX—P 71X TX—1 Ty
— a mx > a a < b
1)( - -
X X —— X X f 1%
o k< a(ex(x),x) ar,y) < b(Tf(x), f(y))

b Ta(3€, U) ® a(t),z) < a(mX(x)’ Z)
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Topologicity

Basic Theorem

o( T, V)-Cat is topological over Set, hence complete, cocomplete, efc.
e The forgetful functor has both a left- and a right adjoint (discrete and
indiscrete structures);

e its fibres are complete lattices.
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Topologicity

Basic Theorem

o( T, V)-Cat is topological over Set, hence complete, cocomplete, efc.
e The forgetful functor has both a left- and a right adjoint (discrete and
indiscrete structures);

e its fibres are complete lattices.

Initial structure a on X with respect to f; : X — (Y}, b;):

ar,y) = /\ bi(Thi(x), fi(y))

iel
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Topologicity

Basic Theorem

o( T, V)-Cat is topological over Set, hence complete, cocomplete, efc.
e The forgetful functor has both a left- and a right adjoint (discrete and
indiscrete structures);

e its fibres are complete lattices.

Initial structure a on X with respect to f; : X — (Y}, b;):

a(r.y) = A\ bi(THR), £(y))
iel
Principal Examples
T/V 2 [0, co]P
Id Ord Met
B Top App = approach spaces: Lowen 1997
a(r, y) = measure of convergence of ¢ to y, two axioms
Alternative axiomatization by point-set distance
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Let’s do Topology!

(X,a) Hausdorff: a-a°<1x (L<a(,x)®@a(y)=x=y)
(X,a) compact: & -a>1rx Vi€ TX(k < \Vyexa(, x))
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Let’s do Topology!

(X,a) Hausdorff: a-a°<1x (L<a(,x)®@a(y)=x=y)
(X,a) compact: & -a>1rx Vi€ TX(k < \Vyexa(, x))

Silent hypotheses on V:

@ V commutative

@ k=T > L (Vis “integral” and non-trivial)

@ (k< Vi uie k <V ui®u) (Vis “superior”)

@ (uvv=Tanduv=_L=u=Torv=T)(Vis“lean”)
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Let’s do Topology!

(X,a) Hausdorff: a-a°<1x (L<a(,x)®@a(y)=x=y)
(X,a) compact: & -a>1rx Vi€ TX(k < \Vyexa(, x))

Silent hypotheses on V:

@ V commutative

@ k=T > L (Vis “integral” and non-trivial)

@ (k< Vi uie k <V ui®u) (Vis “superior”)

@ (uvv=Tanduv=_L=u=Torv=T)(Vis“lean”)

Okay for V = 2,[0, oc]°P, or any linearly ordered frame,
but not for V = 2V
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Compact + Hausdorff is algebraic

T V (T, V)-Catcomp (T, V)-CatHaus

Id 2 Ord discrete ordered sets

Id [0,00]? Met discrete (generalized) metric spaces
g 2 Comp Haus

B 0,00 APPo-comp approach spaces whose induced

pseudotopology is Hausdorff
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Compact + Hausdorff is algebraic

T V (T, V)-Catcomp (T, V)-CatHaus

Id 2 Ord discrete ordered sets

Id [0,00]? Met discrete (generalized) metric spaces
g 2 Comp Haus

B 0,00 APPo-comp approach spaces whose induced

pseudotopology is Hausdorff

Manes’ Theorem generalized:
(T, V)-Catcompriass = (T, V)-Catcomp N (T, V)-Catyy,,s = Set”
= Eilenberg-Moore algebras w.rt. T
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Compact + Hausdorff is algebraic

T V (T, V)-Catcomp (T, V)-CatHaus

Id 2 Ord discrete ordered sets

Id [0,00]? Met discrete (generalized) metric spaces
g 2 Comp Haus

B 0,00 APPo-comp approach spaces whose induced

pseudotopology is Hausdorff

Manes’ Theorem generalized:
(T, V)-Catcompriass = (T, V)-Catcomp N (T, V)-Catyy,,s = Set”
= Eilenberg-Moore algebras w.rt. T

Proof (Lawvere, Clementino-Hofmann)
(a-a°<1xand17x < &°-a) < a-a® < ais (induced by) a map.
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Tychonoff’s Theorem

V completely distributive
(Vi e I': Xi = (Xi, a;) compact) = (X, a) = [[;c, X; compact

Proof (Schubert2005) Forall 3 € TX:

V aG.x) = \/ A\ a(Tpis) = A\ V a(Tois), %) > k

xeX xeX iel iel x;eX;
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Equationally-def’d properties cont'd: T1, core-compact

(X,a: TX—=X)
e 1y <a-ey T1: 1y >a-ex
(T=p,V=2:) (x—>y=x=Y)
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Equationally-def’d properties cont'd: T1, core-compact

(X,a: TX—+—=X)

o 1xy<a-ex T1: 1x > a-ex
(T=p,V=2:) (x—=>y=x=yY)

e a-Ta<a-myxy corecompact: a-Ta>a- my

(T=p,V=2:) EX—>z=dy:X—19—2)
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Equationally-def’d properties cont'd: T1, core-compact

(X,a: TX—+—=X)

o 1xy<a-ex T1: 1x > a-ex
(T=p,V=2:) (x—=>y=x=yY)

e a-Ta<a-myxy corecompact: a-Ta>a- my

(T=p,V=2:) EX—>z=dy:X—19—2)

< Vx € BC X open
JA C X open (x € A<< B)
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Equationally-def’d properties cont'd: T1, core-compact

(X,a: TX—=X)
e 1y <a-ey T1: 1y >a-ex
(T=p,V=2:) (x—>y=x=Y)

e a-Ta<a-myxy corecompact: a-Ta>a- my
(T=p,V=2:) EX—>z=dy:X—19—2)

< Vx € BC X open
JA C X open (x € A<< B)

< X exponentiable in Top
& VY3YXVYZ3 nat. bij. corr.
(Z—YX e ZxX—Y)
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Normal, extremally disconnected

Preparation: Induced “order”

on X on TX:
Top — Ord (T,V)-Cat— V-Cat
X— (BX,<) (X,a) —(TX,a)
r <1 VA C X closed &= (TX 2= TTX 2. 7X)
(Acr=Acy)
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Normal, extremally disconnected

Preparation: Induced “order”

on gX:
Top —Ord
X = (BX,<)

r<p:&VAC X closed
(Acr=Acy)

“Adjoint significance” of <:
Top — OrdCompHaus

Walter Tholen (York University)

Monoidal Topology

on TX:
(T,V)-Cat— V-Cat
(X,a) ~—(TX,a)

O

8= (TX X TTX - TX)

(T, V)-Cat— V-Cat’
(X,a) ~ (TX,a my)

Zhang Zhou, 25-30 Nov. 2015



Normal, extremally disconnected

X € Top normal & (X,a) € (T, V)-Cat normal

/N

vVt p dr 9 = a-a<a-a
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Normal, extremally disconnected

X € Top normal & (X,a) € (T, V)-Cat normal

/N

vVt p dr 9 = a-a<a-a
NS
3
X extrem’ly disconnected < (X, a) extremally disconnected
1o
/N s A s a
r p Jr ) & &-a<a-®

N S

3

v

& (TX, a) ext. disc. V-space
& (TX, &) normal V-space

Zhang Zhou, 25-30 Nov. 2015
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Normal, extremally disconnected

X € Top normal & (X,a) € (T, V)-Cat normal

/N

vVt p dr 9 = a-a<a-a
NS
3
X extrem’ly disconnected < (X, a) extremally disconnected
1o
/N s A s a
r p Jr ) & &-a<a-®

N S

3

v

& (TX, a) ext. disc. V-space
& (TX, &) normal V-space

Note: (X, a) compact Hausdorff = (X, a) normal

Zhang Zhou, 25-30 Nov. 2015

Walter Tholen (York University) Monoidal Topology



The categorical imperative: What about morphisms?

f (X,a)%(Y,b)
o f-a<b-Tf f proper < f-
a-(ThHe<f-b f open & a-
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The categorical imperative: What about morphisms?

f:(X,a—(Y,b)
o f-a<b-Tf
a-(ThHe<f-b

f: X—Y

Ord = 2-Cat

Top (3,2)-Cat

Walter Tholen (York University)

x < z

fx)<y

FH

flr] —

proper

4 3
I I
| |
y n — f(x)

f proper <
fopen &

open

Monoidal Topology
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Basic Stability Properties for proper/open maps

@ Isomorphisms are proper/open

@ proper/open maps are closed under composition
@ g - f proper/open, g injective < f proper/open

@ g - f proper open, f surjective = g proper/open

In addition: Proper/open is stable under pullback:

XxyZ—" .7

< g

X Y

f

f proper/open = p» proper/open
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Kuratowski-Mrowka Theorem

Under mild hypotheseson T, V:
(X,a)—=1 proper < (X, a) compact
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Kuratowski-Mrowka Theorem

Under mild hypotheseson T, V:
(X,a)—=1 proper < (X, a) compact

Theorem (Clementino-T 2007)
f:(X,a)—(Y,b) proper & e f has compact fibres
e Tf: (X,a)—= (Y, b) proper
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Kuratowski-Mrowka Theorem

Under mild hypotheseson T, V:
(X,a)—=1 proper < (X, a) compact

Theorem (Clementino-T 2007)
f:(X,a)—(Y,b) proper & e f has compact fibres
e Tf: (X,3)— (Y, b) proper
(in Top, App, -.-) < e f has compact fibres
e fis closed
< fis stably closed
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Kuratowski-Mrowka Theorem

Under mild hypotheseson T, V:
(X,a)—=1 proper < (X, a) compact

Theorem (Clementino-T 2007)
f:(X,a)—(Y,b) proper & e f has compact fibres
e Tf: (X,3)— (Y, b) proper
(in Top, App, -.-) < e f has compact fibres
e fis closed
< fis stably closed

Corollary
o X compact & VZ X x Z—Z closed (equ’ly: proper)

o(X—f> Y) proper < VY(Z—Y): (X xy Z— Z) closed (proper)
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Tychonoff-Frolik-Bourbaki Theorem

Conclusion: proper = fibred version of compact
Consequently: categorically proven statements for compact objects
transfer to proper morphisms, and conversely.
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Tychonoff-Frolik-Bourbaki Theorem

Conclusion: proper = fibred version of compact
Consequently: categorically proven statements for compact objects
transfer to proper morphisms, and conversely.

Theorem: V completely distributive. Then:

fi: Xi—=Y,; proper (iel):>Hf,-:HX,-—>HY,- proper

iel iel i€l
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Tychonoff-Frolik-Bourbaki Theorem

Conclusion: proper = fibred version of compact
Consequently: categorically proven statements for compact objects
transfer to proper morphisms, and conversely.

Theorem: V completely distributive. Then:
fi: Xi—=Y; proper (i€l)= Hf,- : HX,-—> H Y; proper
iel iel iel
Note, by contrast (not by categorical dualization!):

fi: Xi—=Y; open (ie/):>Hf,-:HX,-~>HY,- open

iel iel iel
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Starting with an axiomatically given class of “closed morphisms”
one establishes a categorical theory of
compactness and Hausdorff separation:

Pénon 1972, T 1999,
Clementino-Giuli-T 2004, Clementino-Colebunders-T 2014, ...
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Starting with an axiomatically given class of “closed morphisms”
one establishes a categorical theory of
compactness and Hausdorff separation:

Pénon 1972, T 1999,
Clementino-Giuli-T 2004, Clementino-Colebunders-T 2014, ...

Recently this approach has been exploited for the category

TopGrp of topological groups by He-T, extending the
Dikranjan-Uspenskij product theorem for categorically compact groups
to categorically proper homomorphisms of topological groups.
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Q1: Do we really need the V of (T, V)-Cat?

YES:

All topological notions presented dependon T, V,
not just on (T, V)-Cat.

This is so already for Top when presented via filter convergence
instead of ultrafilter convergence! But

Walter Tholen (York University)
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Q1: Do we really need the V of (T, V)-Cat?

YES:

All topological notions presented dependon T, V,

not just on (T, V)-Cat.

This is so already for Top when presented via filter convergence
instead of ultrafilter convergence! But

NO:

It is possible to always replace V by 2 (i.e., have no “fuzziness™) if
e you are only interested in the category itself and

e you accept a more complicated T:

Walter Tholen (York University) Monoidal Topology Zhang Zhou, 25-30 Nov. 2015

30/32



Q1: Do we really need the V of (T, V)-Cat?

YES:

All topological notions presented dependon T, V,

not just on (T, V)-Cat.

This is so already for Top when presented via filter convergence
instead of ultrafilter convergence! But

NO:

It is possible to always replace V by 2 (i.e., have no “fuzziness™) if
e you are only interested in the category itself and

e you accept a more complicated T:

Theorem (Hofmann-Lowen 2014)

Given T, V, there is a monad N = N(T, V) such that

(T, V)-Cat = (1,2)-Cat
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Q1: Do we really need the V of (T, V)-Cat?

YES:

All topological notions presented dependon T, V,

not just on (T, V)-Cat.

This is so already for Top when presented via filter convergence
instead of ultrafilter convergence! But

NO:

It is possible to always replace V by 2 (i.e., have no “fuzziness™) if
e you are only interested in the category itself and

e you accept a more complicated T:

Theorem (Hofmann-Lowen 2014)

Given T, V, there is a monad N = N(T, V) such that

(T, V)-Cat = (N,2)-Cat
Special case: T = 1d = 1 = P, = V—presheaf monad:

V-Cat = (Py,2)-Cat
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Q2: Should one consider a quantaloid Q instead of V?

YES
First indication:
Take Q = DV (Stubbe, Zhang, ...) and obtain:

(T, Q)-Cat = {partial (T, V)-spaces}

Walter Tholen (York University)
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Q2: Should one consider a quantaloid Q instead of V?

YES
First indication:
Take Q = DV (Stubbe, Zhang, ...) and obtain:

(T, Q)-Cat = {partial (T, V)-spaces}
In particular:

D[0, co]°?—Cat = {partial metric spaces}

(T 2015: AMS-Portugal Meeting, Porto, 2015)

Walter Tholen (York University) Monoidal Topology

Zhang Zhou, 25-30 Nov. 2015



Your questions?

THANK YOU'!
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