Monoidal Topology: Advances and Challenges

Walter Tholen

York University, Toronto

É Categories: internal *vs* enriched

- **É** Categories: internal *vs* enriched
- **É** Lambek's multicategories and Burroni's T-categories and T-orders

- **É** Categories: internal *vs* enriched
- **É** Lambek's multicategories and Burroni's T-categories and T-orders
- ▶ Some topological concepts for T-orders

- **É** Categories: internal *vs* enriched
- **É** Lambek's multicategories and Burroni's T-categories and T-orders
- ▶ Some topological concepts for T-orders
- **É** From enriched multicategories to (Monad, Quantale)-enriched categories

- **É** Categories: internal *vs* enriched
- **É** Lambek's multicategories and Burroni's T-categories and T-orders
- ▶ Some topological concepts for T-orders
- **É** From enriched multicategories to (Monad, Quantale)-enriched categories
- **É** (Monad, Quantale)-enriched categories *vs* T-orders

- **É** Categories: internal *vs* enriched
- **É** Lambek's multicategories and Burroni's T-categories and T-orders
- ▶ Some topological concepts for T-orders
- **É** From enriched multicategories to (Monad, Quantale)-enriched categories
- **É** (Monad, Quantale)-enriched categories *vs* T-orders
- ► The fundamental adjunction of Monoidal Topology

- **É** Categories: internal *vs* enriched
- **É** Lambek's multicategories and Burroni's T-categories and T-orders
- ▶ Some topological concepts for T-orders
- **É** From enriched multicategories to (Monad, Quantale)-enriched categories
- **É** (Monad, Quantale)-enriched categories *vs* T-orders
- ▶ The fundamental adjunction of Monoidal Topology
- ▶ Some topological properties, defined categorically

- **É** Categories: internal *vs* enriched
- **É** Lambek's multicategories and Burroni's T-categories and T-orders
- ▶ Some topological concepts for T-orders
- **É** From enriched multicategories to (Monad, Quantale)-enriched categories
- **É** (Monad, Quantale)-enriched categories *vs* T-orders
- ▶ The fundamental adjunction of Monoidal Topology
- ▶ Some topological properties, defined categorically
- **EXECUTE:** Trading convergence relations for closure operations

- **É** Categories: internal *vs* enriched
- **É** Lambek's multicategories and Burroni's T-categories and T-orders
- ▶ Some topological concepts for T-orders
- **É** From enriched multicategories to (Monad, Quantale)-enriched categories
- **É** (Monad, Quantale)-enriched categories *vs* T-orders
- ▶ The fundamental adjunction of Monoidal Topology
- ▶ Some topological properties, defined categorically
- **EXECUTE:** Trading convergence relations for closure operations
- **É** Challenges, questions, problems

What is a (small) category?

What is a (small) category?

What is a (small) category?

A (with *X*, *d*, *c*, *i*, *m*) category A (with hom_{*A*} = *A*(−,−), *i*, *m*) category internal to a category \mathcal{C} enriched in a category $(\mathcal{V}, \otimes, k)$ that is with pullbacks, $\qquad \qquad$ (symmetric) monoidal (closed), rather than just $C = Set$ rather than just $(V, \otimes, k) = (Set, \times, 1)$

A (with *X*, *d*, *c*, *i*, *m*) category A (with hom_{*A*} = *A*(−,−), *i*, *m*) category internal to a category \mathcal{C} enriched in a category $(\mathcal{V}, \otimes, k)$ that is with pullbacks, $\qquad \qquad$ (symmetric) monoidal (closed), rather than just $C = Set$ rather than just $(V, \otimes, k) = (Set, \times, 1)$

With the internal and enriched notions of functor we obtain the categories Cat(C) V-**Cat**

Of course: Cat(**Set**) = **Cat** = **Set**-**Cat**

A (with *X*, *d*, *c*, *i*, *m*) category A (with hom_{*A*} = *A*(−,−), *i*, *m*) category internal to a category C enriched in a category (V, \otimes, k) that is with pullbacks, $\qquad \qquad$ (symmetric) monoidal (closed), rather than just $C =$ **Set** rather than just $(V, \otimes, k) = (\textbf{Set}, \times, 1)$

With the internal and enriched notions of functor we obtain the categories Cat(C) V-**Cat**

Of course: Cat(**Set**) = **Cat** = **Set**-**Cat**

But already for the (cartesian-closed) category $\mathsf{Ord} = \{\mathsf{pre-ordered}\}$:

 $Cat(Ord) \neq Ord$ -Cat

A (with *X*, *d*, *c*, *i*, *m*) category A (with hom_{*A*} = *A*(−,−), *i*, *m*) category internal to a category C enriched in a category (V, \otimes, k) that is with pullbacks, $\qquad \qquad$ (symmetric) monoidal (closed), rather than just $C =$ **Set** rather than just $(V, \otimes, k) =$ (**Set**, \times , 1)

With the internal and enriched notions of functor we obtain the categories Cat(C) V-**Cat**

Of course: Cat(**Set**) = **Cat** = **Set**-**Cat**

But already for the (cartesian-closed) category $\mathsf{Ord} = \{\mathsf{pre-ordered}\}$:

 $Cat(Ord) \neq Ord$ -Cat

And: $\text{Cat}(\text{Cat}) = \{(\text{strict}) \text{ double cats}\} \neq \{(\text{strict}) \text{ 2-cats}\} = \text{Cat-Cat}$

Playing the same game with multicategories

Playing the same game with multicategories

 $X \xrightarrow{I} A$ \Rightarrow *A* $\qquad \Longleftrightarrow$ 1 $\xrightarrow{i_x}$ hom_{*A*}((*x*), *x*) = hom_{*A*}((*x*), *x*)

The composition law needs a closer look!

$$
\mathcal{X}=(\overline{x_1},\ldots,\overline{x_n})\in \mathrm{LL}X,\ \overline{y}=(y_1,\ldots,y_n)\in \mathrm{L}X,\ z\in X
$$

The composition law needs a closer look!

$$
\mathcal{X} = (\overline{x_1}, \ldots, \overline{x_n}) \in LLX, \ \overline{y} = (y_1, \ldots, y_n) \in LX, \ z \in X
$$

 $LA \times_{L} A \xrightarrow{m} A \iff \hom_A(\mathcal{X}, \overline{y}) \times \hom_A(\overline{y}, z) \xrightarrow{m_{\mathcal{X}, \overline{y}, z}} \hom_A(\mu_X(\mathcal{X}), z)$

The composition law needs a closer look!

$$
\mathcal{X} = (\overline{x_1}, \ldots, \overline{x_n}) \in LLX, \ \overline{y} = (y_1, \ldots, y_n) \in LX, \ z \in X
$$

$$
LA \times_{LX} A \xrightarrow{m} A \iff \hom_A(\mathcal{X}, \overline{y}) \times \hom_A(\overline{y}, z) \xrightarrow{m_{\mathcal{X}, \overline{y}, z}} \hom_A(\mu_X(\mathcal{X}), z)
$$

NOTE: On the RHS, we first had to *define* what $hom_A(\mathcal{X}, \overline{y})$ stands for. In particular: X and \overline{y} had to have the same length to make hom_A(X, \overline{y}) $\neq \emptyset$!

Burroni 1971: How to internalize multicategories ...

C a category with pullbacks, $T = (T, \eta, \mu)$ any monad on C. Define the category

Cat(T)

Objects are (small) T-categories which are monoids in a bicategory of T-spans in C; explicitly, they have an "object of objects" *X* and an "object of arrows" *A*, plus

subject to (somewhat cumbersome) unity and associativity laws.

... and multifunctors

Morphisms are T-functors which are *more* than morphisms of such monoids; rather:

... and multifunctors

Morphisms are T-functors which are *more* than morphisms of such monoids; rather:

One may, however, set up a double category of T-spans in C such that T-functors are *precisely* homomorphisms of monoids.

É The object-of-objects functor Cat(T) **−→** C, (*X*,*A*) **7−→** *X*, is a Grothendieck fibration, with a left adjoint; it has a right adjoint if C has binary products.

- **É** The object-of-objects functor Cat(T) **−→** C, (*X*,*A*) **7−→** *X*, is a Grothendieck fibration, with a left adjoint; it has a right adjoint if C has binary products.
- ► Cat(T) has (not easily constructed) pullbacks and is even finitely complete when $\mathcal C$ is: that is, when, other than pullbacks, $\mathcal C$ has a terminal object. If C is complete, so is Cat(T).

- **É** The object-of-objects functor Cat(T) **−→** C, (*X*,*A*) **7−→** *X*, is a Grothendieck fibration, with a left adjoint; it has a right adjoint if C has binary products.
- ► Cat(T) has (not easily constructed) pullbacks and is even finitely complete when $\mathcal C$ is: that is, when, other than pullbacks, $\mathcal C$ has a terminal object. If C is complete, so is Cat(T).
- \blacktriangleright The formation of Cat(T) is functorial in T (and C); in particular, the monad morphism η : Id **−→** T induces a functor Cat(T) **−→** Cat(C): every T-category in $\mathcal C$ may be restricted to become an internal category in $\mathcal C$.

- **É** The object-of-objects functor Cat(T) **−→** C, (*X*,*A*) **7−→** *X*, is a Grothendieck fibration, with a left adjoint; it has a right adjoint if C has binary products.
- ► Cat(T) has (not easily constructed) pullbacks and is even finitely complete when $\mathcal C$ is: that is, when, other than pullbacks, $\mathcal C$ has a terminal object. If C is complete, so is Cat(T).
- \blacktriangleright The formation of Cat(T) is functorial in T (and C); in particular, the monad morphism η : Id **−→** T induces a functor Cat(T) **−→** Cat(C): every T-category in $\mathcal C$ may be restricted to become an internal category in $\mathcal C$.

Theorem (T-Yeganeh 2021)

Cat(T) *has a (Street-Walters) comprehensive factorization system, provided that* C *has stable reflexive coequalizers that are preserved by* T*.*

(Surprisingly, no preservation of pullbacks by T is required!) : Cat(C) has such a system, provided that C has stable reflexive coequalizers (Johnstone 2002), and so does **MultiCat** (Berger-Kaufmann 2017).

- **É** The object-of-objects functor Cat(T) **−→** C, (*X*,*A*) **7−→** *X*, is a Grothendieck fibration, with a left adjoint; it has a right adjoint if C has binary products.
- ► Cat(T) has (not easily constructed) pullbacks and is even finitely complete when $\mathcal C$ is: that is, when, other than pullbacks, $\mathcal C$ has a terminal object. If C is complete, so is Cat(T).
- \blacktriangleright The formation of Cat(T) is functorial in T (and C); in particular, the monad morphism η : Id **−→** T induces a functor Cat(T) **−→** Cat(C): every T-category in $\mathcal C$ may be restricted to become an internal category in $\mathcal C$.

Theorem (T-Yeganeh 2021)

Cat(T) *has a (Street-Walters) comprehensive factorization system, provided that* C *has stable reflexive coequalizers that are preserved by* T*.*

(Surprisingly, no preservation of pullbacks by T is required!) Corollaries: Cat (C) has such a system, provided that C has stable reflexive coequalizers (Johnstone 2002), and so does **MultiCat** (Berger-Kaufmann 2017).

Definition

A T-category (X, A, d, c, i, m) is a T-order in C if (d, c) is a monic pair in C.

Definition

A T-category (X, A, d, c, i, m) is a T-order in C if (d, c) is a monic pair in C.

In that case, *i* and *m* are uniquely determined by (*X*,*A*, *d*, *c*), and their existence becomes a property of (*X*,*A*, *d*, *c*): *reflexivity* and *transitivity*. The unity and associativity laws now come for free! For a T-functor $(f_o, f) : (X, A) \longrightarrow (Y, B)$, the arrow part *f* is determined by its object part *fo*, and its existence becomes a property of *fo*: *monotonicity*.

Definition

A T-category (X, A, d, c, i, m) is a T-order in C if (d, c) is a monic pair in C.

In that case, *i* and *m* are uniquely determined by (*X*,*A*, *d*, *c*), and their existence becomes a property of (*X*,*A*, *d*, *c*): *reflexivity* and *transitivity*. The unity and associativity laws now come for free! For a T-functor $(f_o, f) : (X, A) \longrightarrow (Y, B)$, the arrow part *f* is determined by its object part *fo*, and its existence becomes a property of *fo*: *monotonicity*.

Some properties of the full subcategory Ord(T) of Cat(T):

É Ord(T) **−→** C is *topological* (= fibration + cofibration + fibres are large-complete), provided that $\mathcal C$ is complete and wellpowered.

Definition

A T-category (X, A, d, c, i, m) is a T-order in C if (d, c) is a monic pair in C.

In that case, *i* and *m* are uniquely determined by (*X*,*A*, *d*, *c*), and their existence becomes a property of (*X*,*A*, *d*, *c*): *reflexivity* and *transitivity*. The unity and associativity laws now come for free! For a T-functor $(f_o, f) : (X, A) \longrightarrow (Y, B)$, the arrow part *f* is determined by its object part *fo*, and its existence becomes a property of *fo*: *monotonicity*.

Some properties of the full subcategory Ord(T) of Cat(T):

- **É** Ord(T) **−→** C is *topological* (= fibration + cofibration + fibres are large-complete), provided that $\mathcal C$ is complete and wellpowered.
- ► If C is also cocomplete, so is Ord(T).

Definition

A T-category (X, A, d, c, i, m) is a T-order in C if (d, c) is a monic pair in C.

In that case, *i* and *m* are uniquely determined by (*X*,*A*, *d*, *c*), and their existence becomes a property of (*X*,*A*, *d*, *c*): *reflexivity* and *transitivity*. The unity and associativity laws now come for free! For a T-functor $(f_o, f) : (X, A) \longrightarrow (Y, B)$, the arrow part *f* is determined by its object part *fo*, and its existence becomes a property of *fo*: *monotonicity*.

Some properties of the full subcategory Ord(T) of Cat(T):

- **É** Ord(T) **−→** C is *topological* (= fibration + cofibration + fibres are large-complete), provided that $\mathcal C$ is complete and wellpowered.
- ► If C is also cocomplete, so is Ord(T).
- Every Eilenberg-Moore T-algebra $(X, a: TX \rightarrow X)$ gives the T-order $(X, TX, 1_{TX}, a)$; in fact:

T*-algebras are precisely those* T*-categories with domain map an identity*.

Aspirational inclusions: Algebra **⊂** Topology **⊂** Category Theory

$$
C^{T} = EM(T) \longrightarrow Ord(T) \longrightarrow Cat(T)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
C \rightarrow Ord(C) \longrightarrow Cat(C) \longrightarrow C
$$
Aspirational inclusions: Algebra **⊂** Topology **⊂** Category Theory

$$
C^{T} = EM(T) \longrightarrow Ord(T) \longrightarrow Cat(T)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
C \rightarrow Ord(C) \longrightarrow Cat(C) \longrightarrow C
$$

Role models: $T = L$ (list monad) and $T = U$ (ultrafilter monad) on **Set**

Some justifications for the bottom row to be given later!

 \triangleright Ord(T) \longrightarrow Cat(T) is reflective, provided that C is finitely complete, has a stable (strong epi, mono)-factorization system, and that T preserves strong epimorphisms (which is no restriction on T in case $C =$ **Set**, under Choice).

- \triangleright Ord(T) \longrightarrow Cat(T) is reflective, provided that C is finitely complete, has a stable (strong epi, mono)-factorization system, and that T preserves strong epimorphisms (which is no restriction on T in case $C =$ **Set**, under Choice).
- EM(T) \longmapsto Ord(T) is reflective, under the additional provision that C is complete and weakly cowellpowered (by Freyd's GAFT): Stone-Čech if $T = U$.

- \triangleright Ord(T) \longrightarrow Cat(T) is reflective, provided that C is finitely complete, has a stable (strong epi, mono)-factorization system, and that T preserves strong epimorphisms (which is no restriction on T in case $C =$ **Set**, under Choice).
- EM(T) \longmapsto Ord(T) is reflective, under the additional provision that C is complete and weakly cowellpowered (by Freyd's GAFT): Stone-Čech if $T = U$. In this case, define a T-order $X = (X, A, d, c)$ to be
	- **E** *Hausdorff* if the reflection $\beta_X : X \to \beta X$ is monic;

- \triangleright Ord(T) \longrightarrow Cat(T) is reflective, provided that C is finitely complete, has a stable (strong epi, mono)-factorization system, and that T preserves strong epimorphisms (which is no restriction on T in case $C =$ **Set**, under Choice).
- EM(T) \longmapsto Ord(T) is reflective, under the additional provision that C is complete and weakly cowellpowered (by Freyd's GAFT): Stone-Čech if $T = U$. In this case, define a T-order $X = (X, A, d, c)$ to be
	- **E** *Hausdorff* if the reflection $\beta_X : X \to \beta X$ is monic;
	- **E** *completely regular* if β_X is cartesian over C;

- \triangleright Ord(T) \longrightarrow Cat(T) is reflective, provided that C is finitely complete, has a stable (strong epi, mono)-factorization system, and that T preserves strong epimorphisms (which is no restriction on T in case $C =$ **Set**, under Choice).
- EM(T) \longmapsto Ord(T) is reflective, under the additional provision that C is complete and weakly cowellpowered (by Freyd's GAFT): Stone-Cech if $T = U$. In this case, define a T-order $X = (X, A, d, c)$ to be
	- **E** *Hausdorff* if the reflection $\beta_X : X \to \beta X$ is monic;
	- **E** *completely regular* if β_X is cartesian over C;
	- \blacktriangleright *Tychonoff* if *X* is Hausdorff and completely regular.

- \triangleright Ord(T) \longrightarrow Cat(T) is reflective, provided that C is finitely complete, has a stable (strong epi, mono)-factorization system, and that T preserves strong epimorphisms (which is no restriction on T in case $C =$ **Set**, under Choice).
- EM(T) \longmapsto Ord(T) is reflective, under the additional provision that C is complete and weakly cowellpowered (by Freyd's GAFT): Stone-Cech if $T = U$. In this case, define a T-order $X = (X, A, d, c)$ to be
	- **E** *Hausdorff* if the reflection $\beta_X : X \to \beta X$ is monic;
	- **E** *completely regular* if β_X is cartesian over C;
	- \blacktriangleright *Tychonoff* if *X* is Hausdorff and completely regular.

$$
\begin{array}{c}\n\text{Haus}(T) \\
\hline\n\text{EM}(T) & \longrightarrow \text{Tych}(T) \longrightarrow \text{CReg}(T) \longrightarrow \text{Ord}(T) \longrightarrow \text{Cat}(T)\n\end{array}
$$

The categorical meaning of CReg(T)

Theorem (Burroni 1971, slightly modified)

CReg(T) *is a fibred extension of* EM(T)*, and it is universal as such:*

F pres. cartesianess of the reflections β*^X*

The categorical meaning of CReg(T)

Theorem (Burroni 1971, slightly modified)

CReg(T) *is a fibred extension of* EM(T)*, and it is universal as such:*

F pres. cartesianess of the reflections β*^X*

Similarly for Tych(T), as a universal *mono-*fibred extension of EM(T), with *F* preserving cartesian *mono*morphisms.

An example of category theory embracing topology

Let $f: X = (X, A) \longrightarrow Y = (Y, B)$ be in Tych(T). Then:

An example of category theory embracing topology

Let $f: X = (X, A) \longrightarrow Y = (Y, B)$ be in Tych(T). Then:

discrete cofibration in Cat(T) **⇒** *perfect* (as in [T 1999])

An example of category theory embracing topology

Let $f: X = (X, A) \longrightarrow Y = (Y, B)$ be in Tych(T). Then:

discrete cofibration in Cat(T) **⇒** *perfect* (as in [T 1999])

Consequently:

Comprehensive factorization of *f* means (antiperfect, perfect)-factorization of *f*, a.k.a. the fibrewise Stone-Cech compactification of ˇ *f*.

How to enrich multicategories?

How to enrich multicategories?

$$
LX \times X \xrightarrow{\text{hom}_A} \text{Set}
$$

hom*^A* /Set *^a* : ^L*X***→7** *^X*

1 \longrightarrow hom_{*A*}($\eta_X(x)$, x) *X*

How to enrich multicategories?

- **É** (V, **⊗**, k) cocomplete symmetric monoidal-closed category,
- \blacktriangleright T = (T, η , μ) monad on **Set** equipped with a *flat lax extension* \hat{T} of T as in

that preserves $[(-)^{\circ}$: Mat($\mathcal{V})^{\mathrm{op}}$ → Mat($\mathcal{V})$ and] whiskering by maps; explicitly:

- **É** (V, **⊗**, k) cocomplete symmetric monoidal-closed category,
- \blacktriangleright T = (T, η , μ) monad on **Set** equipped with a *flat lax extension* T of T as in

that preserves $[(-)^{\circ}$: Mat($\mathcal{V})^{\mathrm{op}}$ → Mat($\mathcal{V})$ and] whiskering by maps; explicitly: \blacktriangleright \hat{T} is a lax 2-functor with $\hat{T}(1)$ ^o $(X^{\circ}) = 1^{\circ}$ $\int_{\text{T}X}^{\text{o}} \text{[and } \hat{\text{T}}(r^{\text{o}}) = (\hat{\text{T}}r)^{\text{o}} \text{ for } r : X \rightarrow Y;$

- **É** (V, **⊗**, k) cocomplete symmetric monoidal-closed category,
- \blacktriangleright T = (T, η , μ) monad on **Set** equipped with a *flat lax extension* T of T as in

that preserves $[(-)^{\circ}$: Mat($\mathcal{V})^{\mathrm{op}}$ → Mat($\mathcal{V})$ and] whiskering by maps; explicitly:

- \blacktriangleright \hat{T} is a lax 2-functor with $\hat{T}(1)$ ^o $(X^{\circ}) = 1^{\circ}$ $\int_{\text{T}X}^{\text{o}} \text{[and } \hat{\text{T}}(r^{\text{o}}) = (\hat{\text{T}}r)^{\text{o}} \text{ for } r : X \rightarrow Y;$
- \blacktriangleright $\hat{T}(s \cdot t_0) \cong \hat{T}s \cdot (Tf)$ for $f : X \rightarrow Y$ and $s : Y \rightarrow Z$;

- **É** (V, **⊗**, k) cocomplete symmetric monoidal-closed category,
- \blacktriangleright T = (T, η , μ) monad on **Set** equipped with a *flat lax extension* \hat{T} of T as in

that preserves $[(-)^{\circ}$: Mat($\mathcal{V})^{\mathrm{op}}$ → Mat($\mathcal{V})$ and] whiskering by maps; explicitly:

 \blacktriangleright \hat{T} is a lax 2-functor with $\hat{T}(1)$ ^o $(X^{\circ}) = 1^{\circ}$ $\int_{\text{T}X}^{\text{o}} \text{[and } \hat{\text{T}}(r^{\text{o}}) = (\hat{\text{T}}r)^{\text{o}} \text{ for } r : X \rightarrow Y;$

$$
\blacktriangleright \quad \hat{T}(s \cdot t_0) \cong \hat{T} s \cdot (Tf) \quad \text{for } t : X \to Y \text{ and } s : Y \to Z;
$$

 \triangleright \uparrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow are oplax natural transformations,

- **É** (V, **⊗**, k) cocomplete symmetric monoidal-closed category,
- \blacktriangleright T = (T, η , μ) monad on **Set** equipped with a *flat lax extension* \hat{T} of T as in

that preserves $[(-)^{\circ}$: Mat($\mathcal{V})^{\mathrm{op}}$ → Mat($\mathcal{V})$ and] whiskering by maps; explicitly:

 \blacktriangleright \hat{T} is a lax 2-functor with $\hat{T}(1)$ ^o $(X^{\circ}) = 1^{\circ}$ $\int_{\text{T}X}^{\text{o}} \text{[and } \hat{\text{T}}(r^{\text{o}}) = (\hat{\text{T}}r)^{\text{o}} \text{ for } r : X \rightarrow Y;$

$$
\blacktriangleright \quad \hat{T}(s \cdot t_0) \cong \hat{T} s \cdot (Tf) \text{, for } f: X \to Y \text{ and } s: Y \to Z;
$$

► $η$ ∘:Id_{Mat(V)} → \hat{T} , $μ$ °:T \hat{T} → \hat{T} are oplax natural transformations,

subject to (many) coherence and compatibility conditions; here Mat(V) has

- **É** (V, **⊗**, k) cocomplete symmetric monoidal-closed category,
- \blacktriangleright T = (T, η , μ) monad on **Set** equipped with a *flat lax extension* \hat{T} of T as in

that preserves $[(-)^{\circ}$: Mat($\mathcal{V})^{\mathrm{op}}$ → Mat($\mathcal{V})$ and] whiskering by maps; explicitly:

 \blacktriangleright \hat{T} is a lax 2-functor with $\hat{T}(1)$ ^o $(X^{\circ}) = 1^{\circ}$ $\int_{\text{T}X}^{\text{o}} \text{[and } \hat{\text{T}}(r^{\text{o}}) = (\hat{\text{T}}r)^{\text{o}} \text{ for } r : X \rightarrow Y;$

$$
\blacktriangleright \quad \hat{T}(s \cdot t_0) \cong \hat{T} s \cdot (Tf) \text{ for } f: X \to Y \text{ and } s: Y \to Z;
$$

► $η$ ∘:Id_{Mat(V)} → \hat{T} , $μ$ °:T \hat{T} → \hat{T} are oplax natural transformations,

subject to (many) coherence and compatibility conditions; here Mat(V) has objects = sets; functors $X \times Y \rightarrow V$; natural transfs.; horizontal composition:

$$
(s\cdot r)(x,z)=\coprod_{y\in Y}r(x,y)\otimes s(y,z).
$$

$$
(T, V) \text{-Cat} \quad (X, a: TX \to X) \quad k \to a(\eta_X(x), x) \quad (x, z \in X)
$$
\n
$$
\hat{T}a(\mathcal{X}, \overline{y}) \otimes a(\overline{y}, z) \to a(\mu_X(\mathcal{X}), z) \quad (\mathcal{X} \in TTX, \overline{y} \in TX)
$$
\n
$$
(X, a) \xrightarrow{f} (Y, b) \quad a(\overline{x}, y) \to b(Tf(\overline{x}), f(y)) \quad (\overline{x} \in TX, y \in X)
$$

subject to an extensive array of coherence and compatibility conditions.

subject to an extensive array of coherence and compatibility conditions.

 (Id, \mathcal{V}) -**Cat** = \mathcal{V} -**Cat**

subject to an extensive array of coherence and compatibility conditions.

 (Id, \mathcal{V}) -**Cat** = \mathcal{V} -**Cat** (L, V) -Cat = V -MultiCat.

where
$$
(\hat{L}r)(\overline{x}, \overline{y}) = r(x_1, y_1) \otimes ... \otimes r(x_n, y_n)
$$

if length(\overline{x}) = n = length(\overline{y}); = initial obj. 0 else.

subject to an extensive array of coherence and compatibility conditions.

(Id, V)-**Cat** = V-**Cat** (L, V) -Cat = V-MultiCat, where $(\hat{L}r)(\overline{x}, \overline{y}) = r(x_1, y_1) \otimes ... \otimes r(x_n, y_n)$ if length(\bar{x}) = n = length(\bar{y}); = initial obj. 0 else. What about $T = U$, even for $V =$ **Set**?

Making things easy again: let V be "thin"!

V unital and (for convenience) commutative *quantale*

 $=$ a complete lattice with a commutative monoid structure, $V = (V, \otimes, k)$, s.th.

$$
u\otimes \bigvee_{i\in I} v_i=\bigvee_{i\in I} u\otimes v_i
$$

- = a small, thin, cocomplete symmetric monoidal-closed category
- = a commutative monoid in the symmetric monoidal-closed category **Sup**

Some examples:

Making things easy again: let V be "thin"!

V unital and (for convenience) commutative *quantale*

 $=$ a complete lattice with a commutative monoid structure, $V = (V, \otimes, k)$, s.th.

$$
u\otimes \bigvee_{i\in I} v_i=\bigvee_{i\in I} u\otimes v_i
$$

= a small, thin, cocomplete symmetric monoidal-closed category

= a commutative monoid in the symmetric monoidal-closed category **Sup**

Some examples:

$$
\blacktriangleright \ \ V = 2 \text{ with } u \otimes v = u \& v, \quad k = \text{true} \tag{Boolean 2-chain}
$$

Making things easy again: let $\mathcal V$ be "thin"!

V unital and (for convenience) commutative *quantale*

 $=$ a complete lattice with a commutative monoid structure, $V = (V, \otimes, k)$, s.th.

$$
u\otimes \bigvee_{i\in I} v_i=\bigvee_{i\in I} u\otimes v_i
$$

= a small, thin, cocomplete symmetric monoidal-closed category

= a commutative monoid in the symmetric monoidal-closed category **Sup**

Some examples:

► $V = 2$ with $u \otimes v = u \& v$, $k = true$ (Boolean 2-chain) **►** $V = [0, \infty]$ with $u \otimes v = u + v$, $k = 0$ (Lawvere quantale)

Making things easy again: let $\mathcal V$ be "thin"!

V unital and (for convenience) commutative *quantale*

 $=$ a complete lattice with a commutative monoid structure, $V = (V, \otimes, k)$, s.th.

$$
u\otimes \bigvee_{i\in I} v_i=\bigvee_{i\in I} u\otimes v_i
$$

= a small, thin, cocomplete symmetric monoidal-closed category

= a commutative monoid in the symmetric monoidal-closed category **Sup**

Some examples:

- **►** $V = 2$ with $u \otimes v = u \& v$, $k = true$ (Boolean 2-chain)
- **E** $V = [0, \infty]$ with $u \otimes v = u + v$, $k = 0$ (Lawvere quantale)
- **►** V any frame with $u \otimes v = u \wedge v$, $k = T$ (a cartesian quantale)

Making things easy again: let $\mathcal V$ be "thin"!

V unital and (for convenience) commutative *quantale*

 $=$ a complete lattice with a commutative monoid structure, $V = (V, \otimes, k)$, s.th.

$$
u\otimes \bigvee_{i\in I} v_i=\bigvee_{i\in I} u\otimes v_i
$$

= a small, thin, cocomplete symmetric monoidal-closed category

= a commutative monoid in the symmetric monoidal-closed category **Sup**

Some examples:

- **►** $V = 2$ with $u \otimes v = u \& v$, $k = true$ (Boolean 2-chain)
- **►** $V = [0, \infty]$ with $u \otimes v = u + v$, $k = 0$ (Lawvere quantale)
- **►** V any frame with $u \otimes v = u \wedge v$, $k = T$ (a cartesian quantale)
- \blacktriangleright $V = 2^M$, for any commutative monoid M (the free quantale over M), with $A \otimes B = \{ \alpha \cdot \beta \mid \alpha \in A, \beta \in B \}$, $k = \{ \varepsilon \}$, ε neutral in M

Writing V-**Rel** for Mat(V), our **Set**-monad $T = (T, \eta, \mu)$ comes with a lax 2-functor Tˆ : V-**Rel →** V-**Rel**, which extends T along (**−**)**◦** : **Set →** V-**Rel** [and commutes with the involution (**−**) **◦** of V-**Rel**]; it preserves whiskering with **Set**-maps and makes η**◦** and μ**◦** oplax.

Writing V-**Rel** for Mat(V), our **Set**-monad $T = (T, \eta, \mu)$ comes with a lax 2-functor Tˆ : V-**Rel →** V-**Rel**, which extends T along (**−**)**◦** : **Set →** V-**Rel** [and commutes with the involution (**−**) **◦** of V-**Rel**]; it preserves whiskering with **Set**-maps and makes η**◦** and μ**◦** oplax.

Main simplifying effect: As 2-cells are given by order, all coherence and compatibility conditions will be satisfied for free!

Writing V-**Rel** for Mat(V), our **Set**-monad $T = (T, \eta, \mu)$ comes with a lax 2-functor Tˆ : V-**Rel →** V-**Rel**, which extends T along (**−**)**◦** : **Set →** V-**Rel** [and commutes with the involution (**−**) **◦** of V-**Rel**]; it preserves whiskering with **Set**-maps and makes η**◦** and μ**◦** oplax.

Main simplifying effect: As 2-cells are given by order, all coherence and compatibility conditions will be satisfied for free!

Possible relaxation of the above conditions, by *foregoing flatness* of the lax extension (Seal 2004, adopted in *Monoidal Topology* 2014):

Writing V-**Rel** for Mat(V), our **Set**-monad $T = (T, \eta, \mu)$ comes with a lax 2-functor Tˆ : V-**Rel →** V-**Rel**, which extends T along (**−**)**◦** : **Set →** V-**Rel** [and commutes with the involution (**−**) **◦** of V-**Rel**]; it preserves whiskering with **Set**-maps and makes η**◦** and μ**◦** oplax.

Main simplifying effect: As 2-cells are given by order, all coherence and compatibility conditions will be satisfied for free!

Possible relaxation of the above conditions, by *foregoing flatness* of the lax extension (Seal 2004, adopted in *Monoidal Topology* 2014):

 \triangleright \hat{T} is a lax 2-functor, coinciding with T on objects;

Writing V-**Rel** for Mat(V), our **Set**-monad $T = (T, \eta, \mu)$ comes with a lax 2-functor Tˆ : V-**Rel →** V-**Rel**, which extends T along (**−**)**◦** : **Set →** V-**Rel** [and commutes with the involution (**−**) **◦** of V-**Rel**]; it preserves whiskering with **Set**-maps and makes η**◦** and μ**◦** oplax.

Main simplifying effect: As 2-cells are given by order, all coherence and compatibility conditions will be satisfied for free!

Possible relaxation of the above conditions, by *foregoing flatness* of the lax extension (Seal 2004, adopted in *Monoidal Topology* 2014):

- \triangleright \hat{T} is a lax 2-functor, coinciding with T on objects;
- ► (Tf) _∘ $\leq \hat{T}(f)$ [°] and (Tf) [°] $\leq \hat{T}(f)$ [°], for every map *f* of sets;
How do lax monad extensions fare now?

Writing V-**Rel** for Mat(V), our **Set**-monad $T = (T, \eta, \mu)$ comes with a lax 2-functor Tˆ : V-**Rel →** V-**Rel**, which extends T along (**−**)**◦** : **Set →** V-**Rel** [and commutes with the involution (**−**) **◦** of V-**Rel**]; it preserves whiskering with **Set**-maps and makes η**◦** and μ**◦** oplax.

Main simplifying effect: As 2-cells are given by order, all coherence and compatibility conditions will be satisfied for free!

Possible relaxation of the above conditions, by *foregoing flatness* of the lax extension (Seal 2004, adopted in *Monoidal Topology* 2014):

- \triangleright \hat{T} is a lax 2-functor, coinciding with T on objects;
- ► (Tf) _∘ $\leq \hat{T}(f)$ [°] and (Tf) [°] $\leq \hat{T}(f)$ [°], for every map *f* of sets;
- **►** η_{\circ} : Id_{V-Rel} → \hat{T} and μ_{\circ} : $\hat{T}\hat{T}$ → \hat{T} are oplax natural transformations.

How do lax monad extensions fare now?

Writing V-**Rel** for Mat(V), our **Set**-monad $T = (T, \eta, \mu)$ comes with a lax 2-functor Tˆ : V-**Rel →** V-**Rel**, which extends T along (**−**)**◦** : **Set →** V-**Rel** [and commutes with the involution (**−**) **◦** of V-**Rel**]; it preserves whiskering with **Set**-maps and makes η**◦** and μ**◦** oplax.

Main simplifying effect: As 2-cells are given by order, all coherence and compatibility conditions will be satisfied for free!

Possible relaxation of the above conditions, by *foregoing flatness* of the lax extension (Seal 2004, adopted in *Monoidal Topology* 2014):

- \triangleright \hat{T} is a lax 2-functor, coinciding with T on objects;
- ► (Tf) _∘ $\leq \hat{T}(f)$ [°] and (Tf) [°] $\leq \hat{T}(f)$ [°], for every map *f* of sets;
- **►** η_{\circ} : Id_{V-Rel} → \hat{T} and μ_{\circ} : $\hat{T}\hat{T}$ → \hat{T} are oplax natural transformations. These conditions *imply* the whiskering conditions

$$
\hat{T}(s \cdot f_{\circ}) = (\hat{T}s) \cdot (Tf)_{\circ} \text{ and } \hat{T}(g^{\circ} \cdot r) = (Tg)^{\circ} \cdot (\hat{T}r).
$$

(T,V)-categories

 $(X, z \in X)$ \mapsto $(X, a : T X \rightarrow X)$ $k \le a(\eta_X(x), x)$ (*x*, *z* \in *X*) $\hat{T}a(\mathcal{X}, \overline{y}) \otimes a(\overline{y}, z) \le a(\mu_X(\mathcal{X}), z) \quad (\mathcal{X} \in TTX, \overline{y} \in TX)$ $(X, a) \xrightarrow{f} (Y, b)$ $a(\overline{x}, y) \leq b(Tf(\overline{x}), f(y))$ $(\overline{x} \in TX, y \in Y)$

(T,V)-categories

 $(X, z \in X)$ \mapsto $(X, a : T X \rightarrow X)$ $k \le a(\eta_X(x), x)$ (*x*, *z* \in *X*) $\hat{T}a(\mathcal{X}, \overline{y}) \otimes a(\overline{y}, z) \le a(\mu_X(\mathcal{X}), z) \quad (\mathcal{X} \in TTX, \overline{y} \in TX)$ $(X, a) \xrightarrow{f} (Y, b)$ $a(\overline{x}, y) \leq b(Tf(\overline{x}), f(y))$ $(\overline{x} \in TX, y \in Y)$

(T,V)-categories

 $(X, z \in X)$ \in $(X, a: TX \rightarrow X)$ $k \le a(\eta_X(x), x)$ $(X, z \in X)$ $K \le a(\eta_X(x), x)$
 $\hat{T}a(\mathcal{X}, \overline{y}) \otimes a(\overline{y}, z) \le a(\mu_X(\mathcal{X}), z)$ ($\mathcal{X} \in TTX, \overline{y} \in TX$) $(X, a) \xrightarrow{f} (Y, b)$ $a(\overline{x}, y) \leq b(Tf(\overline{x}), f(y))$ $(\overline{x} \in TX, y \in Y)$ $TTX \xrightarrow{\hat{T}a} TX \xleftarrow{(T_X)_\circ} X$ $TX \xrightarrow{(Tf)_\circ} TY$ $\begin{array}{ccc} (\mu_X)_\circ \\ \downarrow \end{array}$ \geq $a \begin{array}{ccc} \downarrow \geq & \nearrow \\ \downarrow \end{array}$ ŗ ľ *a* **≤** *b* ľ ľ T*X ^a* /*X X ^f***◦** /*Y* Equivalently: η **◦** *X* **≤** *a a* **◦** *a* **≤** *a* (Kleisli convolution) $a \leq f^{\circ} \cdot b \cdot (\mathsf{T} f) \cdot \mathsf{S}$ Kleisli convolution for $r : T X \leftrightarrow Y$, $s : T Y \leftrightarrow Z$: $s \circ r := s \cdot \hat{T} r \cdot m_X^{\circ} : T X \leftrightarrow Z$

É (T,V)-**Cat −→ Set** is topological and, hence, has both adjoints;

- **É** (T,V)-**Cat −→ Set** is topological and, hence, has both adjoints;
- **É** (T,V)-**Cat** is complete and cocomplete, with (co)limits of diagrams formed by (co)cartesian lifting of the (co)limits of the underlying **Set**-diagrams;

- **É** (T,V)-**Cat −→ Set** is topological and, hence, has both adjoints;
- **►** (T, V)-**Cat** is complete and cocomplete, with (co)limits of diagrams formed by (co)cartesian lifting of the (co)limits of the underlying **Set**-diagrams;
- **É** the formation of (T,V)-**Cat** is functorial in T (contra-) and V (co-variantly);

- **É** (T,V)-**Cat −→ Set** is topological and, hence, has both adjoints;
- **►** (T, V)-**Cat** is complete and cocomplete, with (co)limits of diagrams formed by (co)cartesian lifting of the (co)limits of the underlying **Set**-diagrams;
- ► the formation of (T, V)-**Cat** is functorial in T (contra-) and V (co-variantly);
- **É** (Lowen-Vroegrijk 2008, Hofmann 2014) For every T, laxly extended to V-**Rel**, one can find a monad Π (encoding both, T and V) , laxly extended to **Rel** = 2-**Rel**, such that (T, V) -**Cat** \cong $(\Pi, 2)$ -**Cat**.

- **É** (T,V)-**Cat −→ Set** is topological and, hence, has both adjoints;
- **►** (T, V)-**Cat** is complete and cocomplete, with (co)limits of diagrams formed by (co)cartesian lifting of the (co)limits of the underlying **Set**-diagrams;
- ► the formation of (T, V)-**Cat** is functorial in T (contra-) and V (co-variantly);
- **É** (Lowen-Vroegrijk 2008, Hofmann 2014) For every T, laxly extended to V-**Rel**, one can find a monad Π (encoding both, T and V) , laxly extended to **Rel** = 2-**Rel**, such that (T, V) -**Cat** \cong $(\Pi, 2)$ -**Cat**.

Theorem (Burroni 1971)

Let $C =$ **Set** and T be laxly extended to **Rel** *á* la Barr. Then: $(T, 2)$ -Cat \cong Ord(T).

Barr 1971: Given
$$
r = (X \xleftarrow{d} R \xrightarrow{c} Y)
$$
, put $\hat{T}r = (TX \xleftarrow{Td} TR \xrightarrow{Tc} TY)$.

- **É** (T,V)-**Cat −→ Set** is topological and, hence, has both adjoints;
- **►** (T, V)-**Cat** is complete and cocomplete, with (co)limits of diagrams formed by (co)cartesian lifting of the (co)limits of the underlying **Set**-diagrams;
- ► the formation of (T, V)-**Cat** is functorial in T (contra-) and V (co-variantly);
- **É** (Lowen-Vroegrijk 2008, Hofmann 2014) For every T, laxly extended to V-**Rel**, one can find a monad Π (encoding both, T and V) , laxly extended to **Rel** = 2-**Rel**, such that (T, V) -**Cat** \cong $(\Pi, 2)$ -**Cat**.

Theorem (Burroni 1971)

Let $C =$ **Set** and T be laxly extended to **Rel** *á* la Barr. Then: $(T, 2)$ -Cat \cong Ord(T).

Barr 1971: Given
$$
r = (X \xleftarrow{d} R \xrightarrow{c} Y)
$$
, put $\hat{T}r = (TX \xleftarrow{Td} TR \xrightarrow{Tc} TY)$.

But the Theorem may *not* be applied to Π above – Π is not extended a la Barr! ´

T Reflexivity Transitivity (T, 2)-**Cat**

Id *x* **≤** *x x* **≤** *y* & *y* **≤** *z* **⇒** *x* **≤** *z* **Ord**

- T Reflexivity Transitivity (T, 2)-**Cat**
- Id *x* **≤** *x x* **≤** *y* & *y* **≤** *z* **⇒** *x* **≤** *z* **Ord**
- L (*x*) **≤** *x* X **≤** *y* & *y* **≤** *z* **⇒** μ*^X* (X) **≤** *z* **MultiOrd**

- T Reflexivity Transitivity (T, 2)-**Cat**
- Id *x* **≤** *x x* **≤** *y* & *y* **≤** *z* **⇒** *x* **≤** *z* **Ord**
- L (*x*) **≤** *x* X **≤** *y* & *y* **≤** *z* **⇒** μ*^X* (X) **≤** *z* **MultiOrd**
- U $\dot{x} \rightarrow x$ $\mathcal{X} \rightarrow \overline{y} \& \overline{y} \rightarrow z \Rightarrow \mu_X(\mathcal{X}) \rightarrow z$ Top (Manes 1967 \rightarrow Barr 1970)

- T Reflexivity Transitivity (T, 2)-**Cat**
- Id *x* **≤** *x x* **≤** *y* & *y* **≤** *z* **⇒** *x* **≤** *z* **Ord**
- L (*x*) **≤** *x* X **≤** *y* & *y* **≤** *z* **⇒** μ*^X* (X) **≤** *z* **MultiOrd**
- U $\dot{x} \rightarrow x$ $\mathcal{X} \rightarrow \overline{y} \& \overline{y} \rightarrow z \Rightarrow \mu_X(\mathcal{X}) \rightarrow z$ **Top** (Manes 1967 \rightarrow Barr 1970)

Trading 2 for $[0, \infty]$ – also envisioned by Hausdorff 1914

- T Reflexivity Transitivity = ∇-Inequality (T,[0, ∞])-**Cat**
- Id 0 ≥ *d*(*x*, *x*) *d*(*x*, *y*) + *d*(*y*, *z*) ≥ *d*(*x*, *z*) **Met** (Lawvere 1973)

Trading 2 for $[0, \infty]$ – also envisioned by Hausdorff 1914

- T Reflexivity Transitivity = ∇-Inequality (T,[0, ∞])-**Cat**
- Id 0 ≥ *d*(*x*, *x*) *d*(*x*, *y*) + *d*(*y*, *z*) ≥ *d*(*x*, *z*) **Met** (Lawvere 1973)
- -
- L 0 **≥** *d*((*x*), *x*) *d*(X , *y*) + *d*(*y*, *z*) **≥** *d*(μ*^X* (X), *z*) **MultiMet**

$$
d(\mathcal{X},\overline{y}):=\hat{L}d(\mathcal{X},\overline{y})=\sum_i d(\overline{x}_i,y_i)
$$

Trading 2 for $[0, \infty]$ – also envisioned by Hausdorff 1914

- T Reflexivity Transitivity = ∇-Inequality (T,[0, ∞])-**Cat**
- Id 0 ≥ *d*(*x*, *x*) *d*(*x*, *y*) + *d*(*y*, *z*) ≥ *d*(*x*, *z*) **Met** (Lawvere 1973)
- L 0 **≥** *d*((*x*), *x*) *d*(X , *y*) + *d*(*y*, *z*) **≥** *d*(μ*^X* (X), *z*) **MultiMet**

$$
d(\mathcal{X},\overline{y}):=\hat{L}d(\mathcal{X},\overline{y})=\sum_i d(\overline{x}_i,y_i)
$$

U 0 **≥** *d*(*x*˙ , *x*) *d*(X , *y*) + *d*(*y*, *z*) **≥** *d*(μ*^X* (X), *z*) **App** (Lowen 1989 **→**

$$
d(\mathcal{X}, \overline{y}) := \hat{U}d(\mathcal{X}, \overline{y}) = \sup_{\mathcal{A} \in \mathcal{X}, B \in \overline{y}} \inf_{\overline{x} \in \mathcal{A}, y \in B} d(\overline{x}, y) \longrightarrow \text{Clementino-Hofmann 2003}
$$

Extending U to quantales other than 2 or $[0, \infty]$, and beyond

Theorem (Clementino-T 2003)

The ultrafilter monad may be laxly extended (a la Barr) to ´ V*-***Rel** *when the underlying lattice of the quantale* V *is constructively completely distributive.*

Extending U to quantales other than 2 or $[0, \infty]$, and beyond

Theorem (Clementino-T 2003)

The ultrafilter monad may be laxly extended (a la Barr) to ´ V*-***Rel** *when the underlying lattice of the quantale* V *is constructively completely distributive.*

For $r : X \rightarrow Y$ define $\hat{U}r : U X \rightarrow TY$ by

$$
\hat{\mathrm{U}}r(\overline{x},\overline{y})=\bigwedge_{A\in\overline{x},B\in\overline{y}}\bigvee_{x\in A,y\in B}r(x,y).
$$

Extending U to quantales other than 2 or $[0, \infty]$, and beyond

Theorem (Clementino-T 2003)

The ultrafilter monad may be laxly extended (a la Barr) to ´ V*-***Rel** *when the underlying lattice of the quantale* V *is constructively completely distributive.*

For $r : X \rightarrow Y$ define $\hat{U}r : U X \rightarrow TY$ by

$$
\hat{\mathrm{U}}r(\overline{x},\overline{y})=\bigwedge_{A\in\overline{x},B\in\overline{y}}\bigvee_{x\in A,y\in B}r(x,y).
$$

This theorem may be generalized from such quantales to those complete and cocomplete symmetric monoidal-closed categories V in which every object is a coproduct of connected objects, in particular to $V =$ **Set**. This leads to the category

(U,**Set**)-**Cat** = **UltraCat**enriched

of Clementino-T 2003, which I conjecture to coincide with **UltraCat**_{internal}.

A fundamental adjunction

The **Set**-monad T with its lax extension \hat{T} to V-**Rel** may be considered as a (KZ-)monad on V-**Cat** (T 2009): $T(X, a_0) = (TX, \hat{T}a_0)$

A fundamental adjunction

The **Set**-monad T with its lax extension \hat{T} to V-**Rel** may be considered as a (KZ-)monad on V-**Cat** (T 2009): $T(X, a_0) = (TX, \hat{T}a_0)$

If the Kleisli convolution is associative, then (Clementino-Hofmann 2009):

$$
(X, a_0: X \mapsto X, \xi: TX \to X) \longmapsto (X, a_0 \cdot \xi_{\circ}: TX \mapsto X)
$$

$$
(TX, \hat{T}a \cdot \mu_{X'}^{\circ} \mu_X : TTX \to TX) \longleftarrow (X, a : TX \to X)
$$

=: $\hat{a} : TX \to TX$

A fundamental adjunction

The **Set**-monad T with its lax extension \hat{T} to V-**Rel** may be considered as a (KZ-)monad on V-**Cat** (T 2009): $T(X, a_0) = (TX, \hat{T}a_0)$

If the Kleisli convolution is associative, then (Clementino-Hofmann 2009):

$$
(X, a_0: X \to X, \xi: TX \to X)
$$
\n
$$
(V-Cat)^T
$$
\n
$$
(V-Cat)^T
$$
\n
$$
(T, V)-Cat
$$
\n
$$
(TX, \hat{T}a \cdot \mu_{X'}^{\circ}, \mu_X: TTX \to TX) \longleftarrow (X, a: TX \to X)
$$
\n
$$
=:\hat{a}: TX \to TX
$$

In particular (Hofmann 2007): If the V-category (V, hom) has a *good* T-structure ξ, then *K* makes V a (T,V)-category, enables dualization, Yoneda embedding, ...

$M \dashv K$ is a factor of the Eilenberg-Moore adjunction

$M \nightharpoonup K$ is a factor of the Eilenberg-Moore adjunction

M orders U*X* by (\overline{x} ≤ \overline{y} \Leftrightarrow ∀*A* ∈ \overline{x} closed in *X* : *A* ∈ \overline{y}); *A*° = Alexandroff topol.

The greater picture (when T is flat and V integral)

The greater picture (when $T = U$ and $V = 2$)

Note:

So far, we are able to justify the name " π_0 " only when $X \in \text{Top}$ is normal; that is: when *X* is normal, β*X* is homeomorphic to the space of connected components wrt the order that is imposed on U*X* by the functor *M*.

Replacing inequalities by equalities: T_1 -separation, core compactness

 $(X, a: TX \rightarrow X)$ $(\mathsf{R}) \mathbf{1}_X \leq a \cdot (\eta_X)$ **。**
 $\mathsf{T}_1: \mathbf{1}_X \geq a \cdot (\eta_X)$ **。**

$$
T = U, V = 2: (x \leftrightarrow y \Rightarrow x = y)
$$

Replacing inequalities by equalities: T_1 -separation, core compactness

 $(X, a: TX \rightarrow X)$ $(T_1: 1_X \ge a \cdot (n_X)$ **•** $T_1: 1_X \ge a \cdot (n_X)$ **•** $T = U, V = 2: (x \rightarrow y \Rightarrow x = y)$ (T) $a \cdot \hat{T}$ $a \le a \cdot (m_X)$ **。 core compact:** $a \cdot \hat{T}$ $a \ge a \cdot (\mu_X)$ **。** Pisani 1999: $T = U$, $V = 2$: $\mu_X(\mathcal{X}) \rightarrow z \rightarrow \exists \overline{y} (\mathcal{X} \rightarrow \overline{y} \rightarrow z)$ **⇐⇒** ∀*x* **∈** *B* **⊆** *X* open ∃*A* **⊆** *X* open (*x* **∈** *A B*) **⇐⇒** *X* exponentiable in **Top**

Replacing inequalities by equalities: T_1 -separation, core compactness

 $(X, a: TX \rightarrow X)$ $(\mathsf{R}) \, 1_X \leq a \cdot (n_X)$ **T**₁ : $1_X \geq a \cdot (n_X)$ $T = U, V = 2: (x \rightarrow y \Rightarrow x = y)$ (T) $a \cdot \hat{T}$ $a \le a \cdot (m_X)$ **。 core compact:** $a \cdot \hat{T}$ $a \ge a \cdot (\mu_X)$ **。** Pisani 1999: $T = U$, $V = 2$: $\mu_X(\mathcal{X}) \rightarrow z \rightarrow \exists \overline{V} (\mathcal{X} \rightarrow \overline{V} \rightarrow z)$ **⇐⇒** ∀*x* **∈** *B* **⊆** *X* open ∃*A* **⊆** *X* open (*x* **∈** *A B*) **⇐⇒** *X* exponentiable in **Top**

Note: If we express (R) and (T) equivalently as η° χ ² \times *a* and *a* \circ *a* \leq *a* resp., and "strictify" these inequalities, *different* properties will emerge: discrete and no condition at all!

Replacing inequalities by equalities: proper maps, open maps

 $f: (X, a) \rightarrow (Y, b)$ *f***∘** $a \leq b \cdot (Tf)$ **◦ proper:** $f_{\text{o}} \cdot a \geq b \cdot (Tf)$ **◦** $\setminus \setminus$ *x***∈***f* **[−]**1*y* $a(\overline{x}, x) \ge b(\mathsf{T}f(\overline{x}), y))$ Manes 1974: $T = U, V = 2:$ \overline{X} *x* \overline{X} $f[\overline{x}] \longrightarrow y$

Replacing inequalities by equalities: proper maps, open maps

 $f: (X, a) \rightarrow (Y, b)$ *f***∘** $a \leq b \cdot (Tf)$ **◦ proper:** $f_{\text{o}} \cdot a \geq b \cdot (Tf)$ **◦** $\setminus \setminus$ *x***∈***f* **[−]**1*y* $a(\overline{x}, x) \ge b(\mathsf{T}f(\overline{x}), y))$ Manes 1974: $T = U, V = 2:$ \overline{X} *x* \overline{X} $f[\overline{x}] \longrightarrow y$ $a \cdot (Tf)^\circ \leq f^\circ \cdot b$ open: $a \cdot (Tf)^\circ \geq f^\circ \cdot b$ $\qquad \bigvee$ *x***∈**(T*f*) **[−]**1*y* $a(\overline{x}, x) \ge b(\overline{y}, f(x))$ Möbus 1981: $T = U, V = 2:$ \overline{X} *x x* $\overline{y} \longrightarrow f(x)$

Some stability properties for proper and open maps

- ▶ Isomorphisms are proper/open
- ▶ Proper/open maps are closed under composition
- **►** $q \cdot f$ proper/open, q injective \Rightarrow f proper/open
- **►** $q \cdot f$ proper/open, *f* surjective \Rightarrow *q* proper/open
- **É** *f* proper/open =**⇒** every pullback of *f* is proper/open

Some stability properties for proper and open maps

- ▶ Isomorphisms are proper/open
- ▶ Proper/open maps are closed under composition
- **►** $q \cdot f$ proper/open, q injective \Rightarrow f proper/open
- **►** $q \cdot f$ proper/open, *f* surjective \Rightarrow *g* proper/open
- **É** *f* proper/open =**⇒** every pullback of *f* is proper/open

Theorem (Tychonoff-Frolík-Bourbaki Theorem)

Let V be completely distributive. Then:

$$
f_i: X_i \to Y_i \quad \text{proper } (i \in I) \Longrightarrow \prod_{i \in I} f_i: \prod_{i \in I} X_i \to \prod_{i \in I} Y_i \quad \text{proper}
$$

Some stability properties for proper and open maps

- ▶ Isomorphisms are proper/open
- ▶ Proper/open maps are closed under composition
- **►** $q \cdot f$ proper/open, q injective \Rightarrow f proper/open
- **►** $q \cdot f$ proper/open, *f* surjective \Rightarrow *q* proper/open
- **É** *f* proper/open =**⇒** every pullback of *f* is proper/open

Theorem (Tychonoff-Frolík-Bourbaki Theorem)

Let V be completely distributive. Then:

$$
f_i: X_i \to Y_i \quad proper \ (i \in I) \Longrightarrow \prod_{i \in I} f_i: \prod_{i \in I} X_i \to \prod_{i \in I} Y_i \quad proper
$$

Note that, by contrast (*not* by categorical dualization!), one has:

$$
f_i: X_i \to Y_i \quad \text{open } (i \in I) \Longrightarrow \coprod_{i \in I} f_i: \coprod_{i \in I} X_i \to \coprod_{i \in I} Y_i \quad \text{open}
$$
Hausdorff separation and compactness as adjoints

Under light assumptions on V (excluding 2^{M} , but none of the other examples):

 (X, a) Hausdorff: $a \cdot a^{\circ} \leq 1_X$ $\perp < a(\overline{z}, x) \otimes a(\overline{z}, y) \Rightarrow x = y$

 (X, a) compact: $1_{TX} \le a^{\circ} \cdot a \quad \forall \ \overline{z} \in TX : k \le \bigvee_{x \in X} a(\overline{z}, x)$

Hausdorff separation and compactness as adjoints

Under light assumptions on V (excluding 2^{M} , but none of the other examples):

- (X, a) Hausdorff: $a \cdot a^{\circ} \leq 1_X$ $\perp < a(\overline{z}, x) \otimes a(\overline{z}, y) \Rightarrow x = y$
- (X, a) compact: $1_{TX} \le a^{\circ} \cdot a \quad \forall \ \overline{z} \in TX : k \le \bigvee_{x \in X} a(\overline{z}, x)$

Theorem (Manes, Lawvere, Clementino-Hofmann, T)

$$
\textbf{Set}^T = (T, V)\text{-}\textbf{Cat}_{\text{Comp}} \cap (T, V)\text{-}\textbf{Cat}_{\text{Haus}}
$$

Hausdorff separation and compactness as adjoints

Under light assumptions on V (excluding 2^{M} , but none of the other examples):

- (X, a) Hausdorff: $a \cdot a^{\circ} \leq 1_X$ $\perp < a(\overline{z}, x) \otimes a(\overline{z}, y) \Rightarrow x = y$
- (X, a) compact: $1_{TX} \le a^{\circ} \cdot a \quad \forall \ \overline{z} \in TX : k \le \bigvee_{x \in X} a(\overline{z}, x)$

Theorem (Manes, Lawvere, Clementino-Hofmann, T)

$$
\textbf{Set}^T = (T, V)\text{-}\textbf{Cat}_{\text{Comp}} \cap (T, V)\text{-}\textbf{Cat}_{\text{Haus}}
$$

Proof:

$$
(a \cdot a^{\circ} \le 1_X \text{ and } 1_{TX} \le a^{\circ} \cdot a) \Longleftrightarrow a \dashv a^{\circ} \Longleftrightarrow a \text{ is a map}
$$

Normality and extremal disconnectedness

Reminder:

 $X \in \text{Top}$ normal \Longleftrightarrow disjoint closed sets have disjoint nbhds in X *X* extremally disconnected **⇐⇒** closures of open sets are open in *X*

How do these properties fare in our setting?

Normality and extremal disconnectedness

Reminder:

 $X \in \text{Top}$ normal \Longleftrightarrow disjoint closed sets have disjoint nbhds in X *X* extremally disconnected **⇐⇒** closures of open sets are open in *X*

How do these properties fare in our setting? Recall:

$$
(\mathsf{T}, \mathsf{V})\text{-}\mathbf{Cat} \xrightarrow{M} \mathsf{V}\text{-}\mathbf{Cat}^{\mathsf{T}} \to \mathsf{V}\text{-}\mathbf{Cat}, \quad (X, a) \mapsto (\mathsf{T}X, \hat{a}, \mu_X) \mapsto (\mathsf{T}X, \hat{a}),
$$
\n
$$
\text{with } \hat{a} = (\mathsf{T}X \xrightarrow{\mu_X^{\circ}} \mathsf{T} \mathsf{T}X \xrightarrow{\hat{\mathsf{T}}a} \mathsf{T}X)
$$

Normality and extremal disconnectedness

Reminder:

 $X \in \text{Top}$ normal \Longleftrightarrow disjoint closed sets have disjoint nbhds in X *X* extremally disconnected **⇐⇒** closures of open sets are open in *X*

How do these properties fare in our setting? Recall:

$$
(\mathsf{T}, \mathsf{V})\text{-}\mathbf{Cat} \xrightarrow{M} \mathsf{V}\text{-}\mathbf{Cat}^{\mathsf{T}} \to \mathsf{V}\text{-}\mathbf{Cat}, \quad (X, a) \mapsto (\mathsf{T}X, \hat{a}, \mu_X) \mapsto (\mathsf{T}X, \hat{a}),
$$
\n
$$
\text{with } \hat{a} = (\mathsf{T}X \xrightarrow{\mu_X^{\circ}} \mathsf{T}T X \xrightarrow{\hat{T}a} \mathsf{T}X)
$$

For $T = U$, $V = 2$ and $X \in Top$, the functor provides UX with the order

$$
\overline{x} \le \overline{y} \Longleftrightarrow \forall A \subseteq X \text{ closed}: (A \in \overline{x} \Rightarrow A \in \overline{y})
$$

Normality and extremal disconnectedness are dual to each other!

Normality and extremal disconnectedness are dual to each other!

*a*ˆ **·** *a*ˆ **◦ ≤** *a*ˆ **◦ ·** *a*ˆ *a*ˆ (TX, \hat{a}) normal in V-**Cat**

(*X*, *a*) **∈** (T,V)-**Cat normal** (*X*, *a*) **extremally disconnected ◦ ·** *a*ˆ **≤** *a*ˆ **·** *a*ˆ **◦ ⇔ ⇔ ◦**) normal in V-**Cat**

Monoidal topology without convergence relations?

Cls	$c:PX \rightarrow 2^X$	(R) $A \subseteq cA$
Top	c finitely additive: (A) $c(A \cup B) = cA \cup cB$	
cop	c finitely additive: (A) $c(A \cup B) = cA \cup cB$	
$c\emptyset = \emptyset$	(C) $f(c_X A) \subseteq c_Y(fA)$	

Monoidal topology without convergence relations?

Cls	$c:PX \rightarrow 2^X$	(R) $A \subseteq cA$
Top	c finitely additive: (A) $c(A \cup B) = cA \cup cB$	
cop	c finitely additive: (A) $c(A \cup B) = cA \cup cB$	
$c\emptyset = \emptyset$	(C) $f(c_X A) \subseteq c_Y(fA)$	

[Seal 2009]

\n
$$
V\text{-}CIs
$$

\n
$$
c: PX \to V^X
$$

\n(R)
$$
\forall x \in A : k \leq (cA)(x)
$$

\n
$$
= (P, V)\text{-}Cat
$$

\n[Lai-T 2016]

\n[Lai-T 2016]

\n
$$
c \text{ finitely additive:}
$$

\n(A)
$$
c(A \cup B)(x) = (cA)(x) \lor (cB)(x)
$$

\n
$$
(c\emptyset)(x) = \bot
$$

\n(C)
$$
(c_{X}A)(x) \leq c_{Y}(tA)(tx)
$$

The case $V = [0, \infty]$ gives approach spaces

[0, ∞]-**Cls**

$$
\delta: X \times \mathsf{P}X \to [0, \infty] \quad (\mathsf{R}) \forall x \in A : 0 \ge \delta(x, A)
$$

\n
$$
\delta(x, A) = (cA)(x) \quad (\mathsf{T}) \left(\sup_{y \in B} \delta(y, A) \right) + \delta(x, B) \ge \delta(x, A)
$$

 $[0, \infty]$ -**Top** =: **App** [Lowen 1989] (but his condition (T) is different!):

$$
\delta \text{ finitely additive } (\mathsf{A}) \; \delta(x, A \cup B) = \min \{ \delta(x, A), \delta(x, B) \} \n\delta(x, \emptyset) = \infty \nf: X \to Y \qquad (\mathsf{C}) \; \delta_X(x, A) \ge \delta_Y(fx, fA)
$$

How to reconcile closure and ultrafilter convergence?

For V completely distributive:

P and U interact via the V-relation $\varepsilon_X : P X \mapsto \bigcup X$ via $\varepsilon_X(A, \overline{X}) = \begin{cases} k & \text{if } A \in \overline{X} \\ 1 & \text{else.} \end{cases}$ **⊥** else With suitable lax extensions obtain

$$
A_{\varepsilon} : (\mathbf{U}, \mathbf{V})\text{-}\mathbf{Cat} \to (\mathbf{P}, \mathbf{V})\text{-}\mathbf{Cat}, \ (X, a) \mapsto (X, c_{a} = a \cdot \varepsilon_{X})
$$
\n
$$
(c_{a}A)(y) = \bigvee_{\overline{x} \ni A} a(\overline{x}, y)
$$
\n
$$
A_{\varepsilon} \text{ has a right adjoint } (X, c) \mapsto (X, a_{c}), \text{ with } a_{c}(\overline{x}, y) = \bigwedge_{A \in \overline{x}} (cA)(y)
$$

(U,V)-**Cat [∼]**⁼ ^V-**Top**

Theorem (Lai-T 2016)

Let V *be completely distributive. Then:*

 A_{ϵ} : (U, V)-**Cat** \hookrightarrow (P, V)-**Cat** = V-**Cls**

is a full coreflective embedding; its image is V-**Top** \cong (U, V)-**Cat***.*

(U,V)-**Cat [∼]**⁼ ^V-**Top**

Theorem (Lai-T 2016)

Let V *be completely distributive. Then:*

 A_{ϵ} : (U, V)-**Cat** \hookrightarrow (P, V)-**Cat** = V-**Cls**

is a full coreflective embedding; its image is V -**Top** \cong (U, V) -**Cat**.

Corollary (Clementino-Hofmann 2003)

 $\mathsf{App} \cong (\mathbf{U}, [0, \infty])$ **-Cat**

To-Do list

- **E** Pursue monoidal topology (enriched) in Burroni's (internal) context ...
	- **É** ... and conversely!
- **É** Explore the "algebra-topology" gap in Burroni's setting; partial algebras!
- **É** Apply (T,V)-category theory to "probabilistic" quantales or monads.
- ▶ To which extent are (T, V)-categories covered by Burroni?
- **É** Apply the emerging theory in particular in topological algebra.
- **É** Dualization, Yoneda, (monoidal) closedness, 2-categorical structure, ...

Some references

- ► E. G. Manes, Ph.D. thesis, 1967; SLNM 80, 1969.
- **É** M. Barr, SLNM 137, 1970.
- **É** A. Burroni, Cahiers 12, 1971.
- **É** F. W. Lawvere, Milano 1973; TAC Reprints 1, 2002.
- ▶ A. Möbus, Ph.D. thesis, 1981; Arch. Math. (Basel) 40, 1983.
- **É** R. Lowen, Math. Nachr. 141, 1989; Oxford UP 1997.
- **É** M. M. Clementino, D. Hofmann, ACS 11, 2003.
- **É** M. M. Clementino, W. Tholen, JPAA 179, 2003.
- **É** M. M. Clementino, D. Hofmann, W. Tholen, ACS 11, 2003.
- ▶ G. J. Seal, TAC 14, 2005.
- **É** D. Hofmann, Adv. Math. 215, 2007.
- **É** D. Hofmann, G. J. Seal, W. Tholen (eds), Cambridge UP, 2014.
- **É** W. Tholen, L. Yeganeh, TAC 36 , 2021.