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What is a (small) category?

A×X A
d ′
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c′

##
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}}
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A
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c

!!
X X X

A
(d ,c) // X × X ⇐⇒ X × X

homA // Set

X i // A ⇐⇒ 1
ix // homA(x , x)

A×X A m // A ⇐⇒ homA(x , y)× homA(y , z)
mx ,y ,z // homA(x , z)
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Internal category theory vs Enriched category theory

A (with X ,d , c, i ,m) category A (with homA = A(−,−), i ,m) category

internal to a category C enriched in a category (V,⊗, k) that is

with pullbacks, (symmetric) monoidal (closed),

rather than just C = Set rather than just (V,⊗, k) = (Set,×,1)

With the internal and enriched notions of functor we obtain the categories

Cat(C) V-Cat

Of course: Cat(Set) = Cat = Set-Cat

But already for the (cartesian-closed) category Ord = {pre-ordered sets}:

Cat(Ord) 6= Ord-Cat

And: Cat(Cat) = {(strict) double cats} 6= {(strict) 2-cats} = Cat-Cat
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The composition law needs a closer look!

X = (x1, ..., xn) ∈ LLX , y = (y1, ..., yn) ∈ LX , z ∈ X

x1
f1 // y1

xn
fn // yn

X f // y
g // z ⇒ μX (X )

g·f // z

LA×LX A m // A ⇐⇒ homA(X , y)× homA(y , z)
mX ,y ,z // homA(μX (X ), z)

NOTE: On the RHS, we first had to define what homA(X , y) stands for.
In particular: X and y had to have the same length to make homA(X , y) 6= ∅!
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Burroni 1971: How to internalize multicategories ...

C a category with pullbacks, T = (T, η, μ) any monad on C. Define the category

Cat(T)

Objects are (small) T-categories which are monoids in a bicategory of T-spans in
C; explicitly, they have an “object of objects” X and an “object of arrows” A, plus

X
ηX

vv
i
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((TX Adoo c // X
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μX ·Td

OO

TA×TX Ad ′oo
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OO

c′ // A

c

OO

subject to (somewhat cumbersome) unity and associativity laws.



... and multifunctors

Morphisms are T-functors which are more than morphisms of such monoids;
rather:
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One may, however, set up a double category of T-spans in C such that T-functors
are precisely homomorphisms of monoids.
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Some properties, not necessarily all easy to prove

É The object-of-objects functor Cat(T) −→ C, (X ,A) 7−→ X , is a Grothendieck
fibration, with a le� adjoint; it has a right adjoint if C has binary products.

É Cat(T) has (not easily constructed) pullbacks and is even finitely complete
when C is; that is, when, other than pullbacks, C has a terminal object.
If C is complete, so is Cat(T).
É The formation of Cat(T) is functorial in T (and C); in particular, the monad

morphism η : Id −→ T induces a functor Cat(T) −→ Cat(C):
every T-category in C may be restricted to become an internal category in C.

Theorem (T-Yeganeh 2021)
Cat(T) has a (Street-Walters) comprehensive factorization system, provided that
C has stable reflexive coequalizers that are preserved by T.

(Surprisingly, no preservation of pullbacks by T is required!)

Corollaries

: Cat(C) has such a system, provided that C has stable reflexive
coequalizers (Johnstone 2002), and so does MultiCat (Berger-Kaufmann 2017).
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Making things easier: “Spaces” as simplified T-categories

Definition
A T-category (X ,A,d , c, i ,m) is a T-order in C if (d , c) is a monic pair in C.

In that case, i and m are uniquely determined by (X ,A,d , c), and their existence
becomes a property of (X ,A,d , c): reflexivity and transitivity. The unity and
associativity laws now come for free! For a T-functor (fo, f ) : (X ,A) −→ (Y ,B),
the arrow part f is determined by its object part fo, and its existence becomes a
property of fo: monotonicity.
Some properties of the full subcategory Ord(T) of Cat(T):

É Ord(T) −→ C is topological ( = fibration + cofibration + fibres are
large-complete ), provided that C is complete and wellpowered.
É If C is also cocomplete, so is Ord(T).
É Every Eilenberg-Moore T-algebra (X ,a : TX → X ) gives the T-order

(X ,TX ,1TX ,a); in fact:
T-algebras are precisely those T-categories with domain map an identity.
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Aspirational inclusions: Algebra ⊂ Topology ⊂ Category Theory

CT = EM(T) // //

��

Ord(T) // //

��

Cat(T)

��
C // // Ord(C) // // Cat(C) // C

Role models: T = L (list monad) and T = U (ultrafilter monad) on Set

Mon // //

��

MultiOrd // //

��

MultiCat

��
Set // // Ord // // Cat // Set

CompHaus // //

OO

Top // //

OO

UltraCatinternal

OO

Some justifications for the bottom row to be given later!
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More properties, and a glimpse at the “topological potential” of Ord(T)

É Ord(T) // // Cat(T ) is reflective, provided that C is finitely complete, has a
stable (strong epi, mono)-factorization system, and that T preserves strong
epimorphisms (which is no restriction on T in case C = Set, under Choice).

É EM(T) // // Ord(T ) is reflective, under the additional provision that C is
complete and weakly cowellpowered (by Freyd’s GAFT): Stone-Čech if T = U.

In this case, define a T-order X = (X ,A,d , c) to be
É Hausdor� if the reflection βX : X → βX is monic;

É completely regular if βX is cartesian over C;
É Tychono� if X is Hausdor� and completely regular.

Haus(T)
&&

&&
EM(T) // // Tych(T) // //

88

88

CReg(T) // // Ord(T) // // Cat(T)
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In this case, define a T-order X = (X ,A,d , c) to be
É Hausdor� if the reflection βX : X → βX is monic;

É completely regular if βX is cartesian over C;
É Tychono� if X is Hausdor� and completely regular.

Haus(T)
&&

&&
EM(T) // // Tych(T) // //

88

88

CReg(T) // // Ord(T) // // Cat(T)



More properties, and a glimpse at the “topological potential” of Ord(T)

É Ord(T) // // Cat(T ) is reflective, provided that C is finitely complete, has a
stable (strong epi, mono)-factorization system, and that T preserves strong
epimorphisms (which is no restriction on T in case C = Set, under Choice).
É EM(T) // // Ord(T ) is reflective, under the additional provision that C is

complete and weakly cowellpowered (by Freyd’s GAFT): Stone-Čech if T = U.
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The categorical meaning of CReg(T)

Theorem (Burroni 1971, slightly modified)
CReg(T) is a fibred extension of EM(T), and it is universal as such:

EM(T) // //

%%

F

!!
CReg(T)

��

F // E

P fibration
{{

F pres. cartesianess of the reflections βX

C

Similarly for Tych(T), as a universal mono-fibred extension of EM(T),
with F preserving cartesian monomorphisms.
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An example of category theory embracing topology

Let f : X = (X ,A) −→ Y = (Y ,B) be in Tych(T). Then:

TX

Tf pullback inC
��

A

f
��

doo

TY B
d

oo

⇒ X //

f pb in Ord(T)
��

βX

βf
��

Y // βY

discrete cofibration in Cat(T) ⇒ perfect (as in [T 1999])

Consequently:

Comprehensive factorization of f means (antiperfect, perfect)-factorization of f ,
a.k.a. the fibrewise Stone-Čech compactification of f .
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How to enrich multicategories?

LX × X
homA // Set a : LX→7 X

1 // homA(ηX (x), x) X
ηX //

⇒
1X !!

LX

a
��

X

homA(X , y)× homA(y , z) // homA(μX (X ), z) LLX L̂a //

μX ⇐
��

LX

a
��

LX a
// X
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Clementino-T 2003, after Rosebrugh-Wood 2002, Betti et al. 1983
É (V,⊗, k) cocomplete symmetric monoidal-closed category,
É T = (T, η, μ) monad on Set equipped with a flat lax extension T̂ of T as in

Mat(V)
T̂ // Mat(V)

Set

(−)◦

OO

T // Set

(−)◦

OO

that preserves [(−)◦ : Mat(V)op → Mat(V) and] whiskering by maps; explicitly:

É T̂ is a lax 2-functor with T̂(1◦X ) = 1◦TX [and T̂(r ◦) = (T̂r)◦ for r : X→7 Y ];
É T̂(s · f◦) ∼= T̂s · (Tf )◦ for f : X → Y and s : Y→7 Z ;
É η◦ :IdMat(V)→ T̂, μ◦ : T̂T̂→ T̂ are oplax natural transformations,

subject to (many) coherence and compatibility conditions; here Mat(V) has
objects = sets; functors X × Y → V ; natural transfs.; horizontal composition:

(s · r)(x , z) =
∐

y∈Y

r(x , y)⊗ s(y , z) .
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(T,V)-categories as lax T̂-algebras

(T,V)-Cat (X ,a : TX→7 X ) k→ a(ηX (x), x) (x , z ∈ X )

T̂a(X , y)⊗ a(y , z)→ a(μX (X ), z) (X ∈ TTX , y ∈ TX )

(X ,a)
f−→ (Y ,b) a(x , y)→ b(Tf (x), f (y)) (x ∈ TX , y ∈ X )

TTX

(μX )◦ ⇐
��

T̂a // TX

a ⇐
��

X
(ηX )◦oo

1◦X}}

TX
(Tf )◦ //

a ⇒
��

TY

b
��

TX a
// X X

f◦
// Y

subject to an extensive array of coherence and compatibility conditions.

(Id,V)-Cat = V-Cat

(L,V)-Cat = V-MultiCat, where (L̂r)(x , y) = r(x1, y1)⊗ ... ⊗ r(xn, yn)
if length(x) = n = length(y); = initial obj. 0 else.

What about T = U, even for V = Set ?
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Making things easy again: let V be “thin”!

V unital and (for convenience) commutative quantale

= a complete lattice with a commutative monoid structure, V = (V,⊗, k), s.th.

u ⊗
∨

i∈I
vi =
∨

i∈I
u ⊗ vi

= a small, thin, cocomplete symmetric monoidal-closed category

= a commutative monoid in the symmetric monoidal-closed category Sup

Some examples:

É V = 2 with u ⊗ v = u & v , k = true (Boolean 2-chain)
É V = [0,∞] with u ⊗ v = u + v , k = 0 (Lawvere quantale)
É V any frame with u ⊗ v = u ∧ v , k = > (a cartesian quantale)
É V = 2M , for any commutative monoid M (the free quantale over M),

with A⊗ B = {α · β | α ∈ A, β ∈ B}, k = {ϵ}, ϵ neutral in M
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How do lax monad extensions fare now?

Writing V-Rel for Mat(V), our Set-monad T = (T, η, μ) comes with a lax 2-functor
T̂ : V-Rel→ V-Rel, which extends T along (−)◦ : Set→ V-Rel [and commutes
with the involution (−)◦ of V-Rel]; it preserves whiskering with Set-maps and
makes η◦ and μ◦ oplax.

Main simplifying e�ect: As 2-cells are given by order, all coherence and
compatibility conditions will be satisfied for free!

Possible relaxation of the above conditions, by foregoing flatness of the lax
extension (Seal 2004, adopted in Monoidal Topology 2014):

É T̂ is a lax 2-functor, coinciding with T on objects;
É (Tf )◦ ≤ T̂(f◦) and (Tf )◦ ≤ T̂(f ◦), for every map f of sets;
É η◦ :IdV-Rel→ T̂ and μ◦ : T̂T̂→ T̂ are oplax natural transformations.

These conditions imply the whiskering conditions

T̂(s · f◦) = (T̂s) · (Tf )◦ and T̂(g◦ · r) = (Tg)◦ · (T̂r) .
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(T,V)-categories

(T,V)-Cat (X ,a : TX→7 X ) k ≤ a(ηX (x), x) (x , z ∈ X )

T̂a(X , y)⊗ a(y , z) ≤ a(μX (X ), z) (X ∈ TTX , y ∈ TX )

(X ,a)
f−→ (Y ,b) a(x , y) ≤ b(Tf (x), f (y)) (x ∈ TX , y ∈ Y )

TTX

(μX )◦ ≥
��

T̂a // TX

a ≥
��

X
(ηX )◦oo

1◦X}}

TX
(Tf )◦ //

a ≤
��

TY

b
��

TX a
// X X

f◦
// Y

Equivalently: η◦X ≤ a
a ◦ a ≤ a (Kleisli convolution)

a ≤ f ◦ · b · (Tf )◦

Kleisli convolution for r : TX→7 Y , s : TY→7 Z : s ◦ r := s · T̂r ·m◦X : TX→7 Z
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Some properties and results, comparison with Ord(T)

É (T,V)-Cat −→ Set is topological and, hence, has both adjoints;

É (T,V)-Cat is complete and cocomplete, with (co)limits of diagrams formed
by (co)cartesian li�ing of the (co)limits of the underlying Set-diagrams;
É the formation of (T,V)-Cat is functorial in T (contra-) and V (co-variantly);
É (Lowen-Vroegrijk 2008, Hofmann 2014) For every T, laxly extended to V-Rel,

one can find a monad Π (encoding both, T and V) , laxly extended to
Rel = 2-Rel, such that (T,V)-Cat ∼= (Π,2)-Cat.

Theorem (Burroni 1971)
Let C = Set and T be laxly extended to Rel á la Barr. Then: (T,2)-Cat ∼= Ord(T).

Barr 1971: Given r = ( X Rdoo c // Y ) , put T̂r = ( TX TRTdoo Tc // TY ).

But the Theorem may not be applied to Π above – Π is not extended á la Barr!
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Barr 1971: Given r = ( X Rdoo c // Y ) , put T̂r = ( TX TRTdoo Tc // TY ).

But the Theorem may not be applied to Π above – Π is not extended á la Barr!
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Guiding examples for V = 2, as vaguely envisioned by Hausdorff 1914!
T Reflexivity Transitivity (T,2)-Cat

Id x ≤ x x ≤ y & y ≤ z ⇒ x ≤ z Ord

L (x) ≤ x X ≤ y & y ≤ z ⇒ μX (X ) ≤ z MultiOrd

U ẋ   x X   y & y   z ⇒ μX (X )  z Top (Manes 1967→ Barr 1970)

x1 = (x1,1, ...)   y1

xn = (xn,1, ...)   yn

X = (x1, .....)   y   z ⇒ μX (X ) = (x1,1, .., xn,n, ..)   z
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Trading 2 for [0,∞]– also envisioned by Hausdorff 1914

T Reflexivity Transitivity = ∇-Inequality (T, [0,∞])-Cat

Id 0 ≥ d(x , x) d(x , y) + d(y , z) ≥ d(x , z) Met (Lawvere 1973)

L 0 ≥ d((x), x) d(X , y) + d(y , z) ≥ d(μX (X ), z) MultiMet

d(X , y) := L̂d(X , y) =
∑

i

d(xi , yi)

U 0 ≥ d(ẋ , x) d(X , y) + d(y , z) ≥ d(μX (X ), z) App (Lowen 1989→

d(X , y) := Ûd(X , y) = sup
A∈X ,B∈y

inf
x∈A,y∈B

d(x , y) → Clementino-Hofmann 2003)
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d(X , y) := Ûd(X , y) = sup
A∈X ,B∈y

inf
x∈A,y∈B

d(x , y) → Clementino-Hofmann 2003)



Extending U to quantales other than 2 or [0,∞], and beyond

Theorem (Clementino-T 2003)
The ultrafilter monad may be laxly extended (á la Barr) to V-Rel when the
underlying lattice of the quantale V is constructively completely distributive.

For r : X→7 Y define Ûr : UX→7 TY by

Ûr(x , y) =
∧

A∈x ,B∈y

∨

x∈A,y∈B
r(x , y).

This theorem may be generalized from such quantales to those complete and
cocomplete symmetric monoidal-closed categories V in which every object is a
coproduct of connected objects, in particular to V = Set. This leads to the
category

(U,Set)-Cat = UltraCatenriched

of Clementino-T 2003, which I conjecture to coincide with UltraCatinternal.
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A fundamental adjunction

The Set-monad T with its lax extension T̂ to V-Rel
may be considered as a (KZ-)monad on V-Cat (T 2009): T(X ,a0) = (TX , T̂a0)

If the Kleisli convolution is associative, then (Clementino-Hofmann 2009):

(X ,a0 : X→7 X , ξ : TX → X )
� // (X ,a0 · ξ◦ : TX→7 X )

(V-Cat)T

K
,,

> (T,V)-Cat

M

ll

(TX , T̂a · μ◦X
︸ ︷︷ ︸

, μX : TTX → TX ) (X ,a : TX→7 X )
�oo

=: â : TX→7 TX

In particular (Hofmann 2007): If the V-category (V, hom) has a good T-structure
ξ, then K makes V a (T,V)-category, enables dualization, Yoneda embedding, ...
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M a K is a factor of the Eilenberg-Moore adjunction

(X ,a)
� // (X ,a · (ηX )◦)

(V-Cat)T

K
,,

> (T,V)-Cat

M

kk

A◦
++

> V-Cat

A◦
ll

(X , η◦X · T̂a0) (X ,a0)
�oo

T = U, V = 2:

OrdCompHaus
++

> Topll

**
> Ordkk

K topologizes (X ,≤, ξ) by (x   y ⇐⇒ ξ(x) ≤ y); A◦ =(dual) specialization order

M orders UX by (x ≤ y ⇐⇒ ∀A ∈ x closed in X : A ∈ y); A◦ = Alexandro� topol.
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The greater picture (when T is flat and V integral)
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The greater picture (when T = U and V = 2)
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Note:
So far, we are able to justify the name “π0” only when X ∈ Top is normal;
that is: when X is normal, βX is homeomorphic to the space of connected
components wrt the order that is imposed on UX by the functor M .



Replacing inequalities by equalities: T1-separation, core compactness

(X ,a : TX→7 X )

(R) 1X ≤ a · (ηX )◦ T1 : 1X ≥ a · (ηX )◦

T = U,V = 2 : (ẋ   y ⇒ x = y)

(T) a · T̂a ≤ a · (mX )◦ core compact: a · T̂a ≥ a · (μX )◦

Pisani 1999: T = U,V = 2 : μX (X )  z ⇒ ∃ y (X   y   z)
⇐⇒ ∀x ∈ B ⊆ X open

∃A ⊆ X open (x ∈ A� B)
⇐⇒ X exponentiable in Top

Note: If we express
(R) and (T) equivalently as η◦X ≤ a and a ◦ a ≤ a resp., and “strictify” these
inequalities, di�erent properties will emerge: discrete and no condition at all!
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(T) a · T̂a ≤ a · (mX )◦ core compact: a · T̂a ≥ a · (μX )◦

Pisani 1999: T = U,V = 2 : μX (X )  z ⇒ ∃ y (X   y   z)
⇐⇒ ∀x ∈ B ⊆ X open

∃A ⊆ X open (x ∈ A� B)
⇐⇒ X exponentiable in Top

Note: If we express
(R) and (T) equivalently as η◦X ≤ a and a ◦ a ≤ a resp., and “strictify” these
inequalities, di�erent properties will emerge: discrete and no condition at all!
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Replacing inequalities by equalities: proper maps, open maps

f : (X ,a)→ (Y ,b)

f◦ ·a ≤ b ·(Tf )◦ proper: f◦ ·a ≥ b ·(Tf )◦
∨

x∈f−1y

a(x , x) ≥ b(Tf (x), y))

Manes 1974: T = U,V = 2 : x // x

f [x ] // y

a·(Tf )◦ ≤ f ◦ ·b open: a·(Tf )◦ ≥ f ◦ ·b
∨

x∈(Tf )−1y

a(x , x) ≥ b(y , f (x))

Möbus 1981: T = U,V = 2 : x // x

y // f (x)
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Some stability properties for proper and open maps
É Isomorphisms are proper/open
É Proper/open maps are closed under composition
É g · f proper/open, g injective =⇒ f proper/open
É g · f proper/open, f surjective =⇒ g proper/open
É f proper/open =⇒ every pullback of f is proper/open

Theorem (Tychono�-Frolı́k-Bourbaki Theorem)
Let V be completely distributive. Then:

fi : Xi → Yi proper (i ∈ I) =⇒
∏

i∈I

fi :
∏

i∈I

Xi →
∏

i∈I

Yi proper

Note that, by contrast (not by categorical dualization!), one has:

fi : Xi → Yi open (i ∈ I) =⇒
∐

i∈I

fi :
∐

i∈I

Xi →
∐

i∈I

Yi open
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Hausdorff separation and compactness as adjoints

Under light assumptions on V (excluding 2M , but none of the other examples):

(X ,a) Hausdor�: a · a◦ ≤ 1X ⊥ < a(z, x)⊗ a(z, y) ⇒ x = y

(X ,a) compact: 1TX ≤ a◦ · a ∀ z ∈ TX : k ≤
∨

x∈X a(z, x)

Theorem (Manes, Lawvere, Clementino-Hofmann, T)

SetT = (T,V)-CatComp ∩ (T,V)-CatHaus

Proof:

(a · a◦ ≤ 1X and 1TX ≤ a◦ · a)⇐⇒ a a a◦ ⇐⇒ a is a map
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Normality and extremal disconnectedness

Reminder:

X ∈ Top normal⇐⇒ disjoint closed sets have disjoint nbhds in X

X extremally disconnected⇐⇒ closures of open sets are open in X

How do these properties fare in our setting?

Recall:

(T,V)-Cat
M−→ V-CatT → V-Cat, (X ,a) 7→ (TX , â, μX ) 7→ (TX , â),

with â = (TX
μ◦X−→ TTX

T̂ a−→ TX )

For T = U, V = 2 and X ∈ Top, the functor provides UX with the order

x ≤ y ⇐⇒ ∀A ⊆ X closed : (A ∈ x ⇒ A ∈ y)
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with â = (TX
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Normality and extremal disconnectedness are dual to each other!

X ∈ Top normal X extremally disconnected
w

x y

z

w

x y

z

(X ,a) ∈ (T,V)-Cat normal (X ,a) extremally disconnected
â · â◦ ≤ â◦ · â â◦ · â ≤ â · â◦
⇔ ⇔

(TX , â) normal in V-Cat (TX , â◦) normal in V-Cat
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⇔ ⇔
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Monoidal topology without convergence relations?

Cls c : PX → 2X (R) A ⊆ cA
(T) B ⊆ cA⇒ cB ⊆ cA

Top c finitely additive: (A) c(A ∪ B) = cA ∪ cB
c∅ = ∅

(C) f (cX A) ⊆ cY (fA)

[Seal 2009]

V-Cls c : PX → VX (R) ∀x ∈ A : k ≤ (cA)(x)

= (P,V)-Cat (T) (
∧

y∈B
(cA)(y))⊗ (cB)(x) ≤ (cA)(x)

[Lai-T 2016]
V-Top c finitely additive: (A) c(A ∪ B)(x) = (cA)(x)∨ (cB)(x)

(c∅)(x) = ⊥
(C) (cX A)(x) ≤ cY (fA)(fx)
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The case V = [0,∞] gives approach spaces

[0,∞]-Cls

δ : X × PX → [0,∞] (R) ∀x ∈ A : 0 ≥ δ(x ,A)
δ(x ,A) = (cA)(x) (T) (sup

y∈B
δ(y ,A)) + δ(x ,B) ≥ δ(x ,A)

[0,∞]-Top =: App [Lowen 1989] (but his condition (T) is di�erent!):

δ finitely additive (A) δ(x ,A ∪ B) = min{δ(x ,A), δ(x ,B)}
δ(x ,∅) = ∞

f : X → Y (C) δX (x ,A) ≥ δY (fx , fA)



How to reconcile closure and ultrafilter convergence?

For V completely distributive:

P and U interact via the V-relation ϵX : PX→7 UX via ϵX (A, x) =

¨

k if A ∈ x
⊥ else

With suitable lax extensions obtain

Aϵ : (U,V)-Cat→ (P,V)-Cat, (X ,a) 7→ (X , ca = a · ϵX )

(caA)(y) =
∨

x3A

a(x , y)

Aϵ has a right adjoint (X , c) 7→ (X ,ac), with ac(x , y) =
∧

A∈x

(cA)(y)



(U,V)-Cat ∼= V-Top

Theorem (Lai-T 2016)

Let V be completely distributive. Then:

Aϵ : (U,V)-Cat ,→ (P,V)-Cat = V-Cls

is a full coreflective embedding; its image is V-Top ∼= (U,V)-Cat.

Corollary (Clementino-Hofmann 2003)

App ∼= (U, [0,∞])-Cat
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To-Do list

É Pursue monoidal topology (enriched) in Burroni’s (internal) context ...
É ... and conversely!
É Explore the “algebra-topology” gap in Burroni’s setting; partial algebras!
É Apply (T,V)-category theory to “probabilistic” quantales or monads.
É To which extent are (T,V)-categories covered by Burroni?
É Apply the emerging theory in particular in topological algebra.
É Dualization, Yoneda, (monoidal) closedness, 2-categorical structure, ...
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