Functorial Decomposition of Colimits in Categories and a Generalized Fubini Formula

Walter Tholen Joint work with George Peschke

York University, Toronto - University of Alberta, Edmonton, Canada

Category Theory 2019 Edinburgh (Scotland), 7-13 July 2019

Colimit Decomposition Formula

$$D: \mathcal{D} \longrightarrow \mathbf{Cat}, \ d \mapsto \mathcal{I}_d, \ (K_d: \mathcal{I}_d \longrightarrow \mathcal{K})_d \text{ colimit}, \ X: \mathcal{K} \longrightarrow \mathcal{X}$$

$$\operatorname{colim}^{\mathcal{K}} X \cong \operatorname{colim}^{d \in \mathcal{D}} (\operatorname{colim}^{\mathcal{I}_d} X K_d).$$

Compare: Fubini Formula for iterated colimits

$$\operatorname{colim}^{\mathcal{I} \times \mathcal{I}} X \cong \operatorname{colim}^{i \in \mathcal{I}} (\operatorname{colim}^{\mathcal{I}} X(i, -)).$$

$$\mathcal{J} \xrightarrow{K_i} \mathcal{I} \times \mathcal{J} \xrightarrow{X} \mathcal{X}$$

$$\operatorname{colim} X K_i \xrightarrow{} \operatorname{colim} X$$

$$\operatorname{colim} X K_{i'}$$

Questions

- Are these just instances of "(co)limits commute with (co)limits"?
- What about the dualized formulae?
- Is the Fubini Formula an instance of the Decomposition Formula?
- All this should not be new stuff: References?

Questions

- Are these just instances of "(co)limits commute with (co)limits"?
- What about the dualized formulae?
- Is the Fubini Formula an instance of the Decomposition Formula?
- All this should not be new stuff: References?

- (2) $\operatorname{Cat}/\mathcal{X} \longrightarrow \operatorname{Diag}(\mathcal{X}) = \operatorname{Cat}/\!/\mathcal{X}$ preserves colimits (does it?)
- (3) \mathcal{X} cocomplete $\iff \mathcal{X} \longrightarrow \mathsf{Diag}(\mathcal{X})$ has a left adjoint colim, which therefore preserves the colimit of (1)

Conclusion:

Colimit Decomposition Formula holds in every cocomplete category \mathcal{X} .

(1)
$$\mathcal{I}_d \xrightarrow{\mathcal{K}_d} \mathcal{K}$$
 colim in **Cat** $\Longrightarrow \mathcal{I}_d \xrightarrow{\mathcal{K}_d} \mathcal{K}$ colim in **Cat**/ \mathcal{X}

- (2) $\operatorname{Cat}/\mathcal{X} \longrightarrow \operatorname{Diag}(\mathcal{X}) = \operatorname{Cat}/\!/\mathcal{X}$ preserves colimits (does it?)
- (3) \mathcal{X} cocomplete $\iff \mathcal{X} \longrightarrow \mathsf{Diag}(\mathcal{X})$ has a left adjoint colim, which therefore preserves the colimit of (1)

Conclusion:

Colimit Decomposition Formula holds in every cocomplete category \mathcal{X} .

(1)
$$\mathcal{I}_d \xrightarrow{\mathcal{K}_d} \mathcal{K}$$
 colim in $\mathbf{Cat} \implies \mathcal{I}_d \xrightarrow{\mathcal{K}_d} \mathcal{K}$ colim in \mathbf{Cat}/\mathcal{X}

- (2) $\operatorname{Cat}/\mathcal{X} \longrightarrow \operatorname{Diag}(\mathcal{X}) = \operatorname{Cat}/\!/\mathcal{X}$ preserves colimits (does it?)
- (3) \mathcal{X} cocomplete $\iff \mathcal{X} \longrightarrow \mathsf{Diag}(\mathcal{X})$ has a left adjoint, colim, which therefore preserves the colimit of (1)

Conclusion

Colimit Decomposition Formula holds in every cocomplete category \mathcal{X} .

(1)
$$\mathcal{I}_d \xrightarrow{\mathcal{K}_d} \mathcal{K}$$
 colim in **Cat** $\Longrightarrow \mathcal{I}_d \xrightarrow{\mathcal{K}_d} \mathcal{K}$ colim in **Cat**/ \mathcal{X}

- (2) $\operatorname{Cat}/\mathcal{X} \longrightarrow \operatorname{Diag}(\mathcal{X}) = \operatorname{Cat}/\!/\mathcal{X}$ preserves colimits (does it?)
- (3) \mathcal{X} cocomplete $\iff \mathcal{X} \longrightarrow \mathsf{Diag}(\mathcal{X})$ has a left adjoint, colim, which therefore preserves the colimit of (1)

Conclusion:

Colimit Decomposition Formula holds in every cocomplete category ${\mathcal X}.$

We better check claim (2)! Preparation:

$$\mathsf{Diag}(\mathcal{X}): \qquad (F,\alpha): X \longrightarrow Y \qquad \qquad \mathcal{I} \xrightarrow{F} \mathcal{J}$$

$$\chi \xrightarrow{\alpha:\Longrightarrow} Y$$

Trivially: $Cat/\mathcal{X} \longrightarrow Diag(\mathcal{X})$ preserves coproducts. Coequalizers:

$$\mathcal{I} \xrightarrow{F} \mathcal{J} \xrightarrow{H} \mathcal{K}$$

Suffices to show: $\forall X, Y : \mathcal{K} \longrightarrow \mathcal{X}, \nu : XH \longrightarrow YH :$

$$\nu F = \nu G \implies \exists! \rho : X \longrightarrow Y (\nu = \rho H)$$

Since H is surjective on objects, there can be only at most one such ρ

We better check claim (2)! Preparation:

$$\mathsf{Diag}(\mathcal{X}): \qquad (F,\alpha): X \longrightarrow Y \qquad \qquad \mathcal{I} \xrightarrow{F} \mathcal{J}$$

Trivially: $Cat/\mathcal{X} \longrightarrow Diag(\mathcal{X})$ preserves coproducts. Coequalizers:

$$\mathcal{I} \xrightarrow{F} \mathcal{J} \xrightarrow{H} \mathcal{K}$$

Suffices to show: $\forall X, Y : \mathcal{K} \longrightarrow \mathcal{X}, \nu : XH \longrightarrow YH :$

$$\nu F = \nu G \implies \exists ! \rho : X \longrightarrow Y (\nu = \rho H)$$

Since *H* is surjective on objects, there can be only at most one such ρ .

We better check claim(2)! Finish:

For k = Hj, put $\rho_k := \nu_j$; well-defined since $\nu F = \nu G$.

Show naturality in $r = Hf_n \cdot ... \cdot Hf_2 \cdot Hf_1 : k \longrightarrow k'$ in \mathcal{K} ,

with $f_t: j_t \longrightarrow j'_t (t = 1, ..., n)$ in \mathcal{J} . Case n = 2 should suffice here.

Since $k = Hj_1, Hj'_1 = Hj_2, Hj'_2 = k'$

$$Xk = XHj_1 \xrightarrow{XHf_1} XHj'_1 = XHj_2 \xrightarrow{XHf_2} XHj'_2 = Xk'$$

$$\rho_k = \left| \nu_{j_1} \right| \qquad \nu_{j'_1} = \left| \nu_{j_2} \right| \qquad \nu_{j'_2} \left| = \rho_{k'} \right|$$

$$Yk = YHj_1 \xrightarrow{YHf_1} YHj'_1 = YHj_2 \xrightarrow{YHf_2} YHj'_2 = Yk'$$

commutes - done!

We better check claim(2)! Finish:

For k = Hj, put $\rho_k := \nu_j$; well-defined since $\nu F = \nu G$.

Show naturality in $r = Hf_n \cdot ... \cdot Hf_2 \cdot Hf_1 : k \longrightarrow k'$ in \mathcal{K} ,

with $f_t: j_t \longrightarrow j'_t (t = 1, ..., n)$ in \mathcal{J} . Case n = 2 should suffice here.

Since $k = Hj_1, Hj'_1 = Hj_2, Hj'_2 = k'$:

$$Xk = XHj_1 \xrightarrow{XHf_1} XHj'_1 = XHj_2 \xrightarrow{XHf_2} XHj'_2 = Xk'$$

$$\rho_k = \left| \begin{array}{ccc} \nu_{j_1} & \nu_{j'_1} = \left| \begin{array}{ccc} \nu_{j_2} & \nu_{j'_2} \\ \end{array} \right| = \rho_{k'} \\ Yk = YHj_1 \xrightarrow{YHf_1} YHj'_1 = YHj_2 \xrightarrow{YHf_2} YHj'_2 = Yk'$$

commutes - done!

Connection with Fubini?

Given

$$D: \mathcal{D} \longrightarrow \textbf{Cat}, \ (u: d \rightarrow e) \mapsto (u_!: \mathcal{I}_d \rightarrow \mathcal{I}_e),$$

form the Grothendieck category

$$\mathcal{G} = \int_{d \in \mathcal{D}}^{\circ} \mathcal{I}_d$$

$$(u,\varphi):(d,x)\longrightarrow (e,y) \text{ in } \mathcal{G} \text{ means } u:d\longrightarrow e \text{ in } \mathcal{D}, \varphi:u_!(x)\longrightarrow y \text{ in } \mathcal{I}_e$$

Example:

 $D: \mathcal{I} \longrightarrow \mathbf{Cat}, \ i \mapsto \mathcal{J}.$ Then

$$\int_{i\in\mathcal{I}}^{\circ}\mathcal{J}=\mathcal{I}\times\mathcal{J}$$

Connection with Fubini?

Given

$$D: \mathcal{D} \longrightarrow \mathbf{Cat}, \ (u: d \to e) \mapsto (u_!: \mathcal{I}_d \to \mathcal{I}_e),$$

form the Grothendieck category

$$\mathcal{G} = \int_{m{d} \in \mathcal{D}}^{\circ} \mathcal{I}_{m{d}}$$

$$(u,\varphi):(d,x)\longrightarrow (e,y) \text{ in } \mathcal{G} \text{ means } u:d\longrightarrow e \text{ in } \mathcal{D}, \varphi:u_!(x)\longrightarrow y \text{ in } \mathcal{I}_e$$

Example:

 $D: \mathcal{I} \longrightarrow \mathbf{Cat}, \ i \mapsto \mathcal{J}.$ Then

$$\int_{i\in\mathcal{I}}^{\circ}\mathcal{J}=\mathcal{I}\times\mathcal{J}$$

Generalized Fubini Formula

For $D: \mathcal{D} \longrightarrow \mathbf{Cat}$, the fibres of the optibration $\mathcal{G} \longrightarrow \mathcal{D}$, $(d, x) \longrightarrow d$, are (the images of)

$$J_d: \mathcal{I}_d \longrightarrow \mathcal{G}, (\varphi: X \longrightarrow X') \mapsto ((1_d, \varphi): (d, X) \longrightarrow (d, X')),$$

THEOREM

For $Y: \int^{\circ} D \longrightarrow \mathcal{X}$, let the colimits $\tilde{Y}d \cong \operatorname{colim}^{\mathcal{I}_d} YJ_d$ exist in \mathcal{X} , for all objects $d \in \mathcal{D}$. Then the colimit of Y exists in \mathcal{X} if, and only if, the colimit of $\tilde{Y}: \mathcal{D} \longrightarrow \mathcal{X}$ exists, in which case the two colimits coincide:

$$\operatorname{colim}^{\int^{\circ} D} Y \cong \operatorname{colim}^{d \in \mathcal{D}} (\operatorname{colim}^{\mathcal{I}_d} Y J_d).$$

Fubini implies the Decomposition Formula: Proof 2

Given $D: \mathcal{D} \longrightarrow \mathbf{Cat}$, consider

$$Q: \int^{\circ} D \longrightarrow \operatorname{colim} D$$

with $QJ_d = K_d \ (d \in \mathcal{D})$:

$$Q: \mathcal{G} \longrightarrow \mathcal{K}, \ ((u,\varphi): (d,x) \longrightarrow (e,y)) \mapsto (K_e \varphi: K_d x = K_e u_! x \longrightarrow K_e y).$$

PROPOSITION

Q is final, *i.e.*, the categories $k \downarrow Q$ $(k \in \mathcal{K})$ are connected.

COROLLARY

For every $X : \mathcal{K} \longrightarrow \mathcal{X}$ such that $\operatorname{colim}^{\mathcal{G}} XQ$ exists in \mathcal{X} , also $\operatorname{colim}^{\mathcal{K}} X$ exists, and the canonical $\operatorname{colim} XQ \longrightarrow \operatorname{colim} X$ is an isomorphism.

Fubini implies the Decomposition Formula: Proof 2

Given $D: \mathcal{D} \longrightarrow \mathbf{Cat}$, consider

$$Q: \int^{\circ} D \longrightarrow \operatorname{colim} D$$

with $QJ_d = K_d \ (d \in \mathcal{D})$:

$$Q: \mathcal{G} \longrightarrow \mathcal{K}, \ ((u,\varphi): (d,x) \longrightarrow (e,y)) \mapsto (K_e \varphi: K_d x = K_e u_! x \longrightarrow K_e y).$$

PROPOSITION

Q is final, *i.e.*, the categories $k \downarrow Q$ $(k \in K)$ are connected.

COROLLARY

For every $X : \mathcal{K} \longrightarrow \mathcal{X}$ such that $\operatorname{colim}^{\mathcal{G}} XQ$ exists in \mathcal{X} , also $\operatorname{colim}^{\mathcal{K}} X$ exists, and the canonical $\operatorname{colim} XQ \longrightarrow \operatorname{colim} X$ is an isomorphism.

Fubini implies the Decomposition Formula: Proof 2

Given $D: \mathcal{D} \longrightarrow \mathbf{Cat}$, consider

$$Q: \int^{\circ} D \longrightarrow \operatorname{colim} D$$

with $QJ_d = K_d \ (d \in \mathcal{D})$:

$$Q: \mathcal{G} \longrightarrow \mathcal{K}, \ ((u,\varphi): (d,x) \longrightarrow (e,y)) \mapsto (K_e \varphi: K_d x = K_e u_! x \longrightarrow K_e y).$$

PROPOSITION

Q is final, *i.e.*, the categories $k \downarrow Q$ $(k \in \mathcal{K})$ are connected.

COROLLARY

For every $X : \mathcal{K} \longrightarrow \mathcal{X}$ such that $\operatorname{colim}^{\mathcal{G}} XQ$ exists in \mathcal{X} , also $\operatorname{colim}^{\mathcal{K}} X$ exists, and the canonical $\operatorname{colim} XQ \longrightarrow \operatorname{colim} X$ is an isomorphism.

Observation: Diag(X) as a Grothendieck category!

$$\mathcal{X}^{(-)}: \textbf{Cat}^{op} \longrightarrow \textbf{CAT}, \ (F: \mathcal{I} \longrightarrow \mathcal{J}) \mapsto (F^{\star}: \mathcal{X}^{\mathcal{J}} \longrightarrow \mathcal{X}^{\mathcal{I}}, \ Y \mapsto YF)$$

$$\text{Diag}(\mathcal{X}) = \int \mathcal{X}^{(-)}$$

Obtain the fibration

$$P_{\mathcal{X}}: \mathsf{Diag}(\mathcal{X}) \longrightarrow \mathbf{Cat}, \ \mathcal{I} \xrightarrow{F} \mathcal{J} \mapsto F$$

Colimits in Diag(\mathcal{X})?

Observation: Diag(\mathcal{X}) as a Grothendieck category!

$$\mathcal{X}^{(-)}: \textbf{Cat}^{op} \!\longrightarrow\! \textbf{CAT}, \; (F: \mathcal{I} \!\longrightarrow\! \mathcal{J}) \mapsto (F^{\star}: \mathcal{X}^{\mathcal{J}} \!\longrightarrow\! \mathcal{X}^{\mathcal{I}}, \; Y \mapsto YF)$$

$$\text{Diag}(\mathcal{X}) = \int \mathcal{X}^{(-)}$$

Obtain the fibration

$$P_{\mathcal{X}}: \mathsf{Diag}(\mathcal{X}) \longrightarrow \mathbf{Cat}, \ \mathcal{I} \xrightarrow{F} \mathcal{J} \mapsto F$$

$$\begin{array}{ll} \textit{$P_{\mathcal{X}}$ opfibration} & \iff \forall \textit{$F:\mathcal{I} \longrightarrow \mathcal{J}$} & \exists \textit{$F_!} \dashv \textit{$F^*:\mathcal{X}^{\mathcal{I}} \longrightarrow \mathcal{X}^{\mathcal{I}}$} \\ & \iff \forall \textit{$F:\mathcal{I} \longrightarrow \mathcal{J}$}, \; \textit{$X:\mathcal{I} \longrightarrow \mathcal{X}:$} & \text{Lan}_{\textit{F}}\textit{X} \; \text{exists} \\ & \iff \mathcal{X} \; \text{cocomplete} \end{array}$$

Colimits in Diag(\mathcal{X})?

Observation: Diag(X) as a Grothendieck category!

$$\mathcal{X}^{(-)}: \textbf{Cat}^{op} \longrightarrow \textbf{CAT}, \ (F: \mathcal{I} \longrightarrow \mathcal{J}) \mapsto (F^{\star}: \mathcal{X}^{\mathcal{J}} \longrightarrow \mathcal{X}^{\mathcal{I}}, \ Y \mapsto YF)$$

$$\textbf{Diag}(\mathcal{X}) = \int \mathcal{X}^{(-)}$$

Obtain the fibration

$$P_{\mathcal{X}}: \mathsf{Diag}(\mathcal{X}) \longrightarrow \mathbf{Cat}, \ \mathcal{I} \xrightarrow{F} \mathcal{J} \mapsto F$$

$$\begin{array}{ll} \textit{$P_{\mathcal{X}}$ opfibration} & \iff \forall \textit{$F:\mathcal{I} \longrightarrow \mathcal{J}$} & \exists \textit{$F_!} \dashv \textit{$F^*:\mathcal{X}^{\mathcal{I}} \longrightarrow \mathcal{X}^{\mathcal{I}}$} \\ & \iff \forall \textit{$F:\mathcal{I} \longrightarrow \mathcal{J}$}, \; \textit{$X:\mathcal{I} \longrightarrow \mathcal{X}:$} \; \; \text{Lan}_{\textit{F}}\textit{X} \; \text{exists} \\ & \iff \mathcal{X} \; \text{cocomplete} \end{array}$$

Colimits in $Diag(\mathcal{X})$?

Lifting theorem for (co)limits along a bifibration

For a bifibration $P: \mathcal{E} \longrightarrow \mathcal{B}$ and any diagram category \mathcal{D} , let \mathcal{B} and all fibres $\mathcal{E}(B)$ ($B \in \mathcal{B}$) be \mathcal{D} -(co)complete. Then \mathcal{E} is also \mathcal{D} -(co)complete, and P preserves the \mathcal{D} -(co)limits.

Construction:

Step 1: Given $D: \mathcal{D} \longrightarrow \mathcal{E}$, form colimit $(\beta_d: PDd \longrightarrow B)$ in \mathcal{B} .

Step 2: Form a cocartesian lifting $\alpha_d : Dd \longrightarrow Ld$ of every β_d .

Step 3: Form colimit $(\lambda_d : Ld \longrightarrow E)$ in the fibre $\mathcal{E}(B)$.

Conclusion: $(\lambda_d \cdot \alpha_d : Dd \longrightarrow E)$ is a colimit of D in \mathcal{E} .

Lifting theorem for (co)limits along a bifibration

For a bifibration $P: \mathcal{E} \longrightarrow \mathcal{B}$ and any diagram category \mathcal{D} , let \mathcal{B} and all fibres $\mathcal{E}(B)$ ($B \in \mathcal{B}$) be \mathcal{D} -(co)complete. Then \mathcal{E} is also \mathcal{D} -(co)complete, and P preserves the \mathcal{D} -(co)limits.

Construction:

Step 1: Given $D: \mathcal{D} \longrightarrow \mathcal{E}$, form colimit $(\beta_d: PDd \longrightarrow B)$ in \mathcal{B} .

Step 2: Form a cocartesian lifting $\alpha_d : Dd \longrightarrow Ld$ of every β_d .

Step 3: Form colimit $(\lambda_d : Ld \longrightarrow E)$ in the fibre $\mathcal{E}(B)$.

Conclusion: $(\lambda_d \cdot \alpha_d : Dd \longrightarrow E)$ is a colimit of D in \mathcal{E} .

Apply the lifting theorem to $P_{\mathcal{X}}$: Diag $(\mathcal{X}) \longrightarrow \mathbf{Cat}$

 \mathcal{X} cocomplete (so that $P_{\mathcal{X}}$ is a bifibration), $D: \mathcal{D} \longrightarrow Diag(\mathcal{X})$

$$(u:d\longrightarrow e) \quad \mapsto \quad \mathcal{I}_d \xrightarrow{u_!} \mathcal{I}_e$$

$$X_d \xrightarrow{\alpha^u:\Longrightarrow} X_e$$

Step 1: Form colimit $(K_d : \mathcal{I}_d \longrightarrow \mathcal{K})$ in **Cat**.

Step 3: Form colimit $(\lambda_d : L_d \longrightarrow X)$ in $\mathcal{X}^{\mathcal{K}}$.

Conclusion: $(K_d, \lambda_d K_d \cdot \kappa_d) : (\mathcal{I}_d, X_d) \longrightarrow (\mathcal{K}, X)$ is a colimit in $Diag(\mathcal{X})$.

Apply the lifting theorem to $P_{\mathcal{X}}$: Diag $(\mathcal{X}) \longrightarrow \mathbf{Cat}$

 \mathcal{X} cocomplete (so that $P_{\mathcal{X}}$ is a bifibration), $D: \mathcal{D} \longrightarrow \text{Diag}(\mathcal{X})$

$$(u:d\longrightarrow e) \quad \mapsto \quad \mathcal{I}_{d} \xrightarrow{u_{!}} \mathcal{I}_{e}$$

$$X_{d} \xrightarrow{\chi_{u}:\Longrightarrow} X_{e}$$

Step 1: Form colimit $(K_d : \mathcal{I}_d \longrightarrow \mathcal{K})$ in **Cat**.

Step 3: Form colimit $(\lambda_d : L_d \longrightarrow X)$ in $\mathcal{X}^{\mathcal{K}}$.

Conclusion: $(K_d, \lambda_d K_d \cdot \kappa_d) : (\mathcal{I}_d, X_d) \longrightarrow (\mathcal{K}, X)$ is a colimit in Diag (\mathcal{X}) .

Generalized Colimit Decomposition Formula: Proof 3

THEOREM

For
$$\mathcal{X}$$
 cocomplete, $D: \mathcal{D} \longrightarrow \mathsf{Diag}(\mathcal{X}), \ d \mapsto (X_d: \mathcal{I}_d \longrightarrow \mathcal{X}),$ one has $\mathsf{colim}^{\mathcal{K}} X \cong \mathsf{colim}^{d \in \mathcal{D}}(\mathsf{colim}^{\mathcal{I}_d} X_d),$

with $(K_d : \mathcal{K} \longrightarrow \mathcal{I}_d)$ colimit in **Cat** and $X = \operatorname{colim}^{d \in \mathcal{D}}(\operatorname{Lan}_{K_d} X_d)$ in $\mathcal{X}^{\mathcal{K}}$.

COROLLARY (Colimit Decomposition Formula)

For \mathcal{X} cocomplete, $D: \mathcal{D} \longrightarrow \mathbf{Cat}, \ d \mapsto \mathcal{I}_d, \ X: \mathcal{K} \longrightarrow \mathcal{X}$, one has

 $\operatorname{colim}^{\mathcal{K}} X \cong \operatorname{colim}^{d \in \mathcal{D}} (\operatorname{colim}^{\mathcal{I}_d} X K_d).$

THM \Longrightarrow COR: Show that X is a "joint left Kan extension" of $(XK_d)_{d\in\mathcal{D}}!$

Generalized Colimit Decomposition Formula: Proof 3

THEOREM

For \mathcal{X} cocomplete, $D: \mathcal{D} \longrightarrow \mathsf{Diag}(\mathcal{X}), \ d \mapsto (X_d: \mathcal{I}_d \longrightarrow \mathcal{X})$, one has $\mathsf{colim}^{\mathcal{K}} X \cong \mathsf{colim}^{d \in \mathcal{D}}(\mathsf{colim}^{\mathcal{I}_d} X_d)$,

with $(K_d : \mathcal{K} \longrightarrow \mathcal{I}_d)$ colimit in **Cat** and $X = \operatorname{colim}^{d \in \mathcal{D}}(\operatorname{Lan}_{K_d} X_d)$ in $\mathcal{X}^{\mathcal{K}}$.

COROLLARY (Colimit Decomposition Formula)

For \mathcal{X} cocomplete, $D: \mathcal{D} \longrightarrow \mathbf{Cat}, \ d \mapsto \mathcal{I}_d, \ X: \mathcal{K} \longrightarrow \mathcal{X}$, one has $\mathrm{colim}^{\mathcal{K}} X \cong \mathrm{colim}^{d \in \mathcal{D}}(\mathrm{colim}^{\mathcal{I}_d} X \mathcal{K}_d).$

THM \Longrightarrow COR: Show that X is a "joint left Kan extension" of $(XK_d)_{d\in\mathcal{D}}!$

Better late than never: Diag(\mathcal{X}) is a 2-category!

 $P_{\mathcal{X}}: \mathsf{Diag}(\mathcal{X}) \longrightarrow \mathsf{Cat} \text{ is a 2-functor!}$

Likewise for

$$P_{\mathcal{X}}^* : \mathsf{Diag}^*(\mathcal{X}) = (\mathsf{Diag}(\mathcal{X}^{\mathsf{op}}))^{\mathsf{co}} \longrightarrow \mathbf{Cat}.$$

Better late than never: Diag(\mathcal{X}) is a 2-category!

 $P_{\mathcal{X}}: \mathsf{Diag}(\mathcal{X}) \longrightarrow \mathsf{Cat} \text{ is a 2-functor!}$

Likewise for

$$P_{\mathcal{X}}^*: \mathsf{Diag}^*(\mathcal{X}) = (\mathsf{Diag}(\mathcal{X}^{op}))^{co} \longrightarrow \textbf{Cat}.$$

2-fibrations: Hermida 1999, Buckley 2014

$$P: \mathcal{E} \longrightarrow \mathcal{B}$$
 2-functor
1-cell $f: D \longrightarrow E$ 2-cartesian : $\iff \mathcal{E}(C, D) \xrightarrow{\mathcal{E}(C, f)} \mathcal{E}(C, E)$
 $\downarrow P_{C,D} \downarrow \qquad \qquad \downarrow P_{C,E}$
 $\mathcal{B}(PC, PD)_{\overrightarrow{\mathcal{B}(PC,Pf)}} \mathcal{B}(PC, PE)$

pullback in **Cat**, for all $C \in \mathcal{E}$.

2-cell
$$\sigma: f \longrightarrow f': D \longrightarrow E$$
 2-cartesian : $\iff \sigma$ cartesian w.r.t. $P_{D,E}: \mathcal{E}(D,E) \longrightarrow \mathcal{B}(PD,PE)$.

- P 2-fibration : \iff
- (a) every 1-cell has a 2-cartesian lifting;
- (b) $\forall D, E \in \mathcal{E}$: $P_{D,E} : \mathcal{E}(D,E) \longrightarrow \mathcal{B}(PD,PE)$ is (ordinary) fibration;
- (c) 2-cartesianness of 2-cells is preserved by horizontal composition.

2-fibrations: Hermida 1999, Buckley 2014

$$P: \mathcal{E} \longrightarrow \mathcal{B}$$
 2-functor

1-cell
$$f: D \longrightarrow E$$
 2-cartesian : $\iff \mathcal{E}(C, D) \xrightarrow{\mathcal{E}(C, f)} \mathcal{E}(C, E)$

$$\downarrow_{P_{C,D}} \qquad \qquad \downarrow_{P_{C,E}} \\ \mathcal{B}(PC, PD)_{\overrightarrow{\mathcal{B}(PC,Pf)}} \mathcal{B}(PC, PE)$$

pullback in **Cat**, for all $C \in \mathcal{E}$.

2-cell
$$\sigma: f \longrightarrow f': D \longrightarrow E$$
 2-cartesian: $\iff \sigma$ cartesian w.r.t. $P_{D.E}: \mathcal{E}(D, E) \longrightarrow \mathcal{B}(PD, PE)$.

- P 2-fibration:
- (a) every 1-cell has a 2-cartesian lifting;
- (b) $\forall D, E \in \mathcal{E}$: $P_{D,E} : \mathcal{E}(D,E) \longrightarrow \mathcal{B}(PD,PE)$ is (ordinary) fibration;
- (c) 2-cartesianness of 2-cells is preserved by nonzontal composition.

2-fibrations: Hermida 1999, Buckley 2014

$$P: \mathcal{E} \longrightarrow \mathcal{B}$$
 2-functor

1-cell
$$f: D \longrightarrow E$$
 2-cartesian: $\iff \mathcal{E}(C, D) \xrightarrow{\mathcal{E}(C, f)} \mathcal{E}(C, E)$

$$\downarrow_{P_{C, D}} \qquad \qquad \downarrow_{P_{C, E}}$$

$$\mathcal{B}(PC, PD)_{\overrightarrow{\mathcal{B}(PC, Pf)}} \mathcal{B}(PC, PE)$$

pullback in **Cat**, for all $C \in \mathcal{E}$.

2-cell $\sigma: f \longrightarrow f': D \longrightarrow E$ 2-cartesian : $\iff \sigma$ cartesian w.r.t.

 $P_{D,E}: \mathcal{E}(D,E) \longrightarrow \mathcal{B}(PD,PE).$

- *P 2-fibration* : \iff
- (a) every 1-cell has a 2-cartesian lifting;
- (b) $\forall D, E \in \mathcal{E}$: $P_{D,E} : \mathcal{E}(D,E) \longrightarrow \mathcal{B}(PD,PE)$ is (ordinary) fibration;
- (c) 2-cartesianness of 2-cells is preserved by horizontal composition.

16/19

Setting the 2-categorical stage

 $P: \mathcal{E} \longrightarrow \mathcal{B}$ 2-opfibration: $\iff P^{\text{coop}} : \mathcal{E}^{\text{coop}} \longrightarrow \mathcal{B}^{\text{coop}}$ 2-fibration.

THEOREM

- (1) $P_{\mathcal{X}}^* : \mathsf{Diag}^*(\mathcal{X}) \longrightarrow \mathbf{Cat}$ is a 2-fibration (for all \mathcal{X}).
- (2) \mathcal{X} is cocomplete $\Longrightarrow P_{\mathcal{X}} : \text{Diag}(\mathcal{X}) \longrightarrow \textbf{Cat}$ is a 2-opfibration.

Current and future work

- Applications of the ordinary formulae
- 2-versions of Proofs 1, 2, 3 ?
- Enriched versions?
- Higher dimensions?

Current and future work

- Applications of the ordinary formulae
- 2-versions of Proofs 1, 2, 3 ?
- Enriched versions?
- Higher dimensions?

Questions?

THANKS