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Overview

Factorizations - a second-tier categorical notion?
History - well-known, forgotten, ignored, or overlooked papers
Weak versus orthogonal, morphism classes versus functors
Useful one-dimensional generalizations: cones, functors
Enrichment and higher dimensionality
Revisiting the fundamentals: fibrations
Promoting strict one-sided factorization systems
Anything left on the “To-do”-list?
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Factorizations - a second-tier categorical notion?

Apparently “YES”:

Ehresmann 1958 ∅ Arbib-Manes 1975 ?
Freyd 1964 ∅ Manes 1976 ?
Mitchell 1965 ∅ Barr-Wells 1985 ??
Pareigis 1969/1970 ∅ Adámek-Herrlich-Strecker 1990 ? ? ?
Schubert 1970 ∅ Borceux 1994 ?
Mac Lane 1971 ∅ (!) Mac Lane 1997 ∅
Schubert 1971/72 ? Awodey 2010 ∅
Herrlich-Strecker 1973 ?? Leinster 2016 ∅

Grandis 2018 ∅

Factorizations are in good company, though: try finding fibrations!
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Freyd-Kelly, JPAA 1972 (submitted June 1971)...

“ A factorization (E ,M) in A consists of two classes of morphisms in
A, each containing the isomorphisms and closed under composition
such that

(2.2) every morphism of A is of the form ip, where i ∈M,p ∈ E ;
(2.3) if vip = i ′p′u, where i , i ′ ∈M and p,p′ ∈ E , there is a unique w

rendering commutative the diagram

· ·
p′

//

·

·
u
��

· ·p // ·

·
��

·
i ′

//
w

·i // ·

·
v
��

Since E ∩M contains the isomorphisms, (2.3) is clearly equivalent to
(2.4) E ⊆M↑ andM⊆ E↓. ”

The authors continue by proving E =M↑ andM = E↓, etc.
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... and now without the redundancies (AHS 1990):

A× := {isomorphisms of A}

(E ,M) (orthogonal) factorization system of A if

F0 M ·A× ⊆M, A× · E ⊆ E
F1 A ⊆M · E
F2 E⊥M

· ·v
//

·

·
E3e
��

· ·u // ·

·
m∈M
��

w↗
↗

↗

These conditions imply E = ⊥M, M = E⊥
and in particular the Freyd-Kelly a-priori assumptions

F0+ A× ⊆ E ∩M, E · E ⊆ E , M ·M ⊂M
Is this picky? But first: Why did Freyd and Kelly use i ,p and not m,e?
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Mac Lane’s 1948/50 “bicategories”

Category A with two classes I (“injections”), P (“projections”), s.th.
Identities(A) ⊆ I ∩ P, I · I ⊆ I, P · P ⊆ P
∀f ∃!

· ·
f
//

·

·

OO
P3p

· ·iso // ·

·
i∈I
��

I · A× (“submaps”), A× · P (“supermaps”)
are closed under composition
∀A,B ∃≤1 A // B in I · P · ... · I · P (“idemmaps”)
∀A : I/A and A\P are sets

Note: No a-priori epi-mono condition, but the (strange) idemmap
axiom forces it!
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Why one should care about “double factorization”

Here is one reason:

A pointed : A arbitrary :

· ·
f

//

·

·

OO

coker

· ·comparison // ·

·
ker
��

· ·
f

//

·

·

OO
reg epi

· ·comparison // ·

·
reg mono
��

A with ×,0: comparison (left) is iso ⇐⇒ A Abelian
Hence: the comparison morphism gauges Abelianess!
A variety (say): ∀f epi (comp. (right) is iso ⇐⇒ f is surjective)
P : A // Set top.: {comparison morphisms} = P−1(Set×)

For “double factorization systems” (=pairs of comparable fact. syst.),
see Pultr-T (2002) and my White Point (CT 2006) slides
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The standard references of the “bicategory” period

Grothendieck 1957 subobjects as equivalence classes of monos

Isbell 1957/1964 cleans up bicat. axioms; the “extremal view”
Kennison 1967/1968 the transition from “extremal” to “strong”
Herrlich 1968 topological applications of this transition

Kelly 1968 taking “strong” as the primary concept
Freyd-Kelly 1972 Galois correspond. between morphism classes
Pumplün 1972 Galois correspond. between morphism classes

In this list, the Freyd-Kelly paper stands out in terms of clarity of
exposition, and for “being light” on a-priori epi-mono conditions.
But there were earlier papers, with more complete accounts of
factorization systems and even lighter a-priori assumptions ...
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Overlooked: the Ehrbar-Wyler paper of 1968
Images are reflections!

H. Ehrbar, O. Wyler: On subobjects and images in categories.
Preliminary report, Univ. of Munich (LMU), October 1968. Technical
Report 68-34, Carnegie-Mellon Univ., Dept. of Math., October 1968.
H. Ehrbar: Bilder und adjungierte Funktoren. Ph.D. thesis, Univ. of
Munich (LMU), 1969.
H. Ehrbar, O. Wyler: Images in categories as reflections. Cahiers Top.
Géom. Diff. Catégoriques 28(2):143-159, 1987.
With no condition on the morphism classM in A, E-W 1968 defines:

M/B ↪→ A/B f hasM-image :⇔ f :A // B has reflection intoM/B

f M-extremal: ⇔ reflection of f intoM/B exists and is iso (in A)
⇔ [if 1A⊆M:] (f = ng,n∈M⇒ ∃!s : ns = 1, sf = g)

M ↪→ A2 f has strongM-image⇔ f has cod−1(1A)-reflection intoM
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RightM-factorizations (T 1983, Dikranjan-T 1995)

M right factorization system of A :⇐⇒
RF0 M ·A× ⊆M
RF1 every morphism has a strongM-image:

∀f ∃ factorization f = me : m ∈M, (e,m)⊥M

· ·
1
//

·

·
f
��

· ·e // ·

·
m
��

· ·v=zm
//

·

·
e
��

· ·u // ·

·
n∈M
��

w↗
↗

↗

Necessarily A× ⊆M
If A× ⊆M, A× · M ⊆M, then (RF1⇐⇒ M reflective in A2)

Every category with kernelpairs and their coequalizers has left
RegEpi-factorizations; dually: Isbell’s dominions!
For every fibration P : A // X ,A has right P-Cart-factorizations
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Some Ehrbar-Wyler 1968 highlights
Lemma Assume RF1. Then:
(Right retract closure) gp ∈M, pi = 1 =⇒ g ∈M·A×
(Left cancelation) wv ∈M, vu ∈M =⇒ u ∈M·A×
(Limit closure) µ : D // C pointwise inM =⇒ limµ ∈M·A×
(Pullback stability) every pullback of anM is inM·A×
Lemma Assume RF0, RF1. Then:
(Orthogonality) {M-extremal} = ⊥M
Theorem Equiv. are for E ,M with F0 (M·A× ⊆M, A× ·E ⊆ E):
(i)=F1+F2 A ⊆M · E , E⊥M (= (E ,M) orth. fact. system of A)
(ii) M satisfies RF1,M·M ⊆M, E = {M-extremal}
(iii) E satisfies LF1=RF1op, E ·E ⊆ E , M = {E-co-extremal}
(iv) M·M ⊆M, E ·E ⊆ E , (E ,M)-fact. unique up to unique iso:

· ·
m′
//

·

·
e′

��

· ·e // ·

·
m
��

∼=↗
↗

↗
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Ignored: The Ringel papers of 1970-71 (Math. Zeit.)
Weak and unique diagonalization reconciled!

Motivated by
Quillen 1967 (model categories)
Isbell 1964 and Kennison 1968 (image factorization)
Gabriel-Zisman 1967 (factorization through R−1(Iso)),

Ringel introduces the Galois correspondences given by weak
diagonalization (l2r) and unique diagonalization (l⊥r) and defines:

(L,R) D-pair :⇐⇒ L = 2R, R = L2
(L,R) regular D-pair :⇐⇒ L = ⊥R, R = L⊥ (“prefact. system”)

and proves all standard stability and closure properties of the right
class in a D-pair:

closure under products and infinite composition (inverse chains)
closure under retracts (in the arrow category)
stability under pullback
compatibility with adjunctions: S a T =⇒ (S(X ))2 = T−1(X2)

Walter Tholen (York University) Factorizations Then and Now Gargnano May/June 2018 12 / 45



Ignored: The Ringel papers of 1970-71 (Math. Zeit.)
Weak and unique diagonalization reconciled!

Motivated by
Quillen 1967 (model categories)
Isbell 1964 and Kennison 1968 (image factorization)
Gabriel-Zisman 1967 (factorization through R−1(Iso)),

Ringel introduces the Galois correspondences given by weak
diagonalization (l2r) and unique diagonalization (l⊥r) and defines:

(L,R) D-pair :⇐⇒ L = 2R, R = L2
(L,R) regular D-pair :⇐⇒ L = ⊥R, R = L⊥ (“prefact. system”)

and proves all standard stability and closure properties of the right
class in a D-pair:

closure under products and infinite composition (inverse chains)
closure under retracts (in the arrow category)
stability under pullback
compatibility with adjunctions: S a T =⇒ (S(X ))2 = T−1(X2)

Walter Tholen (York University) Factorizations Then and Now Gargnano May/June 2018 12 / 45



Ignored: The Ringel papers of 1970-71 (Math. Zeit.)
Weak and unique diagonalization reconciled!

Motivated by
Quillen 1967 (model categories)
Isbell 1964 and Kennison 1968 (image factorization)
Gabriel-Zisman 1967 (factorization through R−1(Iso)),

Ringel introduces the Galois correspondences given by weak
diagonalization (l2r) and unique diagonalization (l⊥r) and defines:

(L,R) D-pair :⇐⇒ L = 2R, R = L2
(L,R) regular D-pair :⇐⇒ L = ⊥R, R = L⊥ (“prefact. system”)

and proves all standard stability and closure properties of the right
class in a D-pair:

closure under products and infinite composition (inverse chains)
closure under retracts (in the arrow category)
stability under pullback
compatibility with adjunctions: S a T =⇒ (S(X ))2 = T−1(X2)

Walter Tholen (York University) Factorizations Then and Now Gargnano May/June 2018 12 / 45



Some Ringel 1970 highlights

Lemma Let X be such that
(Pullback) pbs of X -morph’s exist and are in X ;
(Section) sections with retractions in X are in X . Then: 2X = ⊥X

Theorem (L,R) D-pair, A with pbs and pos. Equivalent are:
(i) gf ∈ R,g ∈ R =⇒ f ∈ R (Weak Left Canc)
(ii) pi = 1,p ∈ R =⇒ i ∈ R (Section)
(iii)=(iii)op (L,R) regular D-pair (Pre-Fact Syst)
(ii)op pi = 1, i ∈ L =⇒ p ∈ L (Retraction)
(i)op gf ∈ L, f ∈ L =⇒ g ∈ L (Wk Right Canc)
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Ringel 1970: The “Pre-Cassidy-Hébert-Kelly Theorem”

In a finitely complete and finitely cocomplete category A,
there is a bijective correspondence between

full replete reflective subcategories B, and
reflective (hence, regular!) D-pairs (L,R) with enough R-objects,

given by
R a I : B ↪→ A =̀⇒ (R−1(A×), (2MorB)2)

{A | (A // 1) ∈ R} ⇐=a (L,R)

Here:
(L,R) reflective ⇐⇒ L has 3-for-2 prop ⇐⇒ L wkly left/right c’le
(L,R) has enough R-objects⇔ ∀A ∈A∃(A→B) ∈L, (B→1) ∈R
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Weak factorization systems, non-redundantly

(Beke 2000,) Adámek-Herrlich-Rosický-T 2002:

(L,R) weak factorization system of A if

WF0 L,R closed under retracts in A2

WF1 A ⊆ R · L
WF2 L2R

These conditions imply L = 2R, R = L2,
and in particular A× = L ∩R, L · L ⊆ L, R · R ⊂ R
WF0 is expressed non-redundantly as

WF0- (Left retract closure) i f ∈ L, pi = 1 =⇒ f ∈ L
(Right retract closure) gp ∈ R, pi = 1 =⇒ g ∈ R

Note: F1,2⇒WF1,2, but WF0-⇒F0
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Re-thinking the fundamentals: functorial factorization

Goal: eliminate choice, make things constructive!
Some big and small milestones:

Linton 1969 (forgotten!): A2 //A3, (A // B) 7→ (A // · // B)
Coppey 1980 (?): A2 //A as E-M-algebra structure wrt (−)2

Korostenski-T 1993: (not knowingly) Coppey re-invented
G. Janelidze-T 1999: functorial presentation of right fact systems
Hovey 1999: functorial weak factorization systems
Rosebrugh-Wood 2002: strict fact system as distr. lawM·E // E ·M
Rosický-T 2002: wfs: a functor determines the fact classes
Grandis-T 2006: even liftings may be obtained constructively
Garner 2007: add distr. law to the Grandis-T definition
Böhm 2010: take Rosebrugh-Wood to the weak world
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Starting point: the free factorization system

A f // B

· ·
f
//

·

·
1A
��

· ·1A // ·

·
��

·
1B

//
f

·f // ·

·
1B
��

1A
ηf // f

µf // 1B
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Functorial images of the free system

Given F : A2 //A with (A E //A2 F //A) = IdA. Then:

F : Ef = (1A
ηf // f

µf // 1B) 7−→ f = (A
Fηf // Ff

Fµf // B)

κ = (dom
λ:=Fη // F

ρ:=Fµ // cod)

· ·
1B

//

·

·
f
��

· ·λf // ·

·
ρf
��

· ·ρf
//

·

·
λf
��

· ·1A // ·

·
f
��

f
−→
λ f // Rf Lf

ρ
−→f // f

−→
λ : IdA2 // R ρ

−→
: L // IdA2
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Janelidze-T 1999: Ehrbar-Wyler functorially

F : A2 //A with (A E //A2 F //A) = IdA

F right well-pointed: ⇐⇒ R
−→
λ =

−→
λR

⇐⇒ ∀f : F ((λf ,1) : f // Rf ) = λρf

F right fact. system: ⇐⇒ (R,
−→
λ ) idempotent

⇐⇒ F right well-ptd., ∀f : λρf isomorphism
⇐⇒ F right well-ptd., ∀f : ρf ∈ RF := Fix(R,

−→
λ )

In this case: RF right factorization system,
LF := Fix(L, ρ

−→
) closed under composition

F (orth.) fact. syst.: ⇐⇒ ∀f : λf ∈ LF , ρf ∈ RF
⇐⇒ F right and left factorization system
⇐⇒ F right fact. syst., RF closed under comp.
⇐⇒ F left fact. system, LF closed under comp.
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Weak fact. systems functorially: Rosický-T 2002

Given any functorial factorization

κ = (dom λ // F
ρ // cod) (∗)

(without insisting on FE = IdA), to which extent may it differ from

κ = (dom
Fη // F

Fµ // cod) ?

On first sight, not by much!

Evaluate (∗) at (EA Ef // EB) = (1A
ηf // f

µf // 1B) to obtain

λf = Fηf · λ1A and ρf = ρ1B · Fµf

So, it just depends on how you want to factor identity morphisms!

Walter Tholen (York University) Factorizations Then and Now Gargnano May/June 2018 20 / 45



Weak fact. systems functorially: Rosický-T 2002

Given any functorial factorization

κ = (dom λ // F
ρ // cod) (∗)

(without insisting on FE = IdA), to which extent may it differ from

κ = (dom
Fη // F

Fµ // cod) ?

On first sight, not by much!

Evaluate (∗) at (EA Ef // EB) = (1A
ηf // f

µf // 1B) to obtain

λf = Fηf · λ1A and ρf = ρ1B · Fµf

So, it just depends on how you want to factor identity morphisms!

Walter Tholen (York University) Factorizations Then and Now Gargnano May/June 2018 20 / 45



Morphism classes versus functors (Rosický-T 2002)

Given (F , λ, ρ) with κ = ρ · λ, define LF ,RF more carefully by

· ·
1B

//

·

·
LF3 f

��

· ·λf // ·

·
ρf
��

· ·ρf
//

·

·
λf
��

· ·1A // ·

·
f∈RF
��

s↗
↗

↗
p↗
↗

↗

(F , λ, ρ) functorial realization of wfs (L,R) :⇐⇒ ∀f : λf ∈ L, ρf ∈ R

Theorem
(1) ∀f : λf ∈ LF , ρf ∈ RF =⇒ (F , λ, ρ) real fun of wfs (LF ,RF )
(2) (F , λ, ρ) real fun of wfs (L,R) =⇒ L = LF , R = RF

In this case, equivalent are:
(i) (L,R) othogonal fs
(ii) ∀f : λρf iso, ρλf iso
(iii) ∀f : λρf monic, ρλf epic
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Making liftings constructive: Grandis-T 2006

· ·v
//

·

·
ρf
��

· ·
F (u,v) // ·

·
ρg

��

·//

·
λf

��

· ·u // ·

·
λg
��

↑s

p↑

//

· ·
1B

//

·

·
f
��

· ·λf // ·

·
ρf
��

· ·ρf
//

·

·
λf
��

· ·1A // ·

·
f
��

f
−→
λ f // Rf Lf

ρ
−→f // f
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Natural/algebraic weak factorization systems

In an algebraic wfs,
R : A2 //A2 carries a monad structure with unit

−→
λ ,

L : A2 //A2 carries a comonad structure with counit ρ
−→

,
linked by a (mixed) distributive law.
The morphisms p and s needed for the construction of a lifting
(as above) are R-algebra and L-coalgebra structures on g and f ,
respectively.

Theorem (Grandis-T 2006) The orthogonal factorization systems of A
are those algebraic wfs for which the monad and the comonad are
idempotent (so that the E-M-cats become (co)reflective in A2).
Actually (Bourke-Garner 2016): Idempotency of one of L or R suffices!
Theorem (Garner 2007)
Weak factorization systems obtained via Quillen’s Small Object
Argument are algebraic.
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Monadic and double-cat perspectives of AWFSs

Bourke - Garner 2016 (JPAA 220:108-147, 148-174)
Thorough use of monad theory for AWFSs, incl. Dubuc’s theorem
Comprehensive study of AWFSs and their induced double cats
Various old and new groups of examples exhibited as AWFSs
Left and right weak maps associated with an AWFS

Two specifics:
Depending on an L-coalgebra structure s on f , and an R-algebra
structure p on g, recognize the “lifting” p · F (u, v) · s for
(u, v) : f // g as the value of a natural transformation of functors
L-CoAlgop × R-Alg // Set
Restrict R (L) to A/1 ∼= A (∼= 0\A) to obtain a (co)monad on A
Its (co)Kleisli cat gives the category of right (left) weak maps of A
Example: Rosolini’s partial maps

Walter Tholen (York University) Factorizations Then and Now Gargnano May/June 2018 24 / 45



Monadic and double-cat perspectives of AWFSs

Bourke - Garner 2016 (JPAA 220:108-147, 148-174)
Thorough use of monad theory for AWFSs, incl. Dubuc’s theorem
Comprehensive study of AWFSs and their induced double cats
Various old and new groups of examples exhibited as AWFSs
Left and right weak maps associated with an AWFS

Two specifics:
Depending on an L-coalgebra structure s on f , and an R-algebra
structure p on g, recognize the “lifting” p · F (u, v) · s for
(u, v) : f // g as the value of a natural transformation of functors
L-CoAlgop × R-Alg // Set
Restrict R (L) to A/1 ∼= A (∼= 0\A) to obtain a (co)monad on A
Its (co)Kleisli cat gives the category of right (left) weak maps of A
Example: Rosolini’s partial maps

Walter Tholen (York University) Factorizations Then and Now Gargnano May/June 2018 24 / 45



Monadic and double-cat perspectives of AWFSs

Bourke - Garner 2016 (JPAA 220:108-147, 148-174)
Thorough use of monad theory for AWFSs, incl. Dubuc’s theorem
Comprehensive study of AWFSs and their induced double cats
Various old and new groups of examples exhibited as AWFSs
Left and right weak maps associated with an AWFS

Two specifics:
Depending on an L-coalgebra structure s on f , and an R-algebra
structure p on g, recognize the “lifting” p · F (u, v) · s for
(u, v) : f // g as the value of a natural transformation of functors
L-CoAlgop × R-Alg // Set
Restrict R (L) to A/1 ∼= A (∼= 0\A) to obtain a (co)monad on A
Its (co)Kleisli cat gives the category of right (left) weak maps of A
Example: Rosolini’s partial maps

Walter Tholen (York University) Factorizations Then and Now Gargnano May/June 2018 24 / 45



Orthogonality and injectivity via diagonalization

B 1
!B

//

A

B

e
��

A C
u // C

1

!C
��

B Divi
//

A

B

e
��

A C
u // C

Di

mi
��

B

A

B

e
��

A C
u // C

w↗
↗

↗
w↗
↗

↗ w↗
↗

↗

e⊥!C e⊥(C,mi)I e⊥C

e2!C e2(C,mi)I e2C

No surprise then:
Orthogonality/injectivity classes enjoy the “same” closure
properties as the right factorization classes!
For I fixed, investigate orthogonal/weak (E ,M) facts of I-cones
Special case: A has enough E-injectives (Maranda 1964)
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Left E-factorizations for all cones (T 1979)

Equivalent are for any class E in A:

(i) LSF0 A× · E ⊆ E
LSF1 every source has a strong E-coimage:

∀(fi : A // Bi)I ∃ factorization fi = mie : e ∈ E , E⊥(e,mi)I

C Bimi
//

A

C

e
��

A A
1 // A

Bi

fi
��

· ·vi
//

·

·
E3d
��

· ·u=ez // ·

·
mi
��

w↗
↗

↗

(ii) A is E-cocomplete, that is:
(1) the pushout of an E exists and (any such) lies in E
(2) the co-intersection of any family in E exists and lies in E

Necessary consequence (also when ⊥ is replaced by 2):
E is a class of epimorphisms in A
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Throwing a functor into the mix (Herrlich 1971, T 1976)

P : A // X

PA PC
Pv
//

X

PA

q
��

X PB
u // PB

PC

Pm
��

PA PCiPvi

//

X

PA

q
��

X PB
u // PB

PCi

Pmi
��

Pw↗
↗

↗
Pw↗
↗

↗

(q,A)⊥m (q,A)⊥(B,mi)I

Examples:

{P-universal arrows} ⊥ {all morphisms/cones}
{all P-morphisms} ⊥ {limit cones mapped by P to monic cones}
{P-vertical morphisms} ⊥ {P-cartesian/-initial cones}

P fibration ⇐⇒ every P-morphism factors (P-Vert,P-Cart)
P topological ⇐⇒ every P-source factors (P-Vert,P-Cart)

⇐⇒ P bifibration with large-complete fibres
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Throwing a functor into the mix (Herrlich 1971, T 1976)

P : A // X

PA PC
Pv
//

X

PA

q
��

X PB
u // PB

PC

Pm
��

PA PCiPvi

//

X

PA

q
��

X PB
u // PB

PCi

Pmi
��

Pw↗
↗

↗
Pw↗
↗

↗

(q,A)⊥m (q,A)⊥(B,mi)I

Examples:

{P-universal arrows} ⊥ {all morphisms/cones}
{all P-morphisms} ⊥ {limit cones mapped by P to monic cones}
{P-vertical morphisms} ⊥ {P-cartesian/-initial cones}
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Left Q-factorizations for all P-sources (T 1979)

Equivalent are for P : A // X transportable (“P is solid”):

(i) ∃Q ⊆ X ↓P : {P-isos} ⊆ Q, P(A×) · Q ⊆ Q

∀(X
fi // PBi ,Bi)I ∃ fi = Pmi · q, (q,A)∈Q, Q⊥((q,A), (A,mi)I)

(ii) ∃E ⊆ A2 : 1.P has a left adjoint with counits in E
2. A is E-cocomplete

(iii) ∀(Ai)I ∈ AI : (Ai)I\∆A
P // (PAi)I\∆X has a left adjoint

(iv) P is the restriction of a top. functor to a full reflect. replete subcat.

Facts:
Every monadic (or topological) functor over Set is solid
Solid functors lift completeness, cocompleteness,
and total cocompleteness (T1980), ...
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Enriched orthogonality

Selected milestones: B. Day (Springer LNM 420) 1974
Kelly 1982
Anghel (PhD thesis) 1987, (Comm. Alg.) 1990
Lucyshyn-Wright (PhD thesis) 2013, (TAC) 2014

Basic idea:
A V-enriched (V symm. monoidal-cl.), e : A // B, m : C // D in A

A(A,C) A(A,D)
A(A,m)

//

A(B,C)

A(A,C)

A(e,C)
��

A(B,C) A(B,D)
A(B,m)// A(B,D)

A(A,D)

A(e,D)
��

X⊗B D
v]
//

X⊗A

X⊗B

X⊗e
��

X⊗A C
u]
// C

D

m
��

B XtD
v[
//

A

B

e
��

A XtC
u[
// XtC

XtD

Xtm
��

pullback w]↗
↗

↗ w[↗
↗

↗

e⊥Vm A tensored A cotensored

w : X //A(B,C) w ] : X ⊗ B // C w [ : B // X t C

X = I ⊗-neutral: e⊥Vm =⇒ e⊥m in Ao
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Enriched prefactorization systems (Lucyshyn-Wright)

Stabilty properties ofM = X⊥V :

contains the isomorphisms
closed under composition
weak left cancelation
stable under V-pullbacks
closed under V-fibred products
closed under weighted limits
closed under cotensors
if A is tensored and X closed under tensors: X⊥V = X⊥
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Enriched factorization systems (Lucyshyn-Wright)

(E ,M) V-factorization system of A

⇐⇒ F0, F1 and F2V : E⊥VM
⇐⇒ F1 and E = ⊥VM, E⊥V =M
⇐⇒ F2V and (E ,M) (ordinary orth). fact. system of Ao
⇐⇒ (for A tensored) (E ,M) fact.syst. of Ao, E closed under tensors
⇐⇒ (for A cotens.) (E ,M) fact.syst. of Ao,M closed under cotens.

Important special cases:
V = Cat =⇒ 2-factorization systems for 2-categories
V = Ord =⇒ ordered factorization systems for ordered categories

But there is then a range of variations: strict, pseudo, lax, ... ?
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Orthogonal factorization in 2-categories

“Millennium cluster” Kasangian-Vitale 2000: all 2-cells are iso
Dupont 2001 (Mém. de Licence)
Milius 2001 lax orthogonality
Dupont-Vitale 2002 pseudo-orthogonality

A(A,C) A(A,D)
A(A,m)

//

A(B,C)

A(A,C)

A(e,C)
��

A(B,C) A(B,D)
A(B,m)// A(B,D)

A(A,D)

A(e,D)
��

bipullback

A(A,C) A(A,D)
A(A,m)

//

A2(e,m)

A(A,C)

dom
��

A2(e,m) A(B,D)
cod // A(B,D)

A(A,D)

A(e,D)
��

bipullback

What does this mean for e and m ?
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The 2-category A2 when A is a 2-category

Objects: objects of A

Arrows: (u, ϕ, v) : f // g, ϕ inv’ble
B Dv

//

A

B

f
��

A C
u // C

D

g
��

=⇒∼
ϕ

(∗)

2-cells: (σ, τ) : (u, ϕ, v)⇒ (x , ψ, y) σ :u ⇒ x , τ :v ⇒ y
gσ · ϕ = ψ · τ f

Fill-ins for (∗): (α,w , β), α, β invertible
B Dv

//

A

B

f
��

A C
u // C

D

g
��

⇑α
⇓β
w↗
↗

↗

ϕ · βf = gα
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Pseudo-orthogonality

f f g “f pseudo-orthogonal to g”

⇐⇒ A(B,C) //A2(f ,g) equivalence of categories
w 7→ (wf ,wg)

⇐⇒ 1. ∀(u, ϕ,g) : f ⇒ g ∃ fill-in (α,w , β),
2. ∀(σ, τ) : (u, ϕ, v)⇒ (x , ψ, y) with fill-in (γ, z, δ)
∃! ξ : w =⇒ z : γ · ξf = σ · β, δ · gξ = τ · β

Walter Tholen (York University) Factorizations Then and Now Gargnano May/June 2018 34 / 45



Pseudo-orthogonality

f f g “f pseudo-orthogonal to g”

⇐⇒ A(B,C) //A2(f ,g) equivalence of categories
w 7→ (wf ,wg)

⇐⇒ 1. ∀(u, ϕ,g) : f ⇒ g ∃ fill-in (α,w , β),
2. ∀(σ, τ) : (u, ϕ, v)⇒ (x , ψ, y) with fill-in (γ, z, δ)
∃! ξ : w =⇒ z : γ · ξf = σ · β, δ · gξ = τ · β

Walter Tholen (York University) Factorizations Then and Now Gargnano May/June 2018 34 / 45



Pseudo-orthogonal factorization system (E ,M)

Definition
An := {equivalences in A}

PF0a An · E ⊆ E , M ·An ⊆M
PF0b f ∼= e ∈ E =⇒ f ∈ E , f ∼= m ∈M =⇒ f ∈M

PF1 ∀f ∃m · e ∼= f , e ∈ E , m ∈M
PF2 E fM

Properties:
E ∩M = An

E = fM, M = Ef and, hence, closed under composition, ...

Important consequence:
(Hot(E),Hot(M)) is a weak factorization system of Hot(A)
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Enriched and 2-categorical functorial factorization

Enriched functorial factorization:
Riehl 2016 Categorical Homotopy Theory,
preceded by Riehl 2011 (NY J. Math), Riehl 2013 (JPAA)
Feature: enriching Garner’s Small Object Argument

Lax-orthogonal functorial factorization:
Clementino - López Franco 2016 (Adv. Math.), 2017 (LMCS)
Idea of lax orth: for f : A // B,g : C // D in a 2-cat A: let
A(B,C) //A(A,C)×A(A,D) A(B,D) be rari (Gray 1966)
(= existence of least diagonal fill-ins in the ordered case)
Example: Gray’s (lali,cofibration)-factorization in Cat
Equivalently: AWFS (L,R) with L and/or R lax idempotent
Example from Cagliari-Clementino-Mantovani 2012: filter monad
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Fibrations

P : A // C fibration
⇐⇒ ∀B ∈ C : PB : A/B // C/PB has rari
⇐⇒ P̃ : A2 = A↓A // C ↓P has rari

P fib⇒ (P cof ⇐⇒ ∀f : X // Y in C : f ∗ : P−1Y // P−1X has l.a. f!)
P cof⇒ (P fib ⇐⇒ ∀f : X // Y in C : f! : P−1X // P−1Y has r.a. f ∗)

Consider anyM0 in C with 1C := {1X |X ∈ C} ⊆M0 and let
cod: M0 ↪→ C2 // C be the codomain functor. Key observation:

X Y
f
//

M

X

m
��

M N
e // N

Y

n
��

(∗)
cod-cartesian ⇐⇒ (∗) pullback diagram
cod-cocartesian ⇐⇒ n strongM0-image of f ·m
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When is cod a bifibration?

Theorem (adaptation from T 1983, Dikranjan-T 1995)

Equivalent forM0 in C with 1C ⊆M0:

(i) C hasM0-pullbacks and strongM0-images
(ii) C hasM0-pullbacks, ∀f in C : f ∗ :M0/Y //M0/X has l.a. f!
(iii) C has strongM0-ims, ∀f in C : f! :M0/X //M0/Y has r.a. f ∗

In that case,
M :=M0 · C× is a right factorization system of C,
⊥M0 = ⊥M = {f | f!(1X ) ∼= 1Y} =: E ,
(E ,M) orth. fact. system of C ⇐⇒ M0 · M0 ⊆M
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Strict right factorization systems

M0 strict right fact system in C if
RF0- 1C ⊆M0

RF1 cod :M0 // C cofibration
Then

cod a I a dom

with I : C //M0, X 7→ 1X , being rari of cod and lari of dom, s. th.
the counits

M Xm
//

M

M

1M
��

M M
1M // M

X

m
��

εmεm : I dom(m) //m

are cod-cocartesian
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Fibrational Characterization Theorem
(after Hughes-Jacobs 2003)

Strict right factorization systems in a category C are equivalently
described by double adjunctions

P a J a Q : A // C

such that
P is a cofibration
J is rari of P and lari of Q
the counits εA : JQA // A (A ∈ A) are P-cocartesian.

The corresponding strict right factorization system of C is

M0 = {µA := PεA : QA // PA | A ∈ A}.
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Construction of factorizations from (P, J,Q, ε)

QJX = PJX = X Y = P(f!(JX ))
f=P(f JX )

//

Q(f!(JX ))

QJX = PJX = X

99

Q(f JX )

Q(f!(JX ))

Y = P(f!(JX ))

µf!(JX)

%%

µf!(JX) ·Q(f JX ) = P(εf!(JX) · JQ(f JX )) = P(f JX · εJX ) = f
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The global categorical equivalence

Objects: strict right factorization systemsM0 ⊆ C2

Morphisms: M0 ↪→ N0

Objects: “factorization cofibrations” (P : A // C, J,Q, ε)
Morphisms: F : (P, J,Q, ε) // (R : B // C,K ,S, δ) with

F : A // B, RF = P, FJ = K , SF = Q, Fε = δF
Trivially: M0 7→ (codM0 , I, domM0 , ε) 7→ M0

Non-trivially: given (P, J,Q, ε), the “comparison functor”

F : A // {µA |A ∈ A}, A 7→ µA,

is fully faithful precisely because each εA is P-cocartesian.
F : (P, J,Q, ε) // (cod{µA}, I, dom{µA}, ε) has a quasi-inverse
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Fibrational Characterization Theorem continued

M :=M0 · C× belongs to an orthogonal factorization system ⇐⇒
∀A,B∈A (PB = QA =⇒ Q(P-cocart. lift of µA : PB // PA) is iso) of
cats

If C has pullbacks:
M belongs to a stable orthogonal factorization system ⇐⇒
P is a bifibration satisfying Beck-Chevalley, that is:

· ·v
//

·

·
f
��

· ·u // ·

·
g
��

pb =⇒ u! · f ∗ = g∗ · v!
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To do?

Take strict one-sided factorization systems to the “next level”:
enriched
2-categorical
bicategorical
...,

and to say ...
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“ Thank you ! ”
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