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Abstract

Metagories are metrically enriched directed multigraphs with designated loops. Their structure
assigns to every directed triangle in the graph a value which may be interpreted as the area of the
triangle; alternatively, as the distance of a pair of consecutive arrows to any potential candidate
for their composite. These values may live in an arbitrary commutative quantale. Generalizing
and extending recent work by Aliouche and Simpson, we give a condition for the existence of an
Yoneda-type embedding which, in particular, gives the isometric embeddability of a metagory into
a metrically enriched category. The generality of the value quantale allows for applications beyond
the classical metric context.
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1. Introduction

In Part III of [14], entitled Entwurf einer Theorie der n-dimensionalen Metrik (Sketch of a
theory of the n-dimensional metric), Menger discusses various conditions to be satisfied by an
n-metric. Chief among them is the Simplexungleichung (simplex inequality) and the schwache
Nullbedingung (weak zero condition), which respectively generalize the triangle inequality and
the condition that self-distances must be zero — from the 1-dimensional to the n-dimensional
case, that is: from a standard metric for pairs of points to functions of (n + 1)-tuples of points,
measuring the “volume” of the body they span. These two conditions are also part of Gähler’s
[7] notion of 2-metric space, in which the simplex inequality becomes the tetrahedral inequality,
and which gained renewed attention in the work of Aliouche and Simpson [3]. In their paper [4]
on approximate categorical structures, these authors take the important step of allowing arbitrary
arrows to replace, geometrically speaking, the three straight edges of triangles spanned by a triple
of points. So, they work with a directed multigraph with designated loops that comes equipped
with a real-valued function which measures the “area” of all directed triangles
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of fitting triples of (potentially rather “wavy”) arrows of the given graph, obeying, among other
conditions, two tetrahedral-like inequalities and two self-distance axioms. The principal result of
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their paper gives sufficient conditions for the isometric embeddability of an approximate categorical
structure X into a metrically enriched category in which, unlike in X, fitting arrows may always be
composed, and where the composition is compatible with the distance function for parallel arrows.

The category of (Fréchet) metric spaces and their, in a weak sense, contractive maps (also
known as non-increasing, short, or 1-Lipschitz maps) is well known for its shortcomings, such
as the absence of infinite products and of internal function spaces, both caused by the non-
admittance of infinite distances. Even if one is interested only in ordinary metric spaces, it seems
advantageous to work at least initially in a larger, but categorically well-behaved, environment, a
point amply emphasized by Lawvere [13]. Doing otherwise leads, as in many of the works cited, to
the addition of other auxiliary conditions that may also be problematic from a categorical point
of view. Hence, in this work, when talking about real-valued metrics, we allow the value ∞ and
impose just three conditions, namely that self-distances be zero, the triangle ineqality hold, and
distances be symmetric. This makes for a topological [1, 5, 9] and, hence, complete and cocomplete
category over Set which, moreover is symmetric monoidal closed [11], i.e., allows for the formation
of function spaces. Imposing the separation condition, requiring points with zero distance to be
equal, destroys topologicity but still makes for a well-behaved reflective and, hence, complete and
cocomplete subcategory which is closed under the formation of function spaces. (The paper [20]
offers further perspectives on generalized metrics.)

Metagories as introduced in this paper follow these categorical guidelines and free the Aliouche-
Simpson notion of approximate categorical structure of conditions that appear to be detrimental
when studying the main properties of the structure. Hence, a [0,∞]-valued metagory is a directed
multigraph with loops (i.e., a “category without composition”, or a meta-gory), equipped with
an “area” function for directed triangles as above (providing a “metric enrichment”, or a met-
agory), which must satisfy the Aliouche-Simpson versions of Menger’s (2-)simplex inequality and
his weak zero condition. As already observed in the slightly more restrictive context of [4], every
category enriched in the category of metric spaces (in the generalized categorical sense) gives
a metagory, and the sets of parallel edges in a metagory carry a compatible metric (which, in
particular, must automatically be symmetric). A major point that we add here to their theory is
that (small) metagories, just like Lawvere metric spaces or small metrically enriched categories,
form a symmetric monoidal-closed category, thus allowing for the formation of internal function
spaces (see Theorem 4.2). To that end we offer a generalized notion of natural transformation
between contractors (=morphisms) of metagories, which differs from a proposal in [4] (see their
discussion item 12.8). Armed with this tool, we are able to give the construction of the metagorical
substitute for the Yoneda embedding of so-called transitive metagories, which in turn leads us to
a generalization and alternative proof of the above-mentioned Aliouche-Simpson embeddability
result (see Corollary 7.7). For that we also utilize a well-known result by Wyler [22].

The second major point of this paper is that, like in [2], we allow “distance” and “area” values
to live in an arbitrary commutative and unital quantale, not just in [0,∞]. Hence, we replace
the complete lattice ([0,∞],≥) and its monoid operation + by any complete lattice (V,≤) which
comes with a commutative and associative binary operation ⊗ preserving suprema in each variable,
and which has a neutral element k. Hence, rather than being just non-negative real numbers or
∞, the values of the area function of a V-metagory could be logical truth values, elements of
so-called frames (as intensively studied by Pultr and his coauthors, see in particular [16]), or
probability distribution functions (see [9]), to name only a few. This more general approach not
only increases the potential range of applications of the theory developed, but equally importantly,
it helps clarifying which properties of the rich structure of the (extended) real half-line are essential
for establishing the fundamentals of a reasonably well-rounded theory.

We conclude this article with a brief discussion of the above-mentioned transitivity condition
vis-à-vis other potentially important subtypes of V-metagories, in particular those which allow
one to find candidates for the composite of consecutive arrows up to a given error margin ε. As
encountered elsewhere (see in particular [6, 12]), it is likely that further studies in this direction
will require an in-depth analysis of additional properties of the quantale V, such as the complete
distributivity [17, 21] of the underlying lattice.
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2. V-metric spaces and V-metric categories

Throughout the paper V denotes a quantale [18] which we tacitly assume to be commutative
and unital; that is, (V,≤) is a complete lattice with a monoid structure, given by an associative
and commutative binary operation ⊗ with a neutral element k, such that ⊗ distributes in each
variable over arbitrary suprema:

u⊗
∨
i∈I

vi =
∨
i∈I

u⊗ vi

for all u, vi (i ∈ I) in V. (Note that there is no requirement for k vis-a-vis the least or largest
elements in V.) For every u ∈ V, since u⊗ (−) : V // V preserves suprema, this map has a right
adjoint, denoted by u( (−), whose value at v ∈ V is characterized by

z ≤ u( v ⇐⇒ z ⊗ u ≤ v

for all z ∈ V. A homomorphism of quantales is a map preserving all suprema and the monoid
structure. Qnt denotes the category of quantales and their homomorphisms.

Example 2.1. (1) The trivial quantale 1 has just one element and serves as a terminal object
in Qnt. The Boolean 2-chain 2 = {false < true} with ⊗ = min is an initial object in Qnt. The
power set 2X of a set X becomes a quantale with ⊗ = ∩ and serves as a direct product of X-many
copies of 2 in Qnt. More generally, every frame (i.e., every complete lattice in which finite infima
distribute over arbitrary suprema) is a quantale. In particular, the open sets of a topological space
form a quantale.

(2) The principal example of a quantale in this paper is the Lawvere quantale (see [13]) R+ =
([0,∞],≥,+, 0), given by the extended real half line, ordered by ≥ (so that ∞ becomes the least
and 0 the largest element of the quantale), provided with the addition, naturally extended by
u +∞ = ∞ + u = ∞, for all u ∈ [0,∞]. Then u ( v = max{v − u, 0} for u, v < ∞, while
∞ ( v = 0 and u ( ∞ = ∞ for all v, u ∈ V, u < ∞. (These rules are easily memorized as the
only homomorphism 2 // R+ interprets ∞ as false and ( as implication.)

(3) The quantale R+ is, of course, isomorphic to the unit interval [0, 1], ordered by the natural
≤ and provided with the multiplication. Both, R+ and [0, 1] are embeddable into the quantale
∆ of all distance distribution functions ϕ : [0,∞] // [0, 1], required to satisfy the left-continuity
condition ϕ(β) = supα<βϕ(α), for all β ∈ [0,∞]. Its order is inherited from [0, 1], and its monoid
structure is given by the commutative convolution product (ϕ⊗ ψ)(γ) = supα+β≤γϕ(α)ψ(β); the
⊗-neutral function κ satisfies κ(0) = 0 and κ(α) = 1 for all α > 0.

The quantale homomorphisms σ : [0,∞] //∆ and τ : [0, 1] //∆, defined by σ(α)(γ) = 0 if
γ ≤ α, and 1 otherwise, and τ(u)(γ) = u if γ > 0, and 0 otherwise, present ∆ as a coproduct of R+

and [0, 1] in the category Qnt, since every ϕ ∈ ∆ has a presentation ϕ = supγ∈[0,∞]σ(γ)⊗τ(ϕ(γ)).

The language built around V-metric spaces as described next is guided by the principal example
(2), which requires us to “mentally invert the inequality sign of V” whenever we want to think of
the given statement geometrically.

Definition 2.2. A V-metric space is a set X together with a V-metric, i.e., a map d = dX :
X ×X // V satisfying the conditions

1. k ≤ d(x, x),

2. d(x, y) ≤ d(y, x),

3. d(x, y)⊗ d(y, z) ≤ d(x, z),

for all x, y, z ∈ X. (Of course, in condition 2 one actually has equality; same for condition 1, if k
is the top element of V.) X is separated if, in addition, the implication

4. k ≤ d(x, y) =⇒ x = y
holds for all x, y ∈ X. A map f : X // Y of V-metric spaces is contractive, or a contraction, if

dX(x, x′) ≤ dY (fx, fx′)
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for all x, x′ ∈ X; if ≤ may be replaced by =, f is an isometry. The category of V-metric spaces and
their contractions is denoted by MetV , and its full subcategory of separated spaces by SepMetV .

Example 2.3. (1) Met1 is (equivalent to) the category Set of sets, while Met2 is the category
of sets equipped with an equivalence relation; morphisms are maps preserving the equivalence
relation of their domains. SepMet2 returns the category Set again.

(2) MetR+
is the category of symmetric Lawvere metric spaces, i.e., of sets X with a [0,∞]-

valued symmetric distance function satisfying the triangle inequality and making all self-distances
0. Its separated objects differ from ordinary metric spaces only insofar as infinite distances are
permitted.

(3) Under the isomorphism R+
∼= ([0, 1],≤, ·, 1) of quantales, distances may be interpreted as

probabilities. Then Met∆ is the category of probabilistic metric spaces, studied under various
degrees of generality in, for example, [15, 8, 9, 10].

Remark 2.4. (1) The forgetful functor MetV // Set is well known (see, for example, [9]) to be
topological (in the sense of [1, 5]): for a family of set maps fi : X // Yi (i ∈ I), with every Yi
carrying a V-metric di, one defines the initial V-metric d on X by

d(x, x′) =
∧
i∈I

di(fix, fix
′),

for all x, x′ ∈ X. Even when all di are separated, d need not be so. In order to make the V-metric
space X separated, one has to apply the reflector to X: the separated reflection of (X, d) provides
the set X/∼ obtained from the equivalence relation (x ∼ y ⇐⇒ k ≤ d(x, y)), with the V-metric
that makes the projection an isometry. As a topological category over Set (see Section 5), the
category MetV is complete and cocomplete, and so is its full reflective subcategory SepMetV .

(2) When one considers V as a symmetric monoidal-closed category, with arrows given by ≤ and
the “internal hom” by (, the objects of the category V-Cat of small V-categories (i.e., categories
enriched in V, see [13, 11, 9]) may be described like the V-metric spaces, except that the symmetry
condition 2 gets dropped; its morphisms, the V-functors, are defined like the V-contractions. This
makes MetV a full and coreflective subcategory of V-Cat, with the coreflector symmetrizing the
structure a of a V-category X to d, where d(x, y) = a(x, y)∧a(y, x) for all x, y ∈ X. In particular,
V itself, which is a V-category with its internal hom (, becomes a separated V-metric space, with
its V-metric given by

dV(u, v) = (u( v) ∧ (v ( u).

Note that, for V = R+ and u, v <∞, dV(u, v) = |u− v| is the usual Euclidean distance.
(3) V-Cat is a symmetric monoidal-closed category, and MetV is closed under forming tensor

products and internal homs in V-Cat. Hence, MetV is symmetric monoidal closed again, with
the monoidal and hom structures described, as follows:
• the tensor product X ⊗ Y has underlying set X × Y , and its V-metric is given by

dX⊗Y((x, y), (x′, y′)) = dX(x, x′)⊗ dY (y, y′);

for V = R+, this is the “+-metric” on X × Y ;
• the hom-object [X,Y ] has underlying set MetV(X,Y ) (i.e. all V-contractions X //Y ), and

its V-metric is given by

d[X,Y ](f, g) =
∧
x∈X

dY (fx, gx)

(for f, g : X // Y ); for V = R+, this is, of course, the “sup-metric” on the function space of all
contractions X // Y .

The tensor-neutral space I is a singleton space whose only point has self-distance k (the ⊗-
neutral element of V). The tensor-hom adjunction means that, for all V-metric spaces X,Y, Z,
a map f : Z ⊗ X // Y is a V-contraction if, and only if, the map f ] : Z // [X,Y ] with
f ](z)(x) = f(z, x) is a well-defined V-contraction.
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(4) For V-metric spaces X and Y , separatedness gets inherited by [X,Y ] from Y . If V is integral
(so that the ⊗-neutral element k is the top element in V) and X and Y are both separated, then
also X ⊗ Y is separated.

(5) The V-metric d of a V-metric space is contractive as a map X ⊗X // V where, of course,
the domain is structured as in (3) and the codomain as in (2). This is an easy consequence of the
symmetry and the triangle inequality for d.

With the knowledge that MetV is symmetric monoidal closed, it is natural to consider cate-
gories enriched in MetV .

Definition 2.5. A category X is called V-metric if it is enriched in MetV ; that is, if for all
X-objects x, y, the hom-set X(x, y) is a V-metric space such that all composition maps

X(x, y)⊗ X(y, z) // X(x, z)

are V-contractive; when denoting all metrics by d, this amounts to asking

d(f, f ′)⊗ d(g, g′) ≤ d(g · f, g′ · f ′)

or, equivalently,
d(f, f ′) ≤ d(g · f, g · f ′) and d(g, g′) ≤ d(g · f, g′ · f)

for all f, f ′ : x //y and g, g′ : y //z in X. The V-metric category X is separated if all of its hom-sets
are separated. A functor F : X //Y of V-metric categories is V-contractive if d(f, f ′) ≤ d(Ff, Ff ′)
for all f, f ′ : x // y in X, and isometric if ≤ may be replaced by = in the last inequality. The
category of all small V-metric categories and their V-contractive functors is denoted by MetV -Cat.

Example 2.6. (1) Every V-metric space X may be considered as a small V-metric category X with
exactly two objects, 0, 1 say, and X(0, 1) = X; the only endomorphisms are identity morphisms
whose self-distance is k. This (somewhat odd) construction extends functorially and embeds MetV
fully into MetV -Cat.

(2) Being monoidal closed, MetV is a V-metric category, with its hom-sets carrying the V-
metric of Remark 2.4(3). Similarly, the category Ban1 of real (or complex) Banach spaces with
linear operators of norm at most 1 is an R+-metric category.

Remark 2.7. For the same general reasons as given in Remark 2.4(3), the category MetV -Cat
is symmetric monoidal closed:
• the tensor product X ⊗ Y of V-metric categories rests on the direct product X × Y of the

underlying ordinary categories and provides its hom-sets with the V-metric given by

dX⊗Y((f, g), (f ′, g′)) = dX(f, f ′)⊗ dY(g, g′),

for all f, f ′ : x // y in X and g, g′ : z // w in Y;
• the hom-category [X,Y] of (small) V-metric categories has as underlying category the category

of all V-contractive functors X //Y and their natural transformations; its hom-sets carry the V-
metric defined by

d[X,Y](α, α
′) =

∧
x∈obX

dY(αx, α
′
x),

for all natural transformations α, α′ : F // G of V-contractive functors F,G : X // Y; it is
separated when Y is separated.

The tensor-hom adjunction entails that, for all (small) V-metric categories X,Y,Z, the V-
contractive functors F : Z ⊗ X // Y correspond naturally and bijectively to the V-contractive
functors F ] : Z // [X,Y].
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3. V-metagories

V = (V,≤,⊗, k) continues to be a unital commutative quantale.

Definition 3.1. A V-metagory X is given by
• a (large) directed multigraph, consisting of a class obX of vertices or objects and a family of

disjoint hom-sets X(x, y) of directed edges or morphisms x // y (x, y ∈ obX);
• a distinguished morphism 1x in the hom set X(x, x) for every x ∈ obX, called the identity

morphism on x;
• a family δ = δX = (δx,y,z)x,y,z∈obX of distance or area functions

δ = δx,y,z : X(x, y)× X(y, z)× X(x, z) // V,

which are subject to two identity laws and two associativity laws:

k ≤ δ(1x, f, f) (left identity law), k ≤ δ(f, 1y, f) (right identity law),
δ(f, g, a)⊗ δ(g, h, b)⊗ δ(f, b, c) ≤ δ(a, h, c) (left associativity law),
δ(f, g, a)⊗ δ(g, h, b)⊗ δ(a, h, c) ≤ δ(f, b, c) (right associativity law),

for all morphisms f : x // y, g : y // z, h : z // w, a : x // z, b : y // w, c : x // w.

x wy z
f g h

a

b

c

c
x z

y

w

f g

a

c b h

We refer to the tetrahedron by the 6-tuple (f, g, h; a, b, c).
A V-contractor F : X // Y of V-metagories is a morphism of directed multigraphs, given by

maps F : obX // obY and F = Fx,y : X(x, y) // Y(Fx, Fy) (x, y ∈ obX), preserving identity
morphisms and contracting areas (x, f, g, a in X as above):

F (1x) = 1Fx, δX(f, g, a) ≤ δY(Ff, Fg, Fa);

F is isometric if ≤ can be replaced by = in the last inequality. We denote by MetagV the category
of small V-metagories (i.e., those X with obX a set) and their V-contractors.

Example 3.2. Every 2-metric space X in the sense of [7] defines the chaotic R+-metagory X with
obX = X and each hom-set X(x, y) containing exactly one morphism, which we call (x, y); with the
2-metric triangle-area function d : X×X×X //R+ of X one simply puts δ((x, y), (y, z), (x, z)) :=
d(x, y, z).

In the V-context, we could call a small V-metagory X a (generalized Lawvere-style) V-2-metric
space if each hom-set has exactly one morphism. The V-metagory is then completely determined
by its set X = obX of objects and a function d : X × X ×X // V satisfying the conditions

k ≤ d(x, x, y) (left identity law), k ≤ d(x, y, y) (right identity law),
d(x, y, z)⊗ d(y, z, w)⊗ d(x, y, w) ≤ d(x, z, w) (left associativity law),
d(x, y, z)⊗ d(y, z, w)⊗ d(x, z, w) ≤ d(x, y, w) (right assocoaivity law),
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for all x, y, z, w ∈ X. With their V-contractions f : X //Y satisfying dX(x, y, z, ) ≤ dY (fx, fy, fz)
the V-2-metric spaces form the category 2MetV , and we have described a full embedding

2MetV //MetagV .

Of greater importance to us is the faithful (but generally not full) induced V-area functor

MetV -Cat //MetagV

whose definition we record next (generalizing [4], Prop. 5.7).

Proposition 3.3. Every V-metric category X can be considered as a V-metagory when one puts

δ(f, g, a) = d(g · f, a)

for all morphisms f : x // y, g : y // z, a : x // z in X. The V-contractive functors of V-metric
categories then become V-contractors.

Proof. Trivially, k ≤ d(f, f) = d(f · 1x, f) = δ(1x, f, f), and likewise k ≤ δ(f, 1y, f), for all
f : x //y. Using successively the symmetry, composition contractivity, and the triangle inequality
of the V-metric d one obtains the left associativity law for δ from

d(g · f, a)⊗ d(h · g, b)⊗ d(b · f, c) ≤ d(a, g · f)⊗ d(h · g, b)⊗ d(b · f, c)
≤ d(h · a, h · g · f)⊗ d(h · g · f, b · f)⊗ d(b · f, c)
≤ d(h · a, c),

with all morphisms as in Definition 3.1. Right associativity is shown similarly. The statement on
V-contractive functors is obvious.

Next we point out that the hom-sets of a V-metagory actually carry a V-metric, considered in
[4] (Lemma 4.2) for V = R+. For its presentation, it is conveneint to use the following terminology.

Definition 3.4. A V-metric graph X is a a directed multigraph as in Definition 3.1 such that each
of its hom-sets X(x, y) carries a V-metric. Their morphisms are morphisms of directed multigraphs
whose hom-maps are V-contractive. MetV -Gph denotes the resulting category of small V-metric
graphs.

Proposition 3.5. The underlying directed multigraph of a V-metagory X becomes V-metric when
one puts

d(f, f ′) := δ(1x, f, f
′) = δ(f, 1y, f

′)

for all f, f ′ : x //y in X. The V-contractors of V-metagories then become V-contractive morphisms
of directed multigraphs.

Proof. Let us first point out that the (implicitly claimed) identity δ(1x, f, f
′) = δ(f, 1y, f

′) follows
from an application of the left and right associativity laws to the tetrahedron (1x, f, 1y; f, f, f ′).
The identity laws give d(f, f) ≥ k. Applying the left associativity law to (f, 1y, 1y; f ′, 1y, f) one
obtains d(f, f ′) ≤ d(f ′, f). To prove the triangle inequality d(f, f ′) ⊗ d(f ′, f ′′) ≤ d(f, f ′′) one
may exploit the left associativity law of (f ′, 1y, 1y; f, 1y, f

′′). The statement about V-contractors
is obvious.

Corollary 3.6. Proposition 3.5 describes a faithful functor

MetagV //MetV -Gph

which, when precomposed with the induced V-area functor MetV -Cat //MetagV , just produces
the obvious forgetful functor MetV -Cat //MetV -Gph.
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Proof. One only has to make sure that the V-metric of the hom-sets of a V-metric category does
not get changed when passing first to the induced V-metagory and then to the induced V-metric
graph. But this is obvious.

With the hom-sets of the V-metagory X carrying the V-metric d of Proposition 3.5, one can ask
how a change in the hom-sets affects the area function δ of X. The following answer generalizes
Corollary 4.6 of [4] to our context.

Proposition 3.7. For all f, f ′ : x // y, g, g′ : y // z, a, a′ : x // z in the V-metagory X one has

d(f, f ′)⊗ d(g, g′)⊗ d(a, a′)⊗ δ(f, g, a) ≤ δ(f ′, g,′ , a′).

Proof. Applying the right associativity law to the tetrahedron (f ′, 1y, g; f, g, a) one obtains

d(f, f ′)⊗ δ(f, g, a) ≤ δ(f ′, 1y, f)⊗ δ(1y, g, g)⊗ δ(f, g, a) ≤ δ(f ′, g, a).

Similarly one shows d(g, g′)⊗ δ(f ′, g, a) ≤ δ(f ′, g′, a) and d(a, a′)⊗ δ(f ′, g′, a) ≤ δ(f ′, g′, a′). The
combination of all three inequalities gives the inequality claimed.

In analogy to Remark 2.4(5), from Proposition 3.7 one concludes:

Corollary 3.8. For all objects x, y, z in a V-metagory X, the area map

δ : X(x, y)⊗ X(y, z)⊗ X(x, z) // V

is V-contractive.

One calls a V-metagory separated when its induced V-metric graph is separated, i.e., if the
V-metric of Proposition 3.5 is separated. The functors of Corollary 3.6 may all be restricted to
the respective full subcategories of separated objects, so that we have the following commutative
diagram, in which the vertical arrows are inclusion functors::

MetV -Cat MetagV//

SepMetV -Cat

MetV -Cat
��

SepMetV -Cat SepMetagV// SepMetagV

MetagV
��

MetagV MetV -Gph//

SepMetagV

MetagV
��

SepMetagV SepMetV -Gph// SepMetV -Gph

MetV -Gph
��

The following corollary shows that the diagram stays commutative if the vertical arrows get replaced
by their left adjoints.

Corollary 3.9. The separated reflection of a V-metagory is obtained by applying the separated
reflection to each of its hom-sets and making the canonical projections isometries.

Proof. The reflection X/∼ has the same objects as X. Its hom-sets are the separated reflections of
the hom-sets of the V-metagory X, which are obtained with the equivalence relations of Remark
2.4(1), where d denotes the V-metric induced by δ on each hom-set. Denoting by [f ] the equivalence
class of f ∈ X(x, y), we derive from Proposition 3.7 that putting δX/∼([f ], [g], [a]) = δ(f, g, a) gives
us a well-defined V-metagorical structure, which obviously has the required universal property.

4. Function spaces of V-metagories

We want to show that MetagV is, like MetV -Cat, symmetric monoidal closed. It is easy to
see that, for V-metagories X,Y, we can define a tensor product X ⊗ Y analogously to the tensor
product of V-metric categories, putting ob(X⊗ Y) = obX× obY and

X⊗ Y((x, y), (x′, y′)) = X(x, x′)× Y(y, y′), 1(x,y) = (1x, 1y),

δX⊗Y((f, h), (g, j), (a, b)) = δX(f, g, a)⊗ δY(h, j, b),

for all f : x //x′, g : x′ //x′′, a : x //x′′ in X and h : y // y′, j : y′ // y′′, b : y // y′′ in Y. The
⊗-neutral V-metagory has exactly one object and one morphism, with k as the only area value.

In order to be able to define a sutable hom-object [X,Y] we first need a notion of transformation
of V-contractors.
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Definition 4.1. A natural transformer α : F // G of V-contractors F, G : X // Y is given by
a family αf : Fx // Gy of morphisms in Y, where f : x // y runs through all morphisms of X,
such that, when we write αx for α1x ,

k ≤ δ(Ff, αy, αf ) and k ≤ δ(αx, Gf, αf ).

One sees immediately that, when Y is induced by a separated V-metric category, then these two
inequalities amount to the standard naturality condition αy · Ff = αf = Gf · αx.

For V-metagories X,Y we can now form the V-metagory3 [X,Y], putting

ob[X,Y] = {F : X // Y |F V-contractor}, [X,Y](F,G) = {α : F //G |α natural transformer },

1F = (Ff))f :x→y, δ[X,Y](α, β, γ) =
∧

x∈obX
δY(αx, βx, γx),

for all α : F //G, β : G //H, γ : F //H in [X,Y].

Theorem 4.2. [X,Y] is a V-metagory, characterized by the property that for all V-metagories Z,
the V-contractors F : Z⊗X //Y correspond bijectively to the V-contractors F ] : Z // [X,Y], with
the correspondence given by

(F ]u)(x) = F (u, x), (F ]u)(f) = F (1u, f) and (F ]a)f = F (a, f),

for all f : x // y in X and a : u // v in Z.

Proof. Trivially k ≤
∧
x∈obX

δ(1Fx, αx, αx) = δ(1F , α, α) and k ≤ δ(α, 1G, α), for all α : F // G.
For every tetrahedron (λ, µ, ν, α, β, γ) in [X,Y] and all x ∈ obX one has

δ(λ, µ, α)⊗ δ(µ, ν, β)⊗ δ(α, ν, γ) ≤ δ(λx, µx, αx)⊗ δ(µx, νx, βx)⊗ δ(αx, νx, γx) ≤ δ(λx, βx, γx),

which implies the right associativity law; likewise for the left law.
Consider now a V-contractor F : Z⊗X //Y. We must first make sure that F ] is well defined;

that is: for a : u // v in Z, F ]u : X // Y is a V-contractor and F ]a : F ]u // F ]v is a natural
transformer. But these verifications are easy; for instance,

δ((F ]u)(f), (F ]a)y, (F
]a)f ) = δ(F (1u, f), F (a, 1y), F (a, f))

≥ δ((1u, f), (a, 1y), (a, f))

= δ(1u, a, a)⊗ δ(f, 1x, f)

≥ k⊗ k = k.

for all f : x // y in X gives half of the argument needed for the naturality of F ]u.
Next we show that F ] is a V-contractor. Since (F ]1u)f = F (1u, f) = (F ]u)(f) = (1F ]u)f for

all objects u in Z and morphisms f in X, F ] preserves identity morphisms. Furthermore, for all
a : u // v, b : v // w, c : u // w in Z one has

δ(F ]a, F ]b, F ]c) =
∧

x∈obX
δ(F (a, 1x), F (b, 1x), F (c, 1x))

≥
∧

x∈obX
δ((a, 1x), (b, 1x), (c, 1x))

=
∧

x∈obX
δ(a, b, c)⊗ k ≥ δ(a, b, c).

3As for ordinary categories, unless X is small, [X,Y] will generally live in a higher universe.
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Conversely, given the V-contractor F ], we must show the V-contractivity of F . For morphisms
a, b, c in Z as above and f : x // y, g : y // z, h : x // z in X, the left associativity of the
tetrahedron ((F ]u)(f), (F ]a)y, (F

]b)g; (F ]a)f , (F
]c)g, (F

]c)h) and the naturality of F ]a show

δ(F (a, f), F (b, g), F (c, h)) = δ((F ]a)f , (F
]b)g, (F

]c)h)

≥ δ((F ]u)(f), (F ]a)y, (F
]a)f )⊗ δ((F ]a)y, (F

]b)g, (F
]c)g)⊗ δ((F ]u)(f), (F ]c)g, (F

]c)h)

≥ k⊗ δ((F ]a)y, (F
]b)g, (F

]c)g)⊗ δ((F ]u)(f), (F ]c)g, (F
]c)h).

Now, the right associativity of the tetrahedra ((F ]a)y, (F
]b)y, (F

]w)(g); (F ]c)y, (F
]b)g, (F

]c)g)
and ((F ]u)(f), (F ]u)(g), (F ]c)z; (F ]u)(h), (F ]c)g, (F

]c)h), together with multiple naturality ap-
plications, shows first

δ((F ]a)y, (F
]b)g, (F

]c)g)

≥ δ((F ]a)y, (F
]b)y, (F

]c)y)⊗ δ((F ]b)y, (F ]w)(g), (F ]b)g)⊗ δ((F ]c)y, (F ]w)(g), (F ]c)g)

≥ δ(a, b, c)⊗ k⊗ k

and then, since F ]u is V-contractive,

δ((F ]u)(f), (F ]c)g, (F
]c)h)

≥ δ((F ]u)(f), (F ]u)(g), (F ]u)(h))⊗ δ((F ]u)(g), (F ]c)z, (F
]c)g)⊗ δ((F ]u)(h), (F ]c)z, (F

]c)h)

≥ δ(f, g, h)⊗ k⊗ k.

Consequently, δ(F (a, f), F (b, g), F (c, h)) ≥ δ(a, b, c)⊗δ(f, g, h) = δ((a, f), (b, g), (c, h)), as desired.

Corollary 4.3. The category MetagV is symmetric monoidal closed. The induced V-area functor
MetV -Cat //MetagV preserves tensor products and the ⊗-neutral object, but it generally fails
to preserve the internal hom-objects.

Remark 4.4. For a separated V-metric category Y considered as a V-metagory, and for any
V-metagory X, also the V-metagory [X,Y] is induced by a separated V-metric category. Indeed,
as already remarked in Definition 4.1, under the hypothesis on Y every natural transformer α :
F //G : X //Y satisfies the naturality condition αy ·Ff = αf = Gf ·αx for all f : x //y in X and
is therefore completely determined by the morphisms αx : Fx //Gx (x ∈ obX). Furthermore, one
may then define a composition for natural transformers as one does for natural transformations,
and finally define a V-metric as one does in MetV -Cat (see Remark 2.7). This makes [X,Y] a
V-metric category, and one easily verifies that its V-metric induces the V-metagorical structure
described by Theorem 4.2.

5. Topologicity and free structures

In Corollary 3.6 we considered the upper horizontal row of functors of the following commuta-
tive and self-explanatory diagram of categories and forgetful functors,

Cat Gph//

MetV -Cat

Cat
��

MetV -Cat MetagV//MetagV

Gph
��

Gph Gph
Id

//

MetagV

Gph
��

MetagV MetV -Gph//MetV -Gph

Gph
��

for which we would like to construct left-adjoints. To this end, but also in order to better under-
stand the structure of the categories at issue, it is useful to observe first that all three vertical
functors are topological, with initial structures being constructed as for MetV // Set (see 2.4
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(1)). Indeed, recall that for a set X and any (possibly large) family of maps fi : X // Yi to
V-metric spaces (Yi, di) (i ∈ I), the initial structure on X is given by

d(x, x′) =
∧
i∈I

di(fix, fix
′).

Now, replacing the set X by a small4 category X, the V-metric spaces Yi by V-metric categories
(Yi, di), and the maps fi by functors Fi : X // Yi, the formula

d(f, f ′) =
∧
i∈I

di(Fif, Fif
′)

describes the initial structure on X with respect to the left vertical functor of the diagram above;
likewise for the right vertical functor, and analogously for the middle vertical functor:

δ(f, g, a) =
∧
i∈I

δi(Fif, Fif
′, Fia)

describes the initial V-metagorical structure on the pointed directed multigraph X for a family of
graph morphisms Fi to V-metagories (Yi, δi) (i ∈ I).

Now, let us recall Wyler’s Taut Lift Theorem (see [22], [19], or Section II.5.11 of [9]) and
consider any commutative diagram

X Y
J

//

A

X
U
��

A BG // B

Y
V
��

of categories and functors.

Proposition 5.1. If U is topological and J has a left adjoint H, then G has a left adjoint F with
UF = HV if, and only if, G preserves initiality, in the sense that it maps U -initial families to
V -initial families. In this case, V maps G-universal arrows to J-universal arrows.

The given formulae for initial structures show that the the two upper horizontal functors in
our first diagram preserve initiality, making Proposition 5.1 applicable to them. Hence, we obtain:

Proposition 5.2. The categories MetV -Cat, MetagV and MetV -Gph are topological over
Cat,Gph and Gph, respectively, in particular complete and cocomplete. The left adjoints to
Cat //Gph and IdGph can be lifted along the topological functors to left adjoints of the functors

MetV -Cat //MetagV //MetV -Gph.

Remark 5.3. (1) According to Wyler’s construction, the underlying category of the free V-metric
category PathX over a given V-metagory X is the free category of finite paths over the underlying
pointed and directed multigraph of X (in which the given identity morphisms get identified with
empty paths); its V-metric makes the insertion X // PathX V-contractive. Our goal is to show
that the insertion is actually an isometry, by taking advantage of a generalized Yoneda embedding
of X, which we present next.

(2) Aliouche and Simpson [4] gave an ad-hoc description of the metric of PathX in case V =
R+. To confirm that X // PathX becomes an isometry, they resort to the effect of the Yoneda
construction (see Section 7) on objects, without establishing the construction fully.

4Being small is not essential for the existence of initial structures.
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6. V-distributors

Let us first shed some further light on the separated V-metric space V with its V-metric d,
defined by dV(u, v) = (u( v)∧ (v ( u) as in Remark 2.4(2), and make explicit its compatibility
with the ⊗-operation. For V = R+, this compatibility condition amounts precisely to the fact that
the addition [0,∞]× [0,∞] // [0,∞] is contractive when, based on the Euclidean distance of the
extended real half-line, the domain carries the +-metric.

Proposition 6.1. The binary operation ⊗ of V is a V-contractive map V ⊗ V // V, that is:

dV(u, v)⊗ dV(w, z) ≤ dV(u⊗ w, v ⊗ z)

for all u, v, w, z ∈ V. Consequently, (V,⊗, k) is an internal monoid in the monoidal category
MetV .

Proof. Since

(u( v)⊗ (w ( z)⊗ u⊗ w = ((u( v)⊗ u)⊗ ((w ( z)⊗ w) ≤ v ⊗ z,

one obtains (u( v)⊗(w ( z) ≤ (u⊗w) ( (v⊗z) and, likewise, (v ( u)⊗(z ( w) ≤ (v⊗z) (
(u⊗ w). Consequently,

d(u, v)⊗ d(w, z) = ((u( v)⊗ (v ( u)) ∧ ((w ( z)⊗ (z ( w))

≤ ((u( v)⊗ (w ( z)) ∧ ((v ( u)⊗ (z ( w))

≤ ((u⊗ w) ( (v ⊗ z)) ∧ ((v ⊗ z) ( (u⊗ w))

= d(u⊗ w, v ⊗ z).

For V-metric spaces X,Y , a V-distributor [5] (also: V-bimodule [13]) ϕ : X //7 Y is given by
a family (ϕ(x, y))x∈X,y∈Y of values in V satisfying the conditions

ϕ(x, y)⊗ dY (y, y′) ≤ ϕ(x, y′), dX(x′, x)⊗ ϕ(x, y) ≤ ϕ(x′, y), (∗)

for all x, x′ ∈ X, y, y′ ∈ Y ; the composition rule for ϕ followed by ψ : Y //7 Z says

(ψ ◦ ϕ)(x, z) =
∨
y∈Y

ϕ(x, y)⊗ ψ(y, z).

Since (∗) gives dY ◦ ϕ = ϕ and ϕ ◦ dX = ϕ, the structure of a V-metric space X serves as the
identity morphism on X in the category DistV of V-metric spaces and their V-distributors. Every
V-contractive map f : X // Y induces the V-distributors f∗ : X //7 Y, f∗ : Y //7 X, given by

f∗(x, y) = dY (fx, y), f∗(y, x) = dY (y, fx)

for all x ∈ X, y ∈ Y . The assignments f 7→ f∗, f 7→ f∗ define identity-on-objects functors

MetV //DistV ←− (MetV)op.

Every v ∈ V may be considered a V-distributor v : I //7 I of the one-point ⊗-neutral V-metric
space I which, when we consider V with its monoid structure as a one-object category, defines a
full embedding

V //DistV .

This embedding becomes an isometry when we extend the V-metric d = dV of V to the hom-sets
of DistV , by putting

d(ϕ,ϕ′) :=
∧

x∈X,y∈Y
d(ϕ(x, y), ϕ′(x, y)),
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for all ϕ,ϕ′ : X //7 Y, X, Y in MetV . One easily sees that MetV(X,Y ) has now become a
V-metric space. More importantly, in generalization of Proposition 6.1, the composition map

DistV(X,Y )⊗DistV(Y,Z) //DistV(X,Z)

is V-contractive, for all V-metric spaces X,Y, Z, as we show next.

Proposition 6.2. DistV is a MetV -enriched category; its hom-sets are separated V-metric spaces.

Proof. In order to confirm the V-contractivity of the composition map, we must show

d(ϕ,ϕ′)⊗ d(ψ,ψ′) ≤ d(ψ ◦ ϕ,ψ′ ◦ ϕ′),

for all ϕ,ϕ′ : X //7 Y, ψ, ψ′ : Y //7 Z. By definition of d(ϕ,ϕ′) one has d(ϕ,ϕ′) ≤ ϕ(x, y) (
ϕ′(x, y) and, hence, d(ϕ,ϕ′)⊗ϕ(x, y) ≤ ϕ′(x, y), for all x ∈ X, y ∈ Y . Likewise, d(ψ,ψ′)⊗ψ(y, z) ≤
ψ′(y, z), for all y ∈ Y, z ∈ Z. Consequently, for all x ∈ X, z ∈ Z one obtains∨

y∈Y
d(ϕ,ϕ′)⊗ d(ψ,ψ′)⊗ ϕ(x, y)⊗ ψ(y, z) ≤

∨
y∈Y

ϕ′(x, y)⊗ ψ′(x, y).

Since ⊗ distributes over joins, this means d(ϕ,ϕ′)⊗ d(ψ,ψ′)⊗ (ψ ◦ ϕ)(x, z) ≤ (ψ′ ◦ ϕ′)(x, z), or

d(ϕ,ϕ′)⊗ d(ψ,ψ”) ≤ (ψ ◦ ϕ)(x, z) ( (ψ′ ◦ ϕ′)(x, z)

for all x ∈ X, z ∈ Z. For symmetry reasons, this gives the inequality

d(ϕ,ϕ′)⊗ d(ψ,ψ′) ≤
∧

x∈X,z∈Z
((ψ ◦ ϕ)(x, z) ( (ψ′ ◦ ϕ′)(x, z)) ∧ ((ψ′ ◦ ϕ′)(x, z) ( (ψ ◦ ϕ)(x, z)),

as desired. The hom-sets DistV(X,Y ) inherit separatedness from V.

Remark 6.3. For every V-metagory X one defines its opposite V-metagory Xop by

ob(Xop) = obX, Xop(y, x) = X(x, y), δXop(g, f, a) = δX(f, g, a),

for all f : x // y, g : y // z, a : x // z in X.

In conjunction with Remark 4.4 we conclude:

Corollary 6.4. For every (small) V-metagory X, the V-metagory [Xop,DistV ] is (induced by) a
separated V-metric category.

7. The Yoneda V-contractor

For a (small) V-metagory X, we would like to establish an injective isometry

y : X // [Xop,DistV ]

in such a way that, when X is actually a V-metric category, y factors through the Yoneda embedding
of X into [Xop,MetV ]. To this end we will have to require an additional condition on the metagory
X, termed absolute (left/right) transitivity in [4] in case V = R+; here we leave off the adjective
absolute:

Definition 7.1. A V-metagory X is left transitive if

δ(f, b, c)⊗ δ(g, h, b) ≤
∨

a:x→z
δ(f, g, a)⊗ δ(a, h, c),
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for all f : x // y, g : y // z, h : z // w, b : y // w, c : x // w in X, and right transitive if

δ(f, g, a)⊗ δ(a, h, c) ≤
∨

b:y→w

δ(f, b, c)⊗ δ(g, h, b)

for all f, g, h, c as above and a : x→ z in X. Transitivity is the conjunction of both properties and
amounts to ∨

a:x→z
δ(f, g, a)⊗ δ(a, h, c) =

∨
b:y→w

δ(f, b, c)⊗ δ(g, h, b),

for all f, g, h, c as above.

Remark 7.2. (1) Every V-metagory induced by a V-metric category is transitive. To see that it
is right transitive, given f, g, h, a, c as above, just consider b := h · g; likewise for left transitivity.

(2) A V-metagory X which comes with an injective isometry into a transitive V-metagory Y
may fail to be right (or left) transitive, even when Y is induced by a separated V-metric category
(unless V is the trivial quantale 1). Just consider the 4-object V-metagory X whose only non-
identical arrows are f : x // y, g : y // z, h : z // w, a : x // z, c : x // w, and let Y have just
one additional arrow, b : y // w; then, letting all areas/distances equal k, the inclusion X ↪→ Y
confirms the claim.

(3) There is an R+-metagory for which there is no injective isometry mapping it into an R+-
metric category: see Example 6.6 of [4]. Hence, our goal is not reachable without additional
condition on the given metagory.

For any V-metagory X and every object w and morphism f : x // y in X, one has the V-
distributor

yw(f) : X(y, w) //7 X(x,w), yw(f)(b, c) = δ(f, b, c),

for all b : y // w, c : x // w. Indeed, given another morphism c′ : x // w, since k ≤ δ(1x, f, f),
left associativity applied to the tetrahedron (1x, f, b; f, c, c

′) shows

yw(f)(b, c)⊗ d(c, c′) ≤ δ(1x, f, f)⊗ δ(f, b, c)⊗ δ(1x, c, c′) ≤ yw(f)(b, c′).

This is one of the two inequalities to be checked; the other follows similarly.

Proposition 7.3. For every object w in a left-transitive V-metagory X one has the V-contractor

yw : Xop //DistV , x 7→ X(x,w).

Proof. With d denoting the V-metric of the hom-sets of X, first we observe

yw(1x) = δ(1x, c, c
′) = d(c, c′)

for all c, c′ : x //w, which shows that yw preserves identity morphisms. Next, we need to confirm
the inequality δ(f, g, a) ≤ d(yw(f) ◦ yw(g), yw(a)), for all f : x // y, g : y // z, a : x // z in X. To
this end, for all morphisms h : z // w, c : x // w, on one hand the left associativity law gives

δ(f, g, a)⊗
∨

b:y→w

(δ(g, h, b)⊗ δ(f, b, c)) ≤ δ(a, h, c),

which implies δ(f, g, a) ≤ (yw(f) ◦ yw(g))(h, c) ( δ(a, h, c)). On the other hand, from the right
transitivity hypothesis one has δ(f, g, a) ≤ δ(a, h, c) ( (yw(f) ◦ yw(g))(h, c). Combining the last
two inequlaities we obtain

δ(f, g, a) ≤
∧

h:z→w,c:x→w

((yw(f)◦yw(g))(h, c) ( yw(a)(h, c))∧(yw(a)(h, c) ( (yw(f)◦yw(g))(h, c)),

which is in fact the inequality that needed to be confirmed.
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Proposition 7.4. For every morphism m : w //v in a transitive V-metagory X one has a natural
transformer ym : yw // yv with

(ym)x : X(x,w) //7 X(x, v), (ym)x(c, e) = δ(c,m, e)

for all c : x // w, e : x // v in X. For m = 1w, ym is the identity transformer of yw.

Proof. It suffices to show that, for every morphism f : x // y, the naturality diagram

X(y, v) X(x, v)
(yv)(f)

//

X(y, w)

X(y, v)

(ym)y
��

X(y, w) X(x,w)
(yw)(f)

// X(x,w)

X(x, v)

(ym)x
��

- -

p

p

commutes in DistV , since then one can set (ym)f as the common composite given by the NW-
SE diagonal of the diagram. But the commutativity of every such diagram amounts precisely to
stating that X is transitive. For m = 1w one has

(y1w
)x(c, e) = δ(c, 1w, e) = d(c, e) = δ(1x, c, e) = yw(1x)(c, e) = (1yw)x(c, e).

Theorem 7.5. Let X be a transitive V-metagory. Then the Yoneda V-contractor

y : X // [Xop,DistV ]

of X is an isometry, mapping X into a V-metric category. It maps objects injectively, and the
same is true for morphisms if X is separated.

Proof. Considering morphisms c : x //w, m : w //v, n : v //u, p : w //u, j : x //u in X, from
the right associativity law and the transformation of joins into meets by the maps (-) ( t : V //V
for every t ∈ V we obtain

δ(m,n, p) ≤
∧

e:x→v
((δ(e, n, j)⊗ δ(c,m, e)) ( δ(c, p, j))

≤ (
∨

e:x→v
(yn)x(e, j)⊗ (ym)x(c, e)) ( (yp)x(c, j)

= ((yn)x ◦ (ym)x)(c, j) ( (yp)x(c, j),

while the left transitivity law gives

δ(m,n, p) ≤ (yp)x(c, j) ( ((yn)x ◦ (ym)x)(c, j).

Consequently,

δ(m,n, p) ≤
∧

x∈obX

∧
c:x→w,j:x→u

d(((yn)x ◦ (ym)x)(c, j), (yp)x(c, j)) = d(yn · ym, yp),

which shows the V-contractivity of y. For the reverse inequality we note that, when considering
w = x, c = 1x, j = p, since δ(1x, p, p) ≤ k and k ( t = t for all t ∈ V, one obtains

d(yn ◦ ym, yp) ≤ d(((yn)x ◦ (ym)x)(1x, p), (yp)x(1x, p))

≤ δ(1x, p, p) ( (
∨

e:x→v
δ(1x,m, e)⊗ δ(e, n, p))

≤
∨

e:x→v
δ(1x, e,m)⊗ δ(e, n, p)⊗ δ(1x, p, p) ≤ δ(m,n, p);
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here the last inequality follows from the left associativity law applied, for every e, to the tetrahedron
(1x, e, n;m, p, p).

The argument for y mapping objects injectively is standard: from yw = yv one obtains 1w ∈
X(w,w) = yw(w) = yv(w) = X(w, v), which is possible only if w = v. For m,n : w // v, suppose
now that ym = yn; then (ym)w = (yn)w : X(w,w) //7 X(w, v). Consequently,

δ(1w,m, n) = (ym)w(1w, n) = (yn)w(1w, n) = δ(1w, n, n) ≥ k,

which implies m = n when X is separated.

Remark 7.6. When X is actually a V-metric category, so that one has the usual Yoneda embed-
ding ỹ : X // [X,MetV ], one easily sees that the diagram

X [Xop,DistV ]
y

//

[Xop,MetV ]

X

99
ỹ

[Xop,MetV ]

[Xop,DistV ]
%%

commutes; here, the unnamed functor is induced by (-)∗ : MetV //DistV of Section 6. Conse-
quently, ỹ is, like y, an isometry. But note that, unlike ỹ, the isometry y fails to be full, that is: in
general, its hom-maps do not map surjectively.

Let us return to one of our principal goals and exploit the Theorem for the adjunction described
in Proposition 5.2:

Corollary 7.7. The unit X //PathX of the right-adjoint functor MetV -Cat //MetagV at the
V-metagory X is an isometry.

Proof. The isometry y factors uniquely through the unit, which therefore must be an isometry as
well:

X [Xop,DistV ].
y

//

PathX

X

99PathX

[Xop,DistV ].
%%

Example 7.8. (See [4], Section 11.) Consider Rn as a 2-metric space in the sense of [7]; its
2-metric assigns to any three points the Euclidean area of the triangle they span. Via Example
3.2, Rn becomes an R+-metagory, for which one can form the R+-metric category PathRn. Its
morphisms are polygonal paths in Rn and, as described in fair detail in [4], the distance of two
morphisms f, g in the same hom-set is computed as the infimum of the areas of all “triangulated
zero-volume bodies” that have the closed path following first f , and then g in reverse direction,
as their boundary.

8. Sufficient conditions for transitivity

Let us refine the claim made in Remark 7.2(1) and give a chain of increasingly weakening
conditions for transitivity. We use << to denote the totally below relation in the complete lattice
V, that is:

u << v :⇐⇒ ∀A ⊆ V (v ≤
∨
A =⇒ ∃a ∈ A (u ≤ a)).

We will use this relation only for v = k the ⊗-neutral element of V, and we then use ε instead of
u since ε << k amounts to ε > 0 in case V = R+. Note that, for the bottom element ⊥ in V, one
has ⊥ << k precisely when ⊥ < k, that is, when V is not the trivial quantale 1.

Proposition 8.1. For a V-metagory X, consider the following conditions:
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(i) X is (induced by) a V-metric category;

(ii) for all f : x→ y, g : y → z in X, there is a : x→ z in X with k ≤ δ(f, g, a);

(iii) for all f : x→ y, g : y → z in X, k ≤
∨
a:x→z δ(f, g, a)⊗ δ(f, g, a);

(iv) X is transitive.

Then (i) =⇒ (ii) =⇒ (iii) =⇒ (iv), and (i) and (ii) are equivalent when X is separated. Further-
more, if V satisfies

∨
{ε | ε << k} = k, then (iii) is equivalent to

(iii′) for all ε<<k in V, f :x→ y, g :y → z in X, there is a :x→ z in X with ε≤δ(f, g, a)⊗δ(f, g, a).

Proof. (i)=⇒(ii): Consider a = g · f . (ii)=⇒(iii): Trivially, from k ≤ δ(f, g, a) one obtains

k = k⊗ k ≤ δ(f, g, a)⊗ δ(f, g, a) ≤
∨

a′:x→z
δ(f, g, a′)⊗ δ(f, g, a′).

(iii)=⇒(iv): Given f, g, h, b, c as in Definition 7.1, for all a : x→ y the left associativity law implies
δ(f, g, a)⊗ δ(f, g, a)⊗ δ(g, h, b)⊗ δ(f, b, c) ≤ δ(f, g, a)⊗ δ(a, h, c). Taking joins on both sides, with
(iii) this gives the left transitivity law, with the right transitivity law following similarly:

δ(g, h, b)⊗ δ(f, b, c) = k⊗ δ(g, h, b)⊗ δ(f, b, c) ≤
∨

a:x→z
δ(f, g, a)⊗ δ(a, h, c).

(ii)=⇒(i): When X is separated, given f : x→ y, g : y → z, there can only be one a : x→ z with
k ≤ δ(f, g, a): if there is also a′, consider the tetrahedron (f, g, 1z; a, g, a

′) to obtain k ≤ δ(a, 1z, a′),
whence a = a′; then, with g · f := a, it is also routine to show that the V-metric d induced by δ
satisfies the condition of Definition 2.5. (iii)=⇒(iii′) follows from the definition of <<, and with
the hypothesis

∨
{ε | ε << k} = k, (iii′) =⇒(iii) follows trivially.

The Proposition suggests the study those of V-metagories that allow for “composition up to
ε”. Hence, adapting the terminology used in [4], we define:

Definition 8.2. For ε ∈ V, a V-metagory X is ε-categorical if for all f : x→ y, g : y → z in X, there
is a : x → z in X with ε ≤ δ(f, g, a). We denote the corresponding full subcategory of MetagV
by ε-MetagV . We let TransMetagV denote the full subcategory of transitive V-metagories.

Remark 8.3. (1) By Proposition 8.1, the separated k-categorical V-metagories are precisely those
that are induced by separated V-metric categories.

(2) The ⊥-categorical metagories X are those satisfying the condition

X(x, y) 6= ∅, X(y, z) 6= ∅ =⇒ X(x, z) 6= ∅

for all x, y, z ∈ obX, which is used as the general hypothesis (7.1) in [4].

With a slight adaptation of the argumentation given in Proposition 8.1, one obtains the fol-
lowing inclusions between the three subcategories of MetagV that seem to deserve further study:

Theorem 8.4. Assume that the quantale V satisfies
∨
{ε⊗ ε | ε << k} = k. Then

k-MetagV ⊆
⋂
ε<<k

ε-MetagV ⊆ TransMetagV .

For V-metagories X and Y, if Y is k-categorical, so is [X,Y]. If both X and Y are k-categorical
or transitive, X⊗Y has the respective property; likewise for the property to be ε-categorical for all
ε << k.
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Proof. The first inclusion is trivial since ε << k implies ε ≤ k. For the second inclusion, one argues
similarly as for (iii)=⇒(iv) of Proposition 8.1. Indeed, for a V-metagory that is ε-categorical for all
ε << k, given f, g, h, b, c, one has aε with aε ≤ δ(f, g, aε). With the left associativity law applied
to the tetrahedron (f, g, h, aε, b, c) one obtains ε⊗ε⊗δ(g, h, b)⊗δ(f, b, c) ≤ δ(f, g, aε)⊗δ(aε, h, c).
Taking joins on both sides we obtain the left transitivity law.

To show that the property of being k-categorical or transitive gets transferred from X,Y to
X⊗Y is straightforward. To show the same for being ε-categorical for all ε << k, first observe that,
by hypothesis, for every such ε we have some η << k with ε ≤ η ⊗ η (that is: V has the halving
property). Then, given (f, f ′) : (x, x′) // (y, y′), (g, g′) : (y, y′) // (z, z′) in X⊗Y, exploiting the
hypothesis on X,Y at η rather than ε, we can find a : x // z in X, a′ : x′ // z′ in Y satisfying

ε ≤ η ⊗ η ≤ δX(f, g, a)⊗ δY(f ′, g′, a′) = δX⊗Y((f, f ′), (g, g′), (a, a′)).

The more surprising fact is that being k-categorical gets inherited by [X,Y] from Y (for which
one actually does not need the halving property), as we show now. Given natural transformers
α : F // G, β : G // H, it is clear that, assuming a choice principle, for all x ∈ obX one can
first find γx : Fx //Hx in Y with k ≤ δ(αx, βx, γx). Next, for every morphism f : x // y in X
that is not an identity morphism, we can then choose γf : Fx //Hy in Y with k ≤ δ(γx, Hf, γf );
for f = 1x, with the convention of writing γx for γ1x

, this last inequality holds trivially. In this
way γ = (γf )f :x→y satisfies already one of the two required conditions to qualify as a natural
transformer F //H; once we have verified the other, the proof is complete since, by choice of γx,
one trivially has k ≤ δ(α, β, γ). So, we are left with having to show k ≤ δ(Ff, γy, γf ), for all f .

To this end we observe first that the right associativity applied to (αx, βx, Hf ; γx, βf , γf ) gives

k = k⊗ k⊗ k ≤ δ(αx, βx, γx)⊗ δ(βx, Hf, βf )⊗ δ(γx, Hf, γf ) ≤ δ(αx, βf , γf ).

Next, exploiting the left associativity at the tetrahedron (αx, Gf, βy;αy, βf , γf ), we obtain

δ(αx, βf , γf ) = k⊗k⊗ δ(αx, βf , γf ) ≤ δ(αx, Gf, αf )⊗ δ(Gf, βy, βf )⊗ δ(αx, βf , γf ) ≤ δ(αf , βy, γf ).

Finally, with the right associativity law applied to (Ff, αy, βy;αf , γy, γf ) we have

δ(αf , βy, γf ) = k⊗ k⊗ δ(αf , βy, γf ) ≤ δ(Ff, αy, αf )⊗ δ(αy, βy, γy)⊗ δ(αf , βy, γf ) ≤ δ(Ff, γy, γf ),

as desired.

Remark 8.5. Recall that the complete lattice V is (constructively) completely distributive [21, 9]
if, for all v ∈ V, one has

∨
{u |u << v} = v. In this case, and in particular when V is completely

distributive in the classical sense [17], one trivially has
∨
{ε | ε << k} = k. Flagg [6] gives sufficient

conditions for the marginally stronger condition
∨
{ε ⊗ ε | ε << k} = k to hold; all quantales

mentioned in Remark 2.1 trivially satisfy (what we have termed above) the halving property.
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