Quantale-weighted Categories

Walter Tholen

York University, Toronto, Canada

75 Jiří Rosický 75

106th Peripatetic Seminar on Sheaves and Logic

Brno, Czech Republic, 14-15 May 2022

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow \rightarrow \leftarrow

 299

Bill's metric spaces: a tribute, fifty years in the making

F. W. Lawvere: Metric spaces, generalized logic, and closed categories *Rendiconti del Seminario Matematico e Fisico di Milano* 43:135–166, 1973. Republished in *Reprints in Theory and Applications of Categories* 1, 2002.

This paper not only introduces metric spaces as small categories enriched in the extended real half-line (considered as a symmetric monoidal-closed category under addition), but it is also the birthplace of *normed categories*, as categories enriched in a certain symmetric monoidal category of *normed sets*.

Slogan:

Taking enriched category theory as a conceptual guide is useful not only in algebra and topology, but also in the broad area of analysis.

 QQ

イロト イ部 トイヨ トイヨト

Bill's metric spaces: a tribute, fifty years in the making

F. W. Lawvere: Metric spaces, generalized logic, and closed categories *Rendiconti del Seminario Matematico e Fisico di Milano* 43:135–166, 1973. Republished in *Reprints in Theory and Applications of Categories* 1, 2002.

This paper not only introduces metric spaces as small categories enriched in the extended real half-line (considered as a symmetric monoidal-closed category under addition), but it is also the birthplace of *normed categories*, as categories enriched in a certain symmetric monoidal category of *normed sets*.

Slogan:

Taking enriched category theory as a conceptual guide is useful not only in algebra and topology, but also in the broad area of analysis.

イロト イ母 トイヨ トイヨト

 2990

Selected references that helped me prepare this talk

- A. Akhvlediani, M.M. Clementino, W.T.: On the categorical meaning of Hausdorff and Gromov distances I, Topology Appl., 2010
- A. Aliouche and C. Simpson: Fixed points and lines in 2-metric spaces, Advances in Math., 2012
- M. Grandis: Directed Algebraic Topology, Cambridge U Press, 2009
- D. Hofmann, G.J. Seal, W.T. (eds.): Monoidal Topology, Cambridge U Press, 2014
- M. Insall, D. Luckhardt: Norms on categories and analogs of the Schröder-Bernstein Theorem, arXiv, 2021
- W. Kubiś: Categories with norms, arXiv, 2018
- P. Perrone: Lifting couples in Wasserstein spaces, arXiv, 2021
- W.T.: Remarks on weighted categories and the non-symmetric Pompeiu-Hausdorff-Gromov metric, Talk at CT 2018 (Ponta Delgada)
- W.T., J. Wang: Metagories, Topology Appl., 2020.

 Ω

メロトメ 倒 トメ ミトメ

- 1 Metric spaces: From Frechet to Lawvere
- 2 Passing from the terminal quantale 1 to quantale-weighted categories a la Lawvere `
- 3 Some discussion of the axiomatics of weighted (or normed) categories
- 4 The connection between weighted categories and metrically enriched categories
- 5 Metrically enriched categories vs. metagories

4 0 3 4

 200

A categorical analysis of Frechet's axioms

A (classical) metric $d: X \times X \longrightarrow [0, \infty]$ on a set *X* satisfies

0-*Selfdistances*: $0 > d(x, x)$ 1 $\rightarrow X(x, x)$ ∇ -Inequality: $d(x, y) + d(y, z) \ge d(y, z)$ $X(x, y) \times X(y, z) \rightarrow X(x, z)$ *Symmetry: d*(*x*, *y*) = *d*(*y*, *x*) *X*(*x*, *y*) ≃ *X*(*y*, *x*) *Separation:* $d(x, y) = 0 = d(y, x) \implies x = y \quad X(x, y) \approx 1 \approx X(x, y) \implies x = y$ *Finiteness:* $\infty > d(x, y)$ $\emptyset \neq X(x, y)$

A map $f: X \to Y$ of metric spaces is non-expansive / short / 1-Lipschitz if

 $Contentraction:$ $\mathcal{O}(\mathcal{O}) \geq d(\mathit{fx}, \mathit{fx}')$ $\chi(x, x') \to Y(fx, fx')$

Lawvere's early advocate: Hausdoff's *Grundzüge der Mengenlehre*

Try to extend a (classical) metric *d* on a set *X* to all of its subsets *A*, *B*:

$$
d(A, B) = \sup_{x \in A} d(x, B) = \sup_{x \in A} \inf_{y \in B} d(x, y)
$$

(*"the minimal effort required to evacuate every inhabitant of A to the nearest point in B"*)

The only general survivors[∗] are the Lawvere conditions: 0-Selfdistances and ∇-Inequality! Standard rescue operations for the other conditions:

- \bullet Symmetrize coreflectively: $d_H(A, B) = \max\{d(A, B), d(B, A)\}$ (Hausdorff 1914) or "monoidally": $d_P(A, B) = d(A, B) + d(B, A)$ (Pompeiu 1907)
- **•** Enforce separation by considering closed sets only
- Enforce finiteness by considering only non-empty compact sets
- * ... and they survive even if we replace $[0,\infty]$ by a quantale $\mathcal V,$ as follows!

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Lawvere's early advocate: Hausdoff's *Grundzüge der Mengenlehre*

Try to extend a (classical) metric *d* on a set *X* to all of its subsets *A*, *B*:

$$
d(A, B) = \sup_{x \in A} d(x, B) = \sup_{x \in A} \inf_{y \in B} d(x, y)
$$

(*"the minimal effort required to evacuate every inhabitant of A to the nearest point in B"*)

The only general survivors[∗] are the Lawvere conditions: 0-Selfdistances and ∇ -Inequality! Standard rescue operations for the other conditions:

- \bullet Symmetrize coreflectively: $d_H(A, B) = \max\{d(A, B), d(B, A)\}\$ (Hausdorff 1914) or "monoidally": $d_P(A, B) = d(A, B) + d(B, A)$ (Pompeiu 1907)
- Enforce separation by considering closed sets only
- **•** Enforce finiteness by considering only non-empty compact sets

∗ ... and they survive even if we replace $[0, \infty]$ by a quantale V, as follows!

Lawvere's early advocate: Hausdoff's *Grundzüge der Mengenlehre*

Try to extend a (classical) metric *d* on a set *X* to all of its subsets *A*, *B*:

$$
d(A, B) = \sup_{x \in A} d(x, B) = \sup_{x \in A} \inf_{y \in B} d(x, y)
$$

(*"the minimal effort required to evacuate every inhabitant of A to the nearest point in B"*)

The only general survivors[∗] are the Lawvere conditions: 0-Selfdistances and ∇ -Inequality! Standard rescue operations for the other conditions:

- \bullet Symmetrize coreflectively: $d_H(A, B) = \max\{d(A, B), d(B, A)\}$ (Hausdorff 1914) or "monoidally": $d_P(A, B) = d(A, B) + d(B, A)$ (Pompeiu 1907)
- Enforce separation by considering closed sets only
- **•** Enforce finiteness by considering only non-empty compact sets
- * ... and they survive even if we replace $[0,\infty]$ by a quantale $\mathcal V,$ as follows!

• a (small) one-object 2-category V whose only hom-category $\mathcal{V}(*, *)$ is a cocomplete lattice, such that all functors $V(u, *)$, $V(*, u)$: $V(*, *)$ \longrightarrow $V(*, *)$ preserve colimits

a (small) thin, skeletal, cocomplete monoidal-closed category $\mathcal{V} = (\mathcal{V}, \leq, \otimes, \mathbf{k})$

- a monoid $\mathcal V$ in the symmetric monoidal-closed category $\textsf{Sup} = (\textsf{Sup}, \boxtimes, 2 = \mathcal P$ 1) of complete lattices with suprema-preserving maps (where morphisms $L \boxtimes M \longrightarrow N$ classify maps *L*×*M* −→ *N* preserving suprema in each variable; Joyal - Tierney 1984)
- a (small) one-object category enriched in **Sup** (a self-dual, monadic cat. over **Set**!)

 Ω

メロメメ 御きメ 重き メ唐 メー 重

- a (small) one-object 2-category V whose only hom-category $\mathcal{V}(*, *)$ is a cocomplete lattice, such that all functors $V(u, *)$, $V(*, u)$: $V(*, *)$ \longrightarrow $V(*, *)$ preserve colimits
- a (small) thin, skeletal, cocomplete monoidal-closed category $\mathcal{V} = (\mathcal{V}, \leq, \otimes, k)$
- a monoid $\mathcal V$ in the symmetric monoidal-closed category $\textsf{Sup} = (\textsf{Sup}, \boxtimes, 2 = \mathcal P$ 1) of complete lattices with suprema-preserving maps (where morphisms $L \boxtimes M \longrightarrow N$ classify maps *L*×*M* −→ *N* preserving suprema in each variable; Joyal - Tierney 1984)
- a (small) one-object category enriched in **Sup** (a self-dual, monadic cat. over **Set**!)

 Ω

メロメメ 御き メミメメ 急ず 一番

- a (small) one-object 2-category V whose only hom-category $\mathcal{V}(*, *)$ is a cocomplete lattice, such that all functors $V(u, *)$, $V(*, u)$: $V(*, *)$ \longrightarrow $V(*, *)$ preserve colimits
- a (small) thin, skeletal, cocomplete monoidal-closed category $\mathcal{V} = (\mathcal{V}, \leq, \otimes, k)$
- a monoid $\mathcal V$ in the symmetric monoidal-closed category $\operatorname{\mathsf{Sup}} = (\operatorname{\mathsf{Sup}}, \boxtimes, 2 = \mathcal P$ 1) of complete lattices with suprema-preserving maps (where morphisms $L \boxtimes M \longrightarrow N$ classify maps *L*×*M* −→ *N* preserving suprema in each variable; Joyal - Tierney 1984)

a (small) one-object category enriched in **Sup** (a self-dual, monadic cat. over **Set**!)

 Ω

イロト イ部 トイヨト イヨト 一君

- a (small) one-object 2-category V whose only hom-category $\mathcal{V}(*, *)$ is a cocomplete lattice, such that all functors $V(u, *)$, $V(*, u)$: $V(*, *)$ \longrightarrow $V(*, *)$ preserve colimits
- a (small) thin, skeletal, cocomplete monoidal-closed category $\mathcal{V} = (\mathcal{V}, \leq, \otimes, k)$
- a monoid $\mathcal V$ in the symmetric monoidal-closed category $\operatorname{\mathsf{Sup}} = (\operatorname{\mathsf{Sup}}, \boxtimes, 2 = \mathcal P$ 1) of complete lattices with suprema-preserving maps (where morphisms $L \boxtimes M \longrightarrow N$ classify maps *L*×*M* −→ *N* preserving suprema in each variable; Joyal - Tierney 1984)
- a (small) one-object category enriched in **Sup** (a self-dual, monadic cat. over **Set**!)

 Ω

イロト イ部 トイヨト イヨト 一君

In down-to-earth terms:

A quantale V is a complete lattice (V, \leq) that comes with a monoid structure (V, \otimes, k), such that the monoid multiplication ⊗ preserves suprema in each variable:

$$
u\otimes \bigvee_{i\in I} v_i=\bigvee_{i\in I} u\otimes v_i\;,\qquad (\bigvee_{i\in I} v_i)\otimes u=\bigvee_{i\in I} (v_i\otimes u)
$$

In order to avoid having to deal with two types of internal homs, throughout this talk I will assume that (the monoid) V is *commutative*:

$$
u\otimes v=v\otimes u, \qquad u\leq [v,w]\iff u\otimes v\leq w.
$$

Our first example: the terminal quantale $1 = \{ * \}$ (Wow!)

Other standards: the Boolean quantale $(2, \perp \lt T, \wedge, \top)$; in fact: any locale; the Lawvere quantale $([0, \infty], \geq, +, 0)$; the free quantale $(\mathcal{P}M, \subseteq, \cdot, \{e\})$ over a (comm.) monoid (M, \cdot, e) .

 2990

メロトメ 御 トメ 君 トメ 君 トー 君

A quantale V is a complete lattice (V, \leq) that comes with a monoid structure (V, \otimes, k), such that the monoid multiplication ⊗ preserves suprema in each variable:

$$
u\otimes \bigvee_{i\in I} v_i=\bigvee_{i\in I} u\otimes v_i\;,\qquad (\bigvee_{i\in I} v_i)\otimes u=\bigvee_{i\in I} (v_i\otimes u)
$$

In order to avoid having to deal with two types of internal homs, throughout this talk I will assume that (the monoid) V is *commutative*:

$$
u\otimes v=v\otimes u,\qquad u\leq [v,w]\iff u\otimes v\leq w.
$$

Our first example: the terminal quantale $1 = \{ * \}$ (Wow!)

Other standards: the Boolean quantale $(2, \perp \lt T, \wedge, \top)$; in fact: any locale; the Lawvere quantale $([0, \infty], \geq, +, 0)$; the free quantale $(\mathcal{P}M, \subseteq, \cdot, \{e\})$ over a (comm.) monoid (M, \cdot, e) .

 2990

イロトメ 倒 トメ きとメ きょうき

A quantale V is a complete lattice (V, \leq) that comes with a monoid structure (V, \otimes, k), such that the monoid multiplication ⊗ preserves suprema in each variable:

$$
u\otimes \bigvee_{i\in I} v_i=\bigvee_{i\in I} u\otimes v_i\;,\qquad (\bigvee_{i\in I} v_i)\otimes u=\bigvee_{i\in I} (v_i\otimes u)
$$

In order to avoid having to deal with two types of internal homs, throughout this talk I will assume that (the monoid) V is *commutative*:

$$
u\otimes v=v\otimes u,\qquad u\leq [v,w]\iff u\otimes v\leq w.
$$

Our first example: the terminal quantale $1 = \{ * \}$ (Wow!)

Other standards: the Boolean quantale $(2, \perp \langle \top, \wedge, \top)$; in fact: any locale; the Lawvere quantale $([0, \infty], \geq, +, 0)$; the free quantale $(\mathcal{PM}, \subseteq, \cdot, \{e\})$ over a (comm.) monoid (M, \cdot, e) .

 2990

イロト イ部 トイヨト イヨト 一君

The thin category (V, \leq) over **1**, and applying Fam to them

 $(V, \leq) \longrightarrow \text{Fam}(V, \leq) = \text{Set}/V$ $(I \longrightarrow \frac{\varphi_k}{\sqrt{k}} \longrightarrow J_k)_{k \in K}$ initial $\iff |i| = \bigwedge |\varphi_k i|$ $\mathbf{i} \longrightarrow \text{Fam}(\mathbf{1}) = \mathbf{Set}$ v^{\swarrow} \vdash *k*∈*K*

Walter Tholen (York University) Cuantale-weighted Categories PSSL106 9/27

 298

The thin category (V, \leq) over 1, and applying Fam to them

$$
1 \xrightarrow{i} \text{Fam}(1) = \text{Set} \qquad \qquad * \longmapsto 1
$$
\n
$$
(\mathcal{V}, \leq) \xrightarrow{i} \text{Fam}(\mathcal{V}, \leq) = \text{Set} / \mathcal{V} \qquad (\mathcal{U} \leq \mathcal{V}) \longmapsto 1 \xrightarrow[\mathcal{U}, \leq \mathcal{V}]} 1
$$

Set//*V*:
\n
$$
I \longrightarrow \bigcup_{u=|-|-\infty}^{\infty} J \iff \forall i \in I : |i| \leq |v_i|
$$
\n
$$
u = |-\setminus \bigcup_{v=1}^{\infty} |-\setminus v|
$$
\n
$$
V \longrightarrow \bigcup_{v=1}^{\infty} |-\setminus v|
$$

Walter Tholen (York University) Channel Controller Categories PSSL106 9/27

The thin category (V, \leq) over 1, and applying Fam to them

$$
1 \xrightarrow{i} \text{Fam}(1) = \text{Set} \qquad * \longmapsto 1
$$
\n
$$
(\mathcal{V}, \leq) \xrightarrow{i} \text{Fam}(\mathcal{V}, \leq) = \text{Set} / \mathcal{V} \qquad (u \leq v) \longmapsto 1 \xrightarrow{v} \mathcal{V}
$$
\n
$$
\mathcal{V} \qquad \qquad \downarrow \qquad
$$

Set//V:

\n
$$
I \longrightarrow J \iff V \in I: \ U_{i} \leq V_{\varphi i} \iff V \in I: |i| \leq |\varphi i|
$$
\n
$$
u = |-|\bigvee_{\nu} I - |=v|
$$
\n
$$
(\nu, \leq) \xrightarrow{i} \text{Fam}(\nu, \leq) = \text{Set} / /V \qquad (I \longrightarrow \varphi_{k} \to J_{k})_{k \in K} \quad \text{initial} \iff |i| = \bigwedge_{k \in K} |\varphi_{k}|
$$
\ntopological

\n
$$
1 \longrightarrow \text{Fam}(1) = \text{Set}
$$
\nLet $\bigvee_{\nu} I \subseteq V$ and $\bigvee_{\nu} I \$

Walter Tholen (York University) Channel Controller Categories PSSL106 9/27

The thin category (\mathcal{V}, \leq) over **1**, and applying Fam to them

$$
1 \xrightarrow{\text{i}} \text{Fam}(1) = \text{Set} \qquad \qquad * \longmapsto 1
$$
\n
$$
(\mathcal{V}, \leq) \xrightarrow{\text{i}} \text{Fam}(\mathcal{V}, \leq) = \text{Set} / \mathcal{V} \qquad (\mathcal{U} \leq \mathcal{V}) \longmapsto 1 \xrightarrow{\text{i}} \mathcal{V} \qquad \qquad \mathcal{V}
$$

Set//
$$
\mathcal{V}: \qquad I \longrightarrow J \iff \forall i \in I: \ |i| \leq |\varphi i|
$$

\n $u = |-|\sqrt{\sum_{\substack{\kappa \\ \kappa \\ \text{topological} \neq \kappa}} 1 - | = v}$
\n $(\mathcal{V}, \leq) \longrightarrow \text{Fam}(\mathcal{V}, \leq) = \text{Set} / / \mathcal{V} \qquad (1 \longrightarrow \frac{\varphi_k}{\sqrt{\sum_{\substack{\kappa \\ \kappa \\ \kappa}} 1 - | = 1}} \longrightarrow \text{Fam}(\mathbf{1}) = \text{Set}$
\n \downarrow

Walter Tholen (York University) Channel Controller Categories PSSL106 9/27

The category of V -weighted sets is symmetric monoidal-closed

$$
I \otimes J = (1 \times J, |(i,j)| = |i| \otimes |j|), \quad E = (1 = \{*\}, |*| = k)
$$

[*I*, *J*] = (**Set**(*I*, *J*), $|\varphi| = \bigwedge_{i \in I} [|i|, |\varphi i|]$)

We obtain a commutative diagram of (strict) homomorphisms of monoidal categories:

$$
(\mathcal{V}, \le) \xrightarrow{\mathbf{i}} \operatorname{Fam}(\mathcal{V}, \le) = \mathbf{Set} / \mathcal{V} \qquad \qquad \mathbf{s} \mathbf{l} = \bigvee_{i \in \mathbf{l}} |i|
$$
\n
$$
\mathbf{1} \xrightarrow{\mathbf{i}} \operatorname{Fam}(\mathbf{1}) = \mathbf{Set}
$$

In addition, the straight arrows preserve also the internal homs.

Furthermore: the left adjoint s preserves products iff $\mathcal V$ is completely distributive.

 2990

 $\overline{r} \overline{r} \rightarrow \overline{r} \rightarrow \overline{r} \rightarrow \overline{r} \rightarrow \overline{r} \rightarrow \overline{r} \rightarrow \overline{r}$

4 0 3 4

The category of V -weighted sets is symmetric monoidal-closed

$$
I \otimes J = (1 \times J, |(i,j)| = |i| \otimes |j|), \quad E = (1 = \{*\}, |*| = k)
$$

[*I*, *J*] = (**Set**(*I*, *J*), $|\varphi| = \bigwedge_{i \in I} [|i|, |\varphi i|]$)

We obtain a commutative diagram of (strict) homomorphisms of monoidal categories:

$$
(\mathcal{V}, \leq) \xrightarrow{\mathbf{i} \to \text{Fam}(\mathcal{V}, \leq)} \text{Set} / \mathcal{V} \qquad \qquad \mathbf{s} \mathbf{l} = \bigvee_{i \in \mathbf{l}} |i|
$$
\n
$$
\mathbf{1} \xrightarrow{\mathbf{i} \to \text{Fam}(\mathbf{1})} \text{Set}
$$

In addition, the straight arrows preserve also the internal homs.

Furthermore: the left adjoint s preserves products iff $\mathcal V$ is completely distributive.

 2990

 \overline{m}) \rightarrow \overline{m}) \rightarrow \overline{m})

The category of V -weighted sets is symmetric monoidal-closed

$$
I \otimes J = (1 \times J, |(i,j)| = |i| \otimes |j|), \quad E = (1 = \{*\}, |*| = k)
$$

[*I*, *J*] = (**Set**(*I*, *J*), $|\varphi| = \bigwedge_{i \in I} [|i|, |\varphi i|]$)

We obtain a commutative diagram of (strict) homomorphisms of monoidal categories:

$$
(\mathcal{V}, \leq) \xrightarrow{\mathbf{i}} \text{Fam}(\mathcal{V}, \leq) = \text{Set} / \mathcal{V} \qquad \qquad \mathbf{s} \mathbf{l} = \bigvee_{i \in \mathbf{l}} |i|
$$
\n
$$
\mathbf{1} \xrightarrow{\mathbf{i}} \text{Fam}(\mathbf{1}) = \text{Set}
$$

In addition, the straight arrows preserve also the internal homs.

Furthermore: the left adjoint s preserves products iff $\mathcal V$ is completely distributive.

ヨメ イヨメ

Form the corresponding categories of small enriched categories...

... and their change-of-base functors:

What is **Cat**//V? What is i? What is s?

4 0 3 4

つへへ

Form the corresponding categories of small enriched categories...

... and their change-of-base functors:

What is **Cat**//V? What is i? What is s?

4 D F

つへへ

The category $\text{Cat}/\text{/}\mathcal{V}$ of (small) \mathcal{V} -weighted categories

For a (small) category X to be enriched in $\text{Fam}(\mathcal{V}, \leq)$ **Set**// \mathcal{V} means (without quantifiers):

$$
\mathbb{X}(x,y) \otimes \mathbb{X}(y,z) \longrightarrow \mathbb{X}(x,z) \text{ and } E \longrightarrow \mathbb{X}(x,x) \text{ live in } \mathsf{Set}/\!/\mathcal{V}
$$
\n
$$
\iff |f| \otimes |g| = |(f,g)| \le |g \cdot f| \text{ and } k \le |1_x|
$$
\n
$$
\iff | \cdot | : \mathbb{X} \longrightarrow (\mathcal{V}, \otimes, k) \text{ is a lax functor}
$$

For a functor $F : \mathbb{X} \longrightarrow \mathbb{Y}$ to be enriched in **Set**//V means (without quantifiers):

$$
\begin{array}{ll}\n & \mathbb{X}(x, y) \longrightarrow \mathbb{Y}(Fx, Fy) & \text{lives in } \mathbf{Set} // \mathcal{V} \\
 & \Longleftrightarrow & |f| \leq |Ff| \\
 & \Longleftrightarrow & \mathbb{X} \xrightarrow{\qquad F} \mathbb{Y} \\
 & & \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \q
$$

 299

メロトメ 御 トメ ミトメ ミト

The category $\text{Cat}/\text{/}\mathcal{V}$ of (small) \mathcal{V} -weighted categories

For a (small) category X to be enriched in $\text{Fam}(\mathcal{V}, \leq)$ **Set**// \mathcal{V} means (without quantifiers):

$$
\mathbb{X}(x,y) \otimes \mathbb{X}(y,z) \longrightarrow \mathbb{X}(x,z) \text{ and } E \longrightarrow \mathbb{X}(x,x) \text{ live in } \mathsf{Set}/\!/\mathcal{V}
$$

\n
$$
\iff |f| \otimes |g| = |(f,g)| \le |g \cdot f| \text{ and } k \le |1_x|
$$

\n
$$
\iff | \cdot | : \mathbb{X} \longrightarrow (\mathcal{V}, \otimes, k) \text{ is a lax functor}
$$

For a functor $F : \mathbb{X} \longrightarrow \mathbb{Y}$ to be enriched in **Set**//V means (without quantifiers):

$$
\begin{array}{ccc}\n & \mathbb{X}(x,y) \longrightarrow \mathbb{Y}(Fx, Fy) & \text{lives in Set} \text{ } // \mathcal{V} \\
 & \Longleftrightarrow & |f| \leq |Ff| \\
 & \Longleftrightarrow & \mathbb{X} \xrightarrow{F} \mathbb{Y} \\
 & & |f| \searrow \swarrow |f| \\
 & & \mathcal{V} \end{array}
$$

 2990

メロトメ 伊 トメ ミトメ ミト

The adjunction $s \dashv i$, monoidal(-closed) structures, preserved by i, s

V -Cat	$Cat//V$
$X, X(x, y) \otimes X(y, z) \le X(x, z)$	$\overrightarrow{} \text{ } iX, \text{ } ob(iX) = X$
$k \le X(x, x)$	$x \xrightarrow{(x, y)} y, (x, y) = X(x, y)$
$sX = obX, sX(x, y) = \sqrt{ f } f : x \rightarrow y$	$\overrightarrow{} \text{ } X, f \otimes g \le g \cdot f $
$X \otimes Y = X \times Y \text{ (as a set)}$	$X \otimes Y = X \times Y \text{ (as a category)}$
$(X \otimes Y)((x, y), (x', y')) = X(x, x') \otimes Y(y, y')$	$ (f, g) = f \otimes g $
$[X, Y] = V$ -Cat (X, Y) (as a set)	$[X, Y] = (Cat//V)(X, Y) \text{ (as a cat)}$
$[X, Y](f, g) = \bigwedge_{x \in X} Y(tx, gx)$	$ F \xrightarrow{\alpha} G = \bigwedge_{x \in obX} a_x $

Example: $(\mathcal{V}, \leq, \otimes, k) = (2, \perp \lt \top, \wedge, \top)$

2-**Cat** = **Ord Cat**//2 = **sCat** *X*, $x < y$ ∧ $y < z$ $\implies x < z$ ✤ \overrightarrow{X} i*X*, ob(i*X*) = *X* $\top \implies x \leq x$ $\xrightarrow{(x,y)} y$ \in *S* \Longleftrightarrow *x* \leq *y*

$$
sX = obX, \quad x \le y \Longleftrightarrow \exists (f: x \rightarrow y) \in S \quad \stackrel{s}{\longleftarrow} \quad X, S, \quad f, g \in S \implies g \cdot f \in S
$$

$$
\top \implies 1_x \in S
$$

 $X \otimes Y = X \times Y$ $\mathbb{X} \otimes \mathbb{Y} = \mathbb{X} \times \mathbb{Y}$ (as a category) $(x, y) \leq (x', y') \iff x \leq x' \land y \leq y$

 $[X, Y] = \text{Ord}(X, Y)$ $f < a \Longleftrightarrow \forall x \in X : fx < ax$ $\mathcal{S}_{\mathbb{X}\otimes\mathbb{Y}}=\mathcal{S}_{\mathbb{X}}\times\mathcal{S}_{\mathbb{Y}}$

$$
[\mathbb{X}, \mathbb{Y}] = \text{sCat}(\mathbb{X}, \mathbb{Y}) \text{ (as a cat)}\n\alpha \in \mathcal{S}_{[\mathbb{X}, \mathbb{Y}]} \iff \forall x \in \text{obX} : \alpha_x \in \mathcal{S}_{\mathbb{Y}}
$$

K □ ▶ K @ ▶ K 로 ▶ K 로 ▶ _ 로 _ K 9 Q @

Example: $(V, \leq, \otimes, k) = ([0, \infty], >, +, 0)$

 $[0, \infty]$ **-Cat** = **Met** *X*, $d(x, y) + d(y, z) \ge d(x, z)$ ✤ 0 $> d(x, x)$

$$
sX = obX, \quad d(x, y) = \inf_{f:x \to y} |f|
$$

$$
\begin{aligned}\n\mathbf{Cat} & \quad |[0, \infty] = \mathbf{wCat} \\
\downarrow & \downarrow \qquad \text{if } X, \quad \text{ob}(iX) = X \\
& \quad x \xrightarrow{(x,y)} y \,, \quad |(x,y)| = d(x,y)\n\end{aligned}
$$

$$
\begin{array}{ll}\n \mathbf{s} & \mathbf{X}, \quad |f| + |g| \geq |g \cdot f| \\
 \mathbf{0} \geq |1_x|\n \end{array}
$$

 $X \otimes Y = X \times Y$ $\mathbb{X} \otimes \mathbb{Y} = \mathbb{X} \times \mathbb{Y}$ (as a category) $d((x, y), (x', y')) = d(x, y) + d(y, y')$

 $d(f,g) = \sup d(fx, gx)$ | *F x*∈*X*

 $|(f, g)| = |f| + |g|$

 $[X, Y] = Met(X, Y)$ $[\mathbb{X}, \mathbb{Y}] = WCat(\mathbb{X}, \mathbb{Y})$ (as a cat) $\frac{\alpha}{\longrightarrow} G \mid \, = \, \sup \, |\alpha_x|$ *x*∈obX

o

 2990

イロト イ何 トイヨ トイヨ トーヨー

We saw:

 V -categories (and their functors) are V -weighted categories (and their functors); in fact, they are precisely the $\mathcal V$ weighted categories with indiscrete underlying category.

Question: May **Set** be "naturally" [0, ∞]-weighted?

Goal 1: Let |*f*| measure the degree to which a map $f: X \rightarrow Y$ fails to be surjective.

Simply put $|f| := \#(Y \setminus f(X)) \in \mathbb{N} \cup \{\infty\} \subseteq [0, \infty].$

Then: $0 > |id_x|$, and with $g: Y \rightarrow Z$ we have $|f| + |g| > |g \cdot f|$

since (assuming Choice and $Y \cap Z = \emptyset$) there is an injective map

 $Z \setminus (g(f(X))) \longrightarrow (Y \setminus f(X)) + (Z \setminus g(Y)).$

Note: *f* surjective \iff $|f| = 0$.

We saw:

 V -categories (and their functors) are V -weighted categories (and their functors); in fact, they are precisely the $\mathcal V$ weighted categories with indiscrete underlying category.

Question: May **Set** be "naturally" [0, ∞]-weighted?

Goal 1: Let |*f*| measure the degree to which a map $f: X \to Y$ fails to be surjective.

Simply put $|f| := \#(Y \setminus f(X)) \in \mathbb{N} \cup \{\infty\} \subseteq [0,\infty].$

Then: $0 \geq |id_X|$, and with $g: Y \rightarrow Z$ we have $|f| + |g| \geq |g \cdot f|$

since (assuming Choice and $Y \cap Z = \emptyset$) there is an injective map

$$
Z\setminus (g(f(X)))\longrightarrow (Y\setminus f(X)) + (Z\setminus g(Y)).
$$

Note: *f* surjective \Longleftrightarrow $|f| = 0$.

We saw:

 V -categories (and their functors) are V -weighted categories (and their functors); in fact, they are precisely the $\mathcal V$ weighted categories with indiscrete underlying category.

Question: May **Set** be "naturally" [0, ∞]-weighted?

Goal 1: Let |*f*| measure the degree to which a map $f: X \to Y$ fails to be surjective.

Simply put $|f| := \#(Y \setminus f(X)) \in \mathbb{N} \cup \{\infty\} \subseteq [0,\infty].$

Then: $0 \geq |id_X|$, and with $g: Y \rightarrow Z$ we have $|f| + |g| \geq |g \cdot f|$

since (assuming Choice and $Y \cap Z = \emptyset$) there is an injective map

$$
Z\setminus (g(f(X)))\longrightarrow (Y\setminus f(X)) + (Z\setminus g(Y)).
$$

Note: *f* surjective \iff $|f| = 0$.

Question: May something similar be done for injectivity? That is:

Goal 2: Let |*f*| measure the degree to which a map $f : X \to Y$ fails to be injective.

 $\textsf{First consider\ \texttt{\#}f} := \sup_{\mathsf{y} \in \mathsf{Y}} \# f^{-1}\mathsf{y}; \text{ then, with } g: \mathsf{Y} \rightarrow \mathsf{Z}, \text{ we have:}$

$$
\#g \cdot \#f = (\sup_{z \in Z} \#g^{-1}z) \cdot (\sup_{y \in Y} \#f^{-1}y) \ge \sup_{z \in Z} \#(\bigcup_{y \in g^{-1}z} f^{-1}y) = \#(g \cdot f), \quad 1 \ge \#id_X
$$

Not what we wanted! But $([1,\infty],\geq, \cdot, 1) \longrightarrow$ $\stackrel{=}{\Longrightarrow}([0,\infty],\geq,+,0)$ comes to the rescue: Put $|f| := \max\{0, \log \# f\}$; then: $|g| + |f| > |g \cdot |f|$. $0 > |id_x|$. Note: *f* injective \iff $|f| = 0$.

Question: May something similar be done for injectivity? That is:

Goal 2: Let |*f*| measure the degree to which a map $f : X \to Y$ fails to be injective.

 $\textsf{First consider\ \texttt{\#}f} := \sup_{\mathsf{y} \in \mathsf{Y}} \# f^{-1}\mathsf{y}; \text{ then, with } g: \mathsf{Y} \rightarrow \mathsf{Z}, \text{ we have:}$

$$
\#g \cdot \#f = (\sup_{z \in Z} \#g^{-1}z) \cdot (\sup_{y \in Y} \#f^{-1}y) \ge \sup_{z \in Z} \#(\bigcup_{y \in g^{-1}z} f^{-1}y) = \#(g \cdot f), \quad 1 \ge \#id_X
$$

Not what we wanted! But $([1,\infty],\geq, \cdot, 1) \longrightarrow$ $\stackrel{\equiv}{\equiv}_{\log}([0,\infty],\geq,+,0)$ comes to the rescue: Put $|f| := \max\{0, \log \#f\}$; then: $|g| + |f| > |g|$. $|f|$. $0 > |id_x|$. Note: *f* injective \iff $|f| = 0$.

ob $\text{Lip} = \text{ob Met}$, $\text{Lip}(X, Y) = \text{Set}(X, Y)$; why call this category Lip ??

 $\mathsf{Recall:} \quad f: X \to Y \text{ is } K(\geq 0)\text{-Lipschitz} \quad \Longleftrightarrow \forall x \neq x': d(fx, fx') \leq K d(x, x')$

In particular: $f : X \to Y$ is a morphism in **Met** $\iff f$ is 1-Lipschitz

Question: How far is an arbitrary map *f* away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant $K > 1$ for *f* (admitting $K = \infty$)

That is: $\qquad \text{Lip}(f) = \text{max}\{1, \text{ sup} \}$ $x \neq x'$ $d(tx,tx')$ $\frac{d(x, y, y)}{d(x, x')}$ (assuming temporarily that *X* be separated)

Then: $\text{Lip}(g) \cdot \text{Lip}(f) \ge \text{Lip}(g \cdot f), \quad 1 \ge \text{Lip}(\text{id}_X)$

No problem:

$$
([1,\infty],\geq,\cdot,1)\xrightarrow[\log]{\cong} ([0,\infty],\geq,+,0) , \quad |f|=\max\{0,\sup_{x,x'}(\log d(fx,fx')-\log d(x,x'))\}
$$

Then: $|g| + |f| \ge |g \cdot f|$ $|g| + |f| \ge |g \cdot f|$ $|g| + |f| \ge |g \cdot f|$, $0 \ge |id_X|$ $0 \ge |id_X|$, $(f \cdot Lipschitz \iff |f| = 0)$ $(f \cdot Lipschitz \iff |f| = 0)$ $(f \cdot Lipschitz \iff |f| = 0)$ $(f \cdot Lipschitz \iff |f| = 0)$

Walter Tholen (York University) Channel Controller Categories PSSL106 18/27

ob $\text{Lip} = \text{ob Met}$, $\text{Lip}(X, Y) = \text{Set}(X, Y)$; why call this category Lip ??

 $\mathsf{Recall:} \quad f: X \to Y \text{ is } \mathcal{K}(\geq 0)\text{-Lipschitz} \quad \Longleftrightarrow \forall x \neq x': \mathcal{d}(f x, f x') \leq \mathcal{K} \mathcal{d}(x, x')$

In particular: $f: X \to Y$ is a morphism in **Met** $\iff f$ is 1-Lipschitz

Question: How far is an arbitrary map *f* away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant $K > 1$ for *f* (admitting $K = \infty$)

That is: $\qquad \text{Lip}(f) = \text{max}\{1, \text{ sup} \}$ $x \neq x'$ $d(tx,tx')$ $\frac{d(x, y, y)}{d(x, x')}$ (assuming temporarily that *X* be separated)

Then: $\text{Lip}(g) \cdot \text{Lip}(f) \ge \text{Lip}(g \cdot f), \quad 1 \ge \text{Lip}(\text{id}_X)$

No problem:

 $([1, \infty], \geq, \cdot, 1) \frac{2}{\pi}$ $\frac{1}{\log}\left([0,\infty],\geq,+,0\right),\quad |f|=\max\{0,\;\sup_{x\in\mathcal{X}}% \frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\$ $\sup_{x,x'}$ (log $d(tx,tx') - \log d(x,x'))\}$

Then: $|g| + |f| \ge |g \cdot f|$ $|g| + |f| \ge |g \cdot f|$ $|g| + |f| \ge |g \cdot f|$, $0 \ge |id_X|$ $0 \ge |id_X|$, $(f \cdot Lipschitz \iff |f| = 0)$ $(f \cdot Lipschitz \iff |f| = 0)$ $(f \cdot Lipschitz \iff |f| = 0)$ $(f \cdot Lipschitz \iff |f| = 0)$

ob $\text{Lip} = \text{ob Met}$, $\text{Lip}(X, Y) = \text{Set}(X, Y)$; why call this category Lip ??

 $\mathsf{Recall:} \quad f: X \to Y \text{ is } \mathcal{K}(\geq 0)\text{-Lipschitz} \quad \Longleftrightarrow \forall x \neq x': \mathcal{d}(f x, f x') \leq \mathcal{K} \mathcal{d}(x, x')$

In particular: $f: X \to Y$ is a morphism in **Met** $\iff f$ is 1-Lipschitz

Question: How far is an arbitrary map *f* away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant $K > 1$ for f (admitting $K = \infty$)

 $\textsf{That is:} \qquad \textsf{Lip}(f) = \textsf{max}\{1,\, \textsf{sup} \}$ $x \neq x'$ $d(tx,tx')$ $\frac{d(x, y, y)}{d(x, x')}$ (assuming temporarily that X be separated)

Then: $\text{Lip}(g) \cdot \text{Lip}(f) \ge \text{Lip}(g \cdot f), \quad 1 \ge \text{Lip}(\text{id}_X)$

No problem:

 $([1, \infty], \geq, \cdot, 1) \frac{2}{\pi}$ $\frac{1}{\log}\left([0,\infty],\geq,+,0\right),\quad |f|=\max\{0,\;\sup_{x\in\mathcal{X}}% \frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\frac{1}{\log\left(\$ $\sup_{x,x'}$ (log $d(tx,tx') - \log d(x,x'))\}$

Then: $|g| + |f| \ge |g \cdot f|$ $|g| + |f| \ge |g \cdot f|$ $|g| + |f| \ge |g \cdot f|$, $0 \ge |id_X|$ $0 \ge |id_X|$, $(f \cdot Lipschitz \iff |f|_{\alpha} = 0)$ $(f \cdot Lipschitz \iff |f|_{\alpha} = 0)$ $(f \cdot Lipschitz \iff |f|_{\alpha} = 0)$ $(f \cdot Lipschitz \iff |f|_{\alpha} = 0)$

ob **Lip** = ob **Met**, **Lip**(*X*, *Y*) = **Set**(*X*, *Y*); why call this category **Lip** ??

 $\mathsf{Recall:} \quad f: X \to Y \text{ is } \mathcal{K}(\geq 0)\text{-Lipschitz} \quad \Longleftrightarrow \forall x \neq x': \mathcal{d}(f x, f x') \leq \mathcal{K} \mathcal{d}(x, x')$

In particular: $f : X \to Y$ is a morphism in **Met** $\iff f$ is 1-Lipschitz

Question: How far is an arbitrary map *f* away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant $K > 1$ for *f* (admitting $K = \infty$)

 $\textsf{That is:} \qquad \textsf{Lip}(f) = \textsf{max}\{1,\, \textsf{sup} \}$ $x \neq x'$ $d(tx,tx')$ $\frac{d(x, y, y)}{d(x, x')}$ (assuming temporarily that X be separated)

Then: $\text{Lip}(g) \cdot \text{Lip}(f) \ge \text{Lip}(g \cdot f), \quad 1 \ge \text{Lip}(\text{id}_X)$

No problem:

$$
([1, \infty], \geq, \cdot, 1) \xrightarrow[\log]{\cong} ([0, \infty], \geq, +, 0), \quad |f| = \max\{0, \sup_{x, x'} (\log d(fx, fx') - \log d(x, x'))\}
$$

Then: $|g| + |f| \geq |g \cdot f|, \quad 0 \geq |\text{id}_X|, \quad (f \text{ 1-Lipschitz} \Longleftrightarrow |f|_{\cong} = 0),$

 299

On the axiomatics for weighted/normed categories

The category X is V-weighted by
$$
|-|: X \longrightarrow V
$$
 if
\n $k \le |1_x|$
\n $|g| \otimes |f| \le |g \cdot f|$ $\iff |f| \le |\Lambda[|g|, |g \cdot f|]$ $\iff |f| = |\Lambda[|g|, |g \cdot f|]$
\n $\iff |g| \le |\Lambda[|f|, |g \cdot f|]$ $\iff |g| = |\Lambda[|f|, |g \cdot f|]$
\n f

The V-weighted category X is *right/left cancellable* if

$$
|f| \otimes |g \cdot f| \le |g| \qquad \iff |f| \le \bigwedge_{g} [|g \cdot f|, |g|] =: |f|^R \qquad \text{(right cancellable)}
$$
\n
$$
|g| \otimes |g \cdot f| \le |f| \qquad \iff |g| \le \bigwedge_{f} [|g \cdot f|, |f|] =: |g|^L \qquad \text{(left cancellable; Kubiś: "norm")}
$$
\nFactors (Insall-Luckhardt for $\mathcal{V} = [0, \infty]$): \quad X weighted by $|\cdot| \implies X$ weighted by $|\cdot|^R$ and $|\cdot|^{L}$, and $|f| \le |f|^{RR}$, $|f| \le |f|^{LL}$.

 2990

メロトメ 御 トメ 君 トメ 君 トッ 君

On the axiomatics for weighted/normed categories

The category X is V-weighted by
$$
|-|: X \longrightarrow V
$$
 if
\n $k \le |1_x|$
\n $|g| \otimes |f| \le |g \cdot f|$ $\iff |f| \le \bigwedge_{g} [|g|, |g \cdot f|]$ $\iff |f| = \bigwedge_{g} [|g|, |g \cdot f|]$
\n $\iff |g| \le \bigwedge_{f} [|f|, |g \cdot f|]$ $\iff |g| = \bigwedge_{f} [|f|, |g \cdot f|]$

The V-weighted category X is *right/left cancellable* if

$$
|f| \otimes |g \cdot f| \le |g| \qquad \iff |f| \le \bigwedge_{g} [|g \cdot f|, |g|] =: |f|^R \qquad \text{(right cancellable)}
$$
\n
$$
|g| \otimes |g \cdot f| \le |f| \qquad \iff |g| \le \bigwedge_{g} [|g \cdot f|, |f|] =: |g|^L \qquad \text{(left cancellable; Kubi's: "norm")}
$$

Facts (Insall-Luckhardt for $\mathcal{V} = [0,\infty]$): \bar{X} weighted by $\lvert\cdot\rvert \Longrightarrow \bar{X}$ weighted by $\lvert\cdot\rvert^R$ and $\lvert\cdot\rvert^L$, and $|f| \leq |f|^{RR}, |f| \leq |f|^{LL}.$

 \equiv 990

On the axiomatics for weighted/normed categories

The category X is V-weighted by
$$
|-|: X \longrightarrow V
$$
 if
\n $k \le |1_x|$
\n $|g| \otimes |f| \le |g \cdot f|$ $\iff |f| \le \bigwedge_{g} [|g|, |g \cdot f|]$ $\iff |f| = \bigwedge_{g} [|g|, |g \cdot f|]$
\n $\iff |g| \le \bigwedge_{f} [|f|, |g \cdot f|]$ $\iff |g| = \bigwedge_{f} [|f|, |g \cdot f|]$

The V-weighted category X is *right/left cancellable* if

$$
|f| \otimes |g \cdot f| \le |g| \qquad \iff |f| \le \bigwedge_{g} [|g \cdot f|, |g|] =: |f|^R \qquad \text{(right cancellable)}
$$
\n
$$
|g| \otimes |g \cdot f| \le |f| \qquad \iff |g| \le \bigwedge_{f} [|g \cdot f|, |f|] =: |g|^L \qquad \text{(left cancellable; Kubiś: "norm")}
$$
\n
$$
\text{Facts (Insall-Luckhardt for } \mathcal{V} = [0, \infty]) : \quad \mathbb{X} \text{ weighted by } | \cdot | \implies \mathbb{X} \text{ weighted by } | \cdot |^R \text{ and } | \cdot |^L,
$$

 $^{\rm R}$ and $\vert\text{-}\vert^{\rm L},$ and $|f| \leq |f|^{RR}, |f| \leq |f|^{LL}.$ KA BIX K BIX DE YORO

Note:

An isomorphism *f* in X may not satisfy $k < |f|$, and even when it does, we may not have k ≤ |*f* −1 | (unless the weight is left/right cancellable). Still, in many of the examples with $V = [0, \infty]$ considered in the literature, morphisms f, and especially isomorphisms, of norm 0 play an important role. They are called "modulators" by Insall-Luckhardt.

Question:

What is the "enriched significance" of considering morphisms f with $k < |f|$?

Answer:

These are precisely the morphisms of the underlying ordinary category \mathbb{X}_0 of the (**Set**//V)-enriched category X.

 QQQ

 $A \cup B \cup A \cap B \cup A \subseteq B \cup A \subseteq B \cup B$

Note:

An isomorphism *f* in X may not satisfy $k \leq |f|$, and even when it does, we may not have k ≤ |*f* −1 | (unless the weight is left/right cancellable). Still, in many of the examples with $V = [0, \infty]$ considered in the literature, morphisms f, and especially isomorphisms, of norm 0 play an important role. They are called "modulators" by Insall-Luckhardt.

Question:

What is the "enriched significance" of considering morphisms f with $k < |f|$?

Answer:

These are precisely the morphisms of the underlying ordinary category \mathbb{X}_0 of the (**Set**//V)-enriched category X.

 Ω

 $A \cup B \cup A \cap B \cup A \subseteq B \cup A \subseteq B \cup B$

V-weighted categories *vs.* V-metrically enriched cats: syntax prep

Recall: groups $(X, -, 0)$ in subtractive notation:

$$
x-0=x, x-x=0, (x-y)-(z-y)=x-z
$$

Write V-Met for V-Cat_{sym}: "V-metric spaces" = V-categories *X* with $X(x, y) = X(y, x)$ Form the category V-**MetGrp** of "V-metric groups":

objects are V-metric spaces *X* with a group structure that makes distances invariant under translations:

$$
X(x, y) = X(x - z, y - z);
$$

morphisms are V-contractive homomorphisms.

V-**MetGrp** inherits its symmetric monoidal structure from V-**Cat** and the cartesian cat **Grp**.

 QQ

 $A \cup B \cup A \cap B \cup A \subseteq B \cup A \subseteq B \cup B$

Recall: groups $(X, -, 0)$ in subtractive notation:

$$
x-0=x, x-x=0, (x-y)-(z-y)=x-z
$$

Write V-Met for V-Cat_{sym}: "V-metric spaces" = V-categories X with $X(x, y) = X(y, x)$ Form the category V-**MetGrp** of "V-metric groups":

objects are V-metric spaces *X* with a group structure that makes distances invariant under translations:

$$
X(x, y) = X(x - z, y - z);
$$

morphisms are V -contractive homomorphisms.

V-**MetGrp** inherits its symmetric monoidal structure from V-**Cat** and the cartesian cat **Grp**.

V -metric groups as V -weighted groups

The category $\mathbf{Grp}{/\!/}\mathcal{V}$ has as

objects: V -weighted sets $(X, \vert \cdot \vert)$ with a group structure such that

 k ≤ |0|, |*x*| ⊗ |*y*| ≤ |*x* − *y*|;

morphisms live in both, **Set**//V and **Grp**.

Obtain:

$$
\text{Grp}/\!/\mathcal{V}\xleftarrow{\cong}\mathcal{V}\text{-MetGrp}
$$

$$
X \longmapsto X(x, y) = |x - y|
$$

$$
|x| = X(x,0) \longleftarrow x
$$

Walter Tholen (York University) **[Quantale-weighted Categories](#page-0-0) PSSL106 22/27** PSSL106 22/27

V -metric groups as V -weighted groups

The category $\mathbf{Grp}{/\!/}\mathcal{V}$ has as

objects: V -weighted sets $(X, \vert \cdot \vert)$ with a group structure such that

 k ≤ |0|, |*x*| ⊗ |*y*| ≤ |*x* − *y*|;

morphisms live in both, **Set**//V and **Grp**.

Obtain:

$$
\text{Grp}/\!/\mathcal{V}\xleftarrow{\cong}\qquad\qquad\mathcal{V}\text{-MetGrp}
$$

$$
X \longmapsto X(x,y) = |x - y|
$$

$$
|x|=X(x,0)\leftarrow x
$$

Walter Tholen (York University) Channel Controller Categories PSSL106 22/27

V-weighted cats *vs.* V-metrically enriched cats via change of base

$$
\begin{array}{cc}(\textbf{Grp}/\!/\mathcal{V})\textbf{-Cat} & \xrightarrow{\cong} (\mathcal{V}\textbf{-MetGrp})\textbf{-Cat}\\ & & \downarrow\\ \mathcal{V}\textbf{-Cat} & \xrightarrow{\textbf{i}} (\textbf{Set}/\!/\mathcal{V})\textbf{-Cat} = \textbf{Cat}/\!/\mathcal{V} & (\mathcal{V}\textbf{-Met})\textbf{-Cat}\end{array}
$$

Walter Tholen (York University) **[Quantale-weighted Categories](#page-0-0) PSSL106 23/27** PSSL106 23/27

 298

メロトメ 倒 トメ ヨ トメ ヨ ト

V-weighted cats *vs.* V-metrically enriched cats via change of base

$$
\begin{array}{cc}(\text{Grp}/\!/\mathcal{V})\text{-}\textbf{Cat} \longleftarrow & \cong (\mathcal{V}\text{-}\textbf{MetGrp})\text{-}\textbf{Cat}\\ & & \Big\downarrow\\ \mathcal{V}\text{-}\textbf{Cat} \longleftarrow & \text{Set}\!/\!/\mathcal{V})\text{-}\textbf{Cat} = \textbf{Cat}/\!/\mathcal{V} & (\mathcal{V}\text{-}\textbf{Met})\text{-}\textbf{Cat}\end{array}
$$

Walter Tholen (York University) **[Quantale-weighted Categories](#page-0-0) PSSL106 23/27** PSSL106 23/27

 298

メロトメ 倒 トメ ヨ トメ ヨ ト

Completing the picture: V -metrically approximate categories

$$
(\text{Grp}/\!/\mathcal{V})\text{-}\text{Cat} \xrightarrow{\cong} (\mathcal{V}\text{-}\text{MetGrp})\text{-}\text{Cat}
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
\mathcal{V}\text{-}\text{Met} \xrightarrow{\quad \downarrow} \mathcal{V}\text{-}\text{Cat} \xrightarrow{\quad \downarrow} \mathcal{V}\text{-}\text{Met} \xrightarrow{\quad \downarrow} \mathcal{V}\text{-}\text{Met}
$$
\n
$$
\mathcal{V}\text{-}\text{Met} \xrightarrow{\quad \downarrow} \mathcal{V}\text{-}\text{Metag}
$$

A V-metagory X is a graph with distinguished loops $1_x \in X(x, x)$ that comes with functions

 $\delta_{X,Y,Z}: \mathbb{X}(X, Y) \times \mathbb{X}(Y, Z) \times \mathbb{X}(X, Z) \longrightarrow V$

which assign to every triangle

an "area"-value in $\mathcal V$, satisfying so-called tetrahedral inequalities which mimic lax identity and associativity laws. Morphisms are V-contractive morphisms [of](#page-49-0) [gra](#page-51-0)[p](#page-49-0)[h](#page-51-0)[s](#page-52-0)[.](#page-0-0) 2990

Walter Tholen (York University) Cuantale-weighted Categories PSSL106 24/27

Completing the picture: V -metrically approximate categories

$$
(\text{Grp}/\!/\mathcal{V})\text{-}\text{Cat} \xrightarrow{\cong} (\mathcal{V}\text{-}\text{MetGrp})\text{-}\text{Cat}
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
\mathcal{V}\text{-}\text{Met} \xrightarrow{\text{i}} (\text{Set}/\!/\mathcal{V})\text{-}\text{Cat} = \text{Cat}/\!/\mathcal{V} \qquad (\mathcal{V}\text{-}\text{Met})\text{-}\text{Cat} \xrightarrow{\text{i}} \mathcal{V}\text{-}\text{Metag}
$$

A V-metagory X is a graph with distinguished loops $1_x \in X(x, x)$ that comes with functions

$$
\delta_{x,y,z}:\mathbb X(x,y)\times\mathbb X(y,z)\times\mathbb X(x,z)\longrightarrow\mathcal V
$$

which assign to every triangle

an "area"-value in $\mathcal V$, satisfying so-called tetrahedral inequalities which mimic lax identity and associativity laws. Mor[p](#page-49-0)[h](#page-51-0)i[s](#page-52-0)ms are $\mathcal V$ -contractive morphisms [of](#page-50-0) [gra](#page-52-0)phs[.](#page-0-0)

Walter Tholen (York University) Cuantale-weighted Categories PSSL106 24/27

Two expected facts and a surprising theorem for $\mathcal V$ -metagories

Every V-**Met**-enriched category becomes V-metagory via

 $\delta(f, g, a) = d(g \cdot f, a)$

giving a full (reflective) embedding (V-**Met**)-**Cat** −→ V-**Metag**.

Every V-metagory becomes a V-**Met**-enriched graph via

 $d(f, f') = \delta(f, 1_y, f') = \delta(1_x, f, f')$

giving a forgetful functor V-**Metag** −→ (V-**Met**)-**Gph**.

THEOREM (W.T., J. Wang) V-**Metag** is symmetric monoidal-closed.

Moreover: V-**Metag** is enriched in V-**Metag**; hence, one has a composition (!) law

 $[X, Y] \otimes [Y, Z] \longrightarrow [X, Z].$

Two expected facts and a surprising theorem for $\mathcal V$ -metagories

Every V-**Met**-enriched category becomes V-metagory via

 $\delta(f, g, a) = d(g \cdot f, a)$

giving a full (reflective) embedding (V-**Met**)-**Cat** −→ V-**Metag**.

Every V-metagory becomes a V-**Met**-enriched graph via

$$
d(f, f') = \delta(f, 1_y, f') = \delta(1_x, f, f')
$$

giving a forgetful functor V-**Metag** −→ (V-**Met**)-**Gph**.

THEOREM (W.T., J. Wang) V-**Metag** is symmetric monoidal-closed.

Moreover: V-**Metag** is enriched in V-**Metag**; hence, one has a composition (!) law

$$
[X, Y] \otimes [Y, Z] \longrightarrow [X, Z].
$$

Two expected facts and a surprising theorem for $\mathcal V$ -metagories

Every V-**Met**-enriched category becomes V-metagory via

 $\delta(f, g, a) = d(g \cdot f, a)$

giving a full (reflective) embedding (V-**Met**)-**Cat** −→ V-**Metag**.

Every V-metagory becomes a V-**Met**-enriched graph via

$$
d(f, f') = \delta(f, 1_y, f') = \delta(1_x, f, f')
$$

giving a forgetful functor V-**Metag** −→ (V-**Met**)-**Gph**.

THEOREM (W.T., J. Wang) V-**Metag** is symmetric monoidal-closed.

Moreover: V-**Metag** is enriched in V-**Metag**; hence, one has a composition (!) law

$$
[{\mathbb X},{\mathbb Y}]\otimes [{\mathbb Y},{\mathbb Z}]\longrightarrow [{\mathbb X},{\mathbb Z}].
$$

You need your personalized metagory when searching for flights!

... and many more!

B

 299

イロトス個 トメモトス

Happy 75 −→ 100, *etc*, Jirka!

Walter Tholen (York University) **Cuantale-weighted Categories** PSSL106 27/27

K ロ X K 伊 X K ミ X K ミ X ミ → D Q Q Q