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Bill’s metric spaces: a tribute, fifty years in the making

F. W. Lawvere: Metric spaces, generalized logic, and closed categories

Rendiconti del Seminario Matematico e Fisico di Milano 43:135–166, 1973.

Republished in Reprints in Theory and Applications of Categories 1, 2002.

This paper not only introduces metric spaces as small categories enriched in the
extended real half-line (considered as a symmetric monoidal-closed category under
addition), but it is also the birthplace of normed categories, as categories enriched in a
certain symmetric monoidal category of normed sets.

Slogan:
Taking enriched category theory as a conceptual guide is useful not only in algebra and
topology, but also in the broad area of analysis.
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Overview

1 Metric spaces: From Frechét to Lawvere
2 Passing from the terminal quantale 1 to quantale-weighted categories à la Lawvere
3 Some discussion of the axiomatics of weighted (or normed) categories
4 The connection between weighted categories and metrically enriched categories
5 Metrically enriched categories vs. metagories

Walter Tholen (York University) Quantale-weighted Categories PSSL106 4 / 27



A categorical analysis of Frechét’s axioms

A (classical) metric d : X × X −→ [0,∞] on a set X satisfies

0-Selfdistances: 0 ≥ d(x , x) 1→ X (x , x)
∇-Inequality: d(x , y) + d(y , z) ≥ d(y , z) X (x , y)× X (y , z)→ X (x , z)
Symmetry: d(x , y) = d(y , x) X (x , y) ∼= X (y , x)
Separation: d(x , y) = 0 = d(y , x) =⇒ x = y X (x , y) ∼= 1 ∼= X (x , y) =⇒ x = y
Finiteness: ∞ > d(x , y) ∅ 6= X (x , y)

A map f : X → Y of metric spaces is non-expansive / short / 1-Lipschitz if

Contraction: d(x , x ′) ≥ d(fx , fx ′) X (x , x ′)→ Y (fx , fx ′)

Metsym,sep,fin //
:−( // Metsym,sep //

reflective // Metsym //
reflective, coreflective //

topological ##

Met

topological||
Set
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Lawvere’s early advocate: Hausdoff’s Grundzüge der Mengenlehre

Try to extend a (classical) metric d on a set X to all of its subsets A,B:

d(A,B) = supx∈A d(x ,B) = supx∈A infy∈B d(x , y)

(“the minimal effort required to evacuate every inhabitant of A to the nearest point in B”)

The only general survivors∗ are the Lawvere conditions: 0-Selfdistances and ∇-Inequality!

Standard rescue operations for the other conditions:
Symmetrize coreflectively: dH(A,B) = max{d(A,B),d(B,A)} (Hausdorff 1914)

or “monoidally”: dP(A,B) = d(A,B) + d(B,A) (Pompeiu 1907)
Enforce separation by considering closed sets only
Enforce finiteness by considering only non-empty compact sets

∗ ... and they survive even if we replace [0,∞] by a quantale V, as follows!
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What is a quantale? Some categorical answers:

It is
a (small) one-object 2-category V whose only hom-category V(∗, ∗) is a cocomplete
lattice, such that all functors V(u, ∗),V(∗,u) : V(∗, ∗) −→ V(∗, ∗) preserve colimits

a (small) thin, skeletal, cocomplete monoidal-closed category V = (V,≤,⊗, k)

a monoid V in the symmetric monoidal-closed category Sup = (Sup,�,2 = P1) of
complete lattices with suprema-preserving maps (where morphisms L � M −→ N
classify maps L×M −→ N preserving suprema in each variable; Joyal - Tierney 1984)

a (small) one-object category enriched in Sup (a self-dual, monadic cat. over Set!)
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In down-to-earth terms:

A quantale V is a complete lattice (V,≤) that comes with a monoid structure (V,⊗, k),
such that the monoid multiplication ⊗ preserves suprema in each variable:

u ⊗
∨

i∈I vi =
∨

i∈I u ⊗ vi , (
∨

i∈I vi)⊗ u =
∨

i∈I(vi ⊗ u)

In order to avoid having to deal with two types of internal homs,
throughout this talk I will assume that (the monoid) V is commutative:

u ⊗ v = v ⊗ u, u ≤ [v ,w ] ⇐⇒ u ⊗ v ≤ w .

Our first example: the terminal quantale 1 = {∗} (Wow!)

Other standards: the Boolean quantale (2,⊥ < >,∧,>); in fact: any locale;
the Lawvere quantale ([0,∞],≥,+,0);
the free quantale (PM,⊆, ·, {e}) over a (comm.) monoid (M, ·,e).
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The thin category (V ,≤) over 1, and applying Fam to them

1 i // Fam(1) = Set ∗ � // 1

(V,≤)
i // Fam(V,≤) = Set//V (u ≤ v) � // 1

u
≤

��

1

v
��
V

Set//V: I
ϕ //

u = |−|
≤

��

J

|−|= v��
V

⇐⇒ ∀ i ∈ I : ui ≤ vϕi ⇐⇒ ∀ i ∈ I : |i | ≤ |ϕi |

(V,≤)
i //

topological
��

Fam(V,≤) = Set//V

topological
��

1 i // Fam(1) = Set

( I
ϕk //

|−|
≤

��

Jk )k∈K

|−|{{
V

initial⇐⇒ |i | =
∧

k∈K

|ϕk i |
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The category of V-weighted sets is symmetric monoidal-closed

I ⊗ J = ( I × J, |(i , j)| = |i | ⊗ |j | ), E = (1 = {∗}, | ∗ | = k)

[I, J] = ( Set(I, J), |ϕ| =
∧
i∈I

[|i |, |ϕi |] )

We obtain a commutative diagram of (strict) homomorphisms of monoidal categories:

(V,≤)
i //

��

Fam(V,≤) = Set//V

��
s
>

ff

1 i // Fam(1) = Set
>

s=!

dd

sI =
∨
i∈I

|i |

In addition, the straight arrows preserve also the internal homs.
Furthermore: the left adjoint s preserves products iff V is completely distributive.
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Form the corresponding categories of small enriched categories...

... and their change-of-base functors:

V-Cat i //

topological
��

Fam(V)-Cat =: Cat//V

topological
��

s
>

gg

Set = 1-Cat i // Fam(1)-Cat = Cat
>

s=ob

gg

What is Cat//V?
What is i? What is s?
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The category Cat//V of (small) V-weighted categories

For a (small) category X to be enriched in Fam(V,≤)= Set//V means (without quantifiers):

X(x , y)⊗ X(y , z) −→ X(x , z) and E −→ X(x , x) live in Set//V
⇐⇒ |f | ⊗ |g| = |(f ,g)| ≤ |g · f | and k ≤ |1x |
⇐⇒ |-| : X −→ (V,⊗, k) is a lax functor

For a functor F : X −→ Y to be enriched in Set//V means (without quantifiers):

X(x , y) −→ Y(Fx ,Fy) lives in Set//V
⇐⇒ |f | ≤ |Ff |
⇐⇒ X F //

|-|
≤

��

Y

|-|��
V
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The adjunction s a i, monoidal(-closed) structures, preserved by i, s

V-Cat Cat//V
X , X (x , y)⊗ X (y , z) ≤ X (x , z) � i // iX , ob(iX ) = X

k ≤ X (x , x) x
(x ,y) // y , |(x , y)| = X (x , y)

sX = obX, sX(x , y) =
∨
{|f | | f : x → y} �soo X, |f | ⊗ |g| ≤ |g · f |

k ≤ |1x |

X ⊗ Y = X × Y (as a set) X⊗ Y = X× Y (as a category)
(X ⊗ Y )((x , y), (x ′, y ′)) = X (x , x ′)⊗ Y (y , y ′) |(f ,g)| = |f | ⊗ |g|

[X ,Y ] = V-Cat(X ,Y ) (as a set) [X,Y] = (Cat//V)(X,Y) (as a cat)
[X ,Y ](f ,g) =

∧
x∈X

Y (fx ,gx) | F α // G | =
∧

x∈obX
|αx |
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Example: (V ,≤,⊗, k) = (2,⊥ < >,∧,>)

2-Cat = Ord Cat//2 = sCat

X , x ≤ y ∧ y ≤ z =⇒ x ≤ z � i // iX , ob(iX ) = X

> =⇒ x ≤ x ( x
(x ,y) // y) ∈ S ⇐⇒ x ≤ y

sX = obX, x ≤ y ⇐⇒ ∃(f : x → y) ∈ S �soo X, S, f ,g ∈ S =⇒ g · f ∈ S
> =⇒ 1x ∈ S

X ⊗ Y = X × Y X⊗ Y = X× Y (as a category)
(x , y) ≤ (x ′, y ′)⇐⇒ x ≤ x ′ ∧ y ≤ y ′ SX⊗Y = SX × SY

[X ,Y ] = Ord(X ,Y ) [X,Y] = sCat(X,Y) (as a cat)
f ≤ g ⇐⇒ ∀x ∈ X : fx ≤ gx α ∈ S[X,Y] ⇐⇒ ∀x ∈ obX : αx ∈ SY
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Example: (V ,≤,⊗, k) = ([0,∞],≥,+,0)

[0,∞]-Cat = Met Cat//[0,∞] = wCat

X , d(x , y) + d(y , z) ≥ d(x , z) � i // iX , ob(iX ) = X

0 ≥ d(x , x) x
(x ,y) // y , |(x , y)| = d(x , y)

sX = obX, d(x , y) = inf
f :x→y

|f | �soo X, |f |+ |g| ≥ |g · f |

0 ≥ |1x |

X ⊗ Y = X × Y X⊗ Y = X× Y (as a category)
d((x , y), (x ′, y ′)) = d(x , y) + d(y , y ′) |(f ,g)| = |f |+ |g|

[X ,Y ] = Met(X ,Y ) [X,Y] = wCat(X,Y) (as a cat)
d(f ,g) = sup

x∈X
d(fx ,gx) | F α // G | = sup

x∈obX
|αx |
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Some elementary examples of weighted categories, I

We saw:

V-categories (and their functors) are V-weighted categories (and their functors); in fact,
they are precisely the V weighted categories with indiscrete underlying category.

Question: May Set be “naturally” [0,∞]-weighted?

Goal 1: Let |f | measure the degree to which a map f : X → Y fails to be surjective.

Simply put |f | := #(Y \ f (X )) ∈ N ∪ {∞} ⊆ [0,∞].

Then: 0 ≥ |idX |, and with g : Y → Z we have |f |+ |g| ≥ |g · f |

since (assuming Choice and Y ∩ Z = ∅) there is an injective map

Z \ (g(f (X ))) −→ (Y \ f (X )) + (Z \ g(Y )).

Note: f surjective⇐⇒ |f | = 0.
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Question: May Set be “naturally” [0,∞]-weighted?

Goal 1: Let |f | measure the degree to which a map f : X → Y fails to be surjective.

Simply put |f | := #(Y \ f (X )) ∈ N ∪ {∞} ⊆ [0,∞].

Then: 0 ≥ |idX |, and with g : Y → Z we have |f |+ |g| ≥ |g · f |

since (assuming Choice and Y ∩ Z = ∅) there is an injective map

Z \ (g(f (X ))) −→ (Y \ f (X )) + (Z \ g(Y )).

Note: f surjective⇐⇒ |f | = 0.
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Some elementary examples of weighted categories, II

Question: May something similar be done for injectivity? That is:

Goal 2: Let |f | measure the degree to which a map f : X → Y fails to be injective.

First consider #f := supy∈Y #f−1y ; then, with g : Y → Z , we have:

#g ·#f = (sup
z∈Z

#g−1z) · (sup
y∈Y

#f−1y) ≥ sup
z∈Z

#(
⋃

y∈g−1z

f−1y) = #(g · f ), 1 ≥ #idX

Not what we wanted! But ([1,∞],≥, ·,1)
∼=
log
// ([0,∞],≥,+,0) comes to the rescue:

Put |f | := max{0, log #f}; then: |g|+ |f | ≥ |g · |f |. 0 ≥ |idX |.

Note: f injective⇐⇒ |f | = 0.
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A more interesting example of a (large) weighted category: Lipschitz

ob Lip = ob Met, Lip(X ,Y ) = Set(X ,Y ); why call this category Lip ??

Recall: f : X → Y is K (≥ 0)-Lipschitz ⇐⇒ ∀x 6= x ′ : d(fx , fx ′) ≤ K d(x , x ′)

In particular: f : X → Y is a morphism in Met ⇐⇒ f is 1-Lipschitz

Question: How far is an arbitrary map f away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant K ≥ 1 for f (admitting K =∞)

That is: Lip(f ) = max{1, sup
x 6=x ′

d(fx , fx ′)
d(x , x ′)

} (assuming temporarily that X be separated)

Then: Lip(g) · Lip(f ) ≥ Lip(g · f ), 1 ≥ Lip(idX )

No problem:

([1,∞],≥, ·,1)
∼=
log
// ([0,∞],≥,+,0) , |f | = max{0, sup

x ,x ′
(log d(fx , fx ′)− log d(x , x ′))}

Then: |g|+ |f | ≥ |g · f |, 0 ≥ |idX |, (f 1-Lipschitz⇐⇒ |f | = 0)
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On the axiomatics for weighted/normed categories

The category X is V-weighted by |-| : X −→ V if

k ≤ |1x |
|g| ⊗ |f | ≤ |g · f | ⇐⇒ |f | ≤

∧
g

[|g|, |g · f |] ⇐⇒ |f | =
∧
g

[|g|, |g · f |]

⇐⇒ |g| ≤
∧
f

[|f |, |g · f |] ⇐⇒ |g| =
∧
f

[|f |, |g · f |]

The V-weighted category X is right/left cancellable if

|f | ⊗ |g · f | ≤ |g| ⇐⇒ |f | ≤
∧
g

[|g · f |, |g|] =: |f |R (right cancellable)

|g| ⊗ |g · f | ≤ |f | ⇐⇒ |g| ≤
∧
f

[|g · f |, |f |] =: |g|L (left cancellable; Kubiś: “norm”)

Facts (Insall-Luckhardt for V = [0,∞]): X weighted by |-| =⇒ X weighted by |-|R and |-|L,
and |f | ≤ |f |RR, |f | ≤ |f |LL.
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The underlying ordinary category X0 of a V-weighted category X

Note:

An isomorphism f in X may not satisfy k ≤ |f |, and even when it does, we may not have
k ≤ |f−1| (unless the weight is left/right cancellable). Still, in many of the examples with
V = [0,∞] considered in the literature, morphisms f , and especially isomorphisms, of
norm 0 play an important role. They are called “modulators” by Insall-Luckhardt.

Question:

What is the “enriched significance” of considering morphisms f with k ≤ |f |?

Answer:

These are precisely the morphisms of the underlying ordinary category X0 of the
(Set//V)-enriched category X.
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V-weighted categories vs. V-metrically enriched cats: syntax prep

Recall: groups (X ,−,0) in subtractive notation:

x − 0 = x , x − x = 0, (x − y)− (z − y) = x − z

Write V-Met for V-Catsym: “V-metric spaces” = V-categories X with X (x , y) = X (y , x)

Form the category V-MetGrp of “V-metric groups”:

objects are V-metric spaces X with a group structure that makes distances invariant
under translations:

X (x , y) = X (x − z, y − z);

morphisms are V-contractive homomorphisms.

V-MetGrp inherits its symmetric monoidal structure from V-Cat and the cartesian cat Grp.
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V-metric groups as V-weighted groups

The category Grp//V has as

objects: V-weighted sets (X , |-|) with a group structure such that

k ≤ |0|, |x | ⊗ |y | ≤ |x − y |;

morphisms live in both, Set//V and Grp.

Obtain:
Grp//V oo

∼= // V-MetGrp

X � // X (x , y) = |x − y |

|x | = X (x ,0) X�oo
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V-weighted cats vs. V-metrically enriched cats via change of base

Grp//V oo
∼= //

��

V-MetGrp

��
V // i // Set//V V-Met

(Grp//V)-Cat oo
∼= //

��

(V-MetGrp)-Cat

��
V-Cat // i // (Set//V)-Cat = Cat//V (V-Met)-Cat
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Completing the picture: V-metrically approximate categories

(Grp//V)-Cat oo
∼= //

��

(V-MetGrp)-Cat

��
V-Met // // V-Cat // i // (Set//V)-Cat = Cat//V (V-Met)-Cat // // V-Metag

A V-metagory X is a graph with distinguished loops 1x ∈ X(x , x) that comes with functions

δx ,y ,z : X(x , y)× X(y , z)× X(x , z) −→ V

which assign to every triangle

y
g

��
x

f
??

a // z

an “area”-value in V, satisfying so-called tetrahedral inequalities which mimic lax identity
and associativity laws. Morphisms are V-contractive morphisms of graphs.
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Two expected facts and a surprising theorem for V-metagories

Every V-Met-enriched category becomes V-metagory via

δ(f ,g,a) = d(g · f ,a)

giving a full (reflective) embedding (V-Met)-Cat −→ V-Metag.

Every V-metagory becomes a V-Met-enriched graph via

d(f , f ′) = δ(f ,1y , f ′) = δ(1x , f , f ′)

giving a forgetful functor V-Metag −→ (V-Met)-Gph.

THEOREM (W.T., J. Wang) V-Metag is symmetric monoidal-closed.

Moreover: V-Metag is enriched in V-Metag; hence, one has a composition (!) law

[X,Y]⊗ [Y,Z] −→ [X,Z].
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You need your personalized metagory when searching for flights!

YYZ ..11

**

$$

��

��

FCO

NYC

44

LHR

::

FRA

??

AMS

CC

... and many more!
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Happy 75 −→ 100,etc, Jirka!
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