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Learning goals for this lecture series

Embrace (enriched) category theory as a guide for analytic inquiry
Appreciate the quantalic structure of the real half-line as the key for studying metrics
Get familiar with other important quantales and study the categories enriched in them
Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
in particular: Cauchy vs Lawvere
Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
normed/weighted categories, metrically enriched categories, metagories, etc.
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Lectures

1 Metrics: from Frechét via Hausdorff to Lawvere
2 Quantales and the (small) categories enriched in them
3 Distributors and the presheaf monad
4 Weighted colimits, tensors, conical infima
5 Pseudo-algebras of the presheaf monad, injectivity
6 Cauchy- and Lawvere-completeness
7 A glance at normed/weighted categories
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1.1 Fréchet 1906

A Frechét metric d : X × X −→ R on a set X satisfies:

0-Self 0 = d(x , x)

Sep d(x , y) = 0 = d(y , x) =⇒ x = y
Sym d(x , y) = d(y , x)

∇-Inq d(x , y) + d(y , z) ≥ d(x , z)

Necessarily then:
Pos d(x , y) ≥ 0
Possible strengthenings:

Bdd 1 ≥ d(x , y) (bounded metric)
Ult max{(d(x , y),d(y , z)} ≥ d(x , z) (ultrametric)

MetFrechét : morph’s f : X → Y satisfy dX (x , x ′) ≥ dY (fx , fx ′); write X (x , x ′) ≥ Y (fx , fx ′).
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1.2 Some shortcomings of MetFréchet, Hausdorff’s 1914 observations

Finitely complete, but countable products (even of 2-point spaces) may not exist.
Any two non-empty spaces fail to admit a coproduct.
Neither its cartesian structure nor its natural monoidal structure are closed.
The (non-symmetrized) Hausdorff distance

d(A,B) = sup
x∈A

inf
y∈B

d(x , y)

for A,B ⊆ X will (when it exists in [0,∞)) generally satisfy only (0-Self) and (4-Inq)
of the Fréchet axioms, ...

... but this remains true even when the given distance function on X satisfies just
these two conditions! Likewise for bounded metrics, ultrametrics, etc.
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1.2 Some shortcomings of MetFréchet, Hausdorff’s 1914 observations

Finitely complete, but countable products (even of 2-point spaces) may not exist.
Any two non-empty spaces fail to admit a coproduct.
Neither its cartesian structure nor its natural monoidal structure are closed.
The (non-symmetrized) Hausdorff distance

d(A,B) = sup
x∈A

inf
y∈B

d(x , y)

for A,B ⊆ X will (when it exists in [0,∞)) generally satisfy only (0-Self) and (4-Inq)
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1.2 Some shortcomings of MetFréchet, Hausdorff’s 1914 observations

Finitely complete, but countable products (even of 2-point spaces) may not exist.
Any two non-empty spaces fail to admit a coproduct.
Neither its cartesian structure nor its natural monoidal structure are closed.
The (non-symmetrized) Hausdorff distance

d(A,B) = sup
x∈A

inf
y∈B

d(x , y)

for A,B ⊆ X will (when it exists in [0,∞)) generally satisfy only (0-Self) and (4-Inq)
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1.3 Regrouping Fréchet’s axioms à la Lawvere 1973

A Frechét metric d : X × X −→ [0,∞] on a set X satisfies

0-Self-distances: 0 ≥ d(x , x) 1→ X (x , x)
∇-Inequality: d(x , y) + d(y , z) ≥ d(y , z) X (x , y)× X (y , z)→ X (x , z)
Symmetry: d(x , y) = d(y , x) X (x , y) ∼= X (y , x)
Separation: d(x , y) = 0 = d(y , x) =⇒ x = y X (x , y) ∼= 1 ∼= X (y , x) =⇒ x = y
Finiteness: ∞ > d(x , y) ∅ 6= X (x , y)

A map f : X → Y of metric spaces is non-expansive / short / 1-Lipschitz if

Contraction: dX (x , x ′) ≥ dY (fx , fx ′) X (x , x ′)→ Y (fx , fx ′)

The category Met is complete and cocomplete and symmetric monoidal-closed. But:

MetFrechét
// :−( // Metsym,sep //

reflective // Metsym //
reflective, coreflective //

topological $$

Met

topological||
Set
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1.4 Some supporting formulae

(fi : X → Yi)i∈I initial (jointly cartesian) ⇐⇒ X (x , x ′) = supi∈I Yi(fix , fix ′)
X × Y ((x , y), (x ′, y ′)) = max{X (x , x ′),Y (y , y ′)}
X + Y (z, z ′) = X (z, z ′) if z, z ′ ∈ X , and = Y (z, z ′) if z, z ′ ∈ Y , and =∞ otherwise
X ⊗ Y ((x , y), (x ′, y ′)) = X (x , x ′) + Y (y , y ′) makes Met symmetric monoidal-closed
with internal hom
[X ,Y ](f ,g) = supx∈X Y (fx ,gx)

Coreflective symmetrization: Xcsym(x , x ′) = max{X (x , x ′),X (x ′, x)}
Reflective symmetrization:

Xrsym(x , x ′) = inf
x=x0,...,xn=x ′

Σn
j=1 min{X (xj−1, xj),X (xj , xj−1)}

Separation: with (x ' y :⇐⇒ X (x , y) = 0 = X (y , x)), let

X/' ([x ], [y ]) = X (x , y)

... and the formulae remain essentially valid for BMet (bounded mets), UMet (ultramets).
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2.1 Quantales

A (commutative) quantale (V,≤,⊗, k) is a commutative monoid in (Sup,�,2); that is:
(V,≤) is a complete lattice;
(V,⊗, k) is a commutative monoid;
−⊗ v : V → V preserves joins for all v ∈ V.

Hence, as a monotone map, every −⊗ v has a right adjoint; this means:

V is a “thin” symmetric monoidal-closed category, with internal homs [v ,w ] determined by

u ≤ [v ,w ] ⇐⇒ u ⊗ v ≤ w .

Some useful rules:

k ≤ [u,u], [u, v ]⊗ u ≤ v , [k, v ] = v , [u1 ⊗ u2, v ] = [u1, [u2, v ]] = [u2, [u1, v ]],

[
∨
i∈I

ui , v ] =
∧
i∈I

[ui , v ], [u,
∧
i∈I

vi ] =
∧
i∈I

[u, vi ].
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2.1 (Lax) homomorphisms, first examples

ϕ : V → W is a lax homomorphism if∨
i∈I

ϕui ≤ ϕ(
∨
i∈I

ui), ϕu ⊗W ϕv ≤ ϕ(u ⊗V v), kW ≤ ϕ(kV);

ϕ is a (strict) homomorphism if ≤ may be replaced by = .

1 is the terminal quantale (k = ⊥)
2 = ({⊥,>},≤,∧,>) is the initial quantale; more generally: (PS,⊆,∩,S) (S any set)
even more generally: any locale (frame) L is a “cartesian” quantale (L,≤,∧,>)

the Lawvere quantale [0,∞]+ ∼= [0,1]×, that is: ([0,∞],≥,+,0) ∼= ([0,1],≤,×,1)

and its “ultra” version [0,∞]max
∼= [0,1]min: ([0,∞],≥,max,0) ∼= ([0,1],≤,min,1)

the Lukasiewicz quantale [0,1]⊕ ∼= [0,1]�, that is: ([0,1],≥,⊕,0) ∼= ([0,1],≤,�,1)
with u ⊕ v = min{u + v ,1} and u � v = max{u + v − 1,0}
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2.2 More examples of quantales

the free quantale (PM,⊆, ∗, {η}) over a commutative monoid (M, ∗, η)
the quantale (DV,⊆,⊗↓, ↓k) of down(-closed) sets of a quantale (V,⊗, k)
the quantale ∆& = (∆,≤,&, κ) of distance distribution functions, with

∆ = {ϕ : [0,∞]→ [0,1] | ∀α ∈ [0,∞] : ϕ(α) = sup
β<α

ϕ(β)},

for any “t-norm” & on [0,1], i.e. any operation that makes ([0,1],≤,&,1) a quantale,
extended to ∆ by

(ϕ& ψ)(γ) = sup
α+β<γ

ϕ(α) & ψ(β) ;

the distance distribution function κ with κ(0) = 0 and κ(α) = 1 for α > 0 is &-neutral.

[0,∞]+
σ+−−−−−→ ∆&

τ&←−−−−− [0,1]&

is a coproduct in the category of quantales, since for any ϕ ∈ ∆:

ϕ = sup
0≤α≤∞

σ+(α) & τ&(ϕ(α)) = sup
0<α<∞

σ+(α) & τ&(ϕ(α))
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2.3 Quantale-valued relations of sets

X pr // Y ⇐⇒ X × Y r // V ⇐⇒ r = (r(x , y))x∈X ,y∈Y

(s · r)(x , z) =
∨

y∈Y

r(x , y)⊗ s(y , z)

Set −→ V-Rel, (X f // Y ) 7−→ (X p
f◦ // Y ) f◦(x , y) = k if fx = y , = ⊥ else

V-Rel is a 2-category with 2-cells given by the pointwise order of V-relations.

V-Rel has the involution r◦(y , x) = r(x , y); put f ◦ = (f◦)◦; then f◦ a f ◦ (“maps are maps”)

V-Rel is a quantaloid, i.e. a Sup-enriched category:

(
∨
i∈I

si) · r =
∨
i∈I

(si · r), s · (
∨
i∈I

ri) =
∨
i∈I

(s · ri)

V −→ V-Rel, v 7−→ (1 pv // 1) is a homomorphism of quantaloids.

Useful rule: W
g // X pr // Y Zhoo (h◦ · r · g◦)(w , z) = r(gw ,hz).
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V −→ V-Rel, v 7−→ (1 pv // 1) is a homomorphism of quantaloids.

Useful rule: W
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2.4 Extensions and liftings of V-relations

Consider X pr // Y , Y ps // Z , X pt // Z . Obtain:

V-Rel(Y ,Z )

−·r
,,

⊥ V-Rel(X ,Z )

[r ,−]

ll
V-Rel(X ,Y )

s·−
,,

⊥ V-Rel(X ,Z )

]s,−[

ll

s ≤ [r , t ] ⇐⇒ s · r ≤ t ⇐⇒ r ≤ ]s, t [

“extension of t along r ” Z Y ps // Z

X p
r
//

pt
≥

??

Y

+[r ,t]

OO

X

+]s,t[

OO

p
t

≤
?? “lifting of t along s”

[r , t ](y , z) =
∧

x∈X

[r(x , y), t(x , z)] ]s, t [(x , y) =
∧
z∈Z

[s(y , z), t(x , z)]
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2.5 Small categories and functors enriched in V

(X ,a) ∈ V-Cat ⇐⇒ a is a monoid in the monoidal category (V-Rel(X ,X ),≤, ·,1◦X )
⇐⇒ 1◦X ≤ a, a · a ≤ a
⇐⇒ k ≤ a(x , x), a(x , y)⊗ a(y , z) ≤ a(x , z)

X ∈ V-Cat ⇐⇒ k ≤ X (x , x), X (x , y)⊗ X (y , z) ≤ X (x , z)

f : X → Y in V-Cat ⇐⇒ X (x , x ′) ≤ Y (fx , fx ′)
f : (X ,a)→ (Y ,b) ⇐⇒ a ≤ f ◦ · b · f◦ ⇐⇒ f◦ · a ≤ b · f◦ ⇐⇒ a · f ◦ ≤ f ◦ · b

Some prominent objects in V-Cat:

∅, 1 = ({∗},>), E = ({∗}, k), V = (V, [-, -])

Lax homomorphisms of quantales facilitate change-of-base functors:

ϕ : V → W lax homomorphism =⇒Bϕ : V-Cat→W-Cat, (X ,a) 7→ (X , ϕa)
p : V → 2 with (p(v) = > ⇐⇒ k ≤ v)=⇒Bp : V-Cat→ Ord with (x ≤ y ⇐⇒ k ≤ X (x , y))
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2.6 Some examples of (categories of) V-categories

1-Cat = Set

2-Cat = Ord: preordered sets and monotone maps

[0,∞]+-Cat = Met ∼= [0,1]×-Cat = ProbOrd: probabilistic (pre)ordered sets

[0,∞]max-Cat = UMet ∼= [0,1]min-Cat: (Lawvere) ultrametric spaces

[0,1]⊕-Cat = BMet ∼= [0,1]�-Cat: bounded (Lawvere) metric spaces

∆×-Cat = ProbMet probabilistic (Lawvere) metric spaces (X ,p : X × X → ∆),
with p(x , y)(α) to be interpreted as probability of “d(x , y) < α for a random metric on X ”

(2 // // [0,∞]+ // // ∆×) =⇒ (Ord // // Met // // ProbMet)

P(M, ∗, η)-Cat 3 (X , (≤α)α∈M) with x ≤η x , (x ≤α y & y ≤β z =⇒ x ≤α∗β z)
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2.7 V-Cat as a concrete category over Set

V-CatX = (O :V-Cat→ Set)−1X is a complete lattice, with
∧

as in V-Rel(X ,X ),⊥ = 1◦X
Every r ∈ V-Rel(X ,X ) has a V-CatX -hull r ≥ r : r =

∨
n≥0 rn.

O :V-Cat→ Set is a bifibration with complete fibres and, hence, a topological functor.

(fi : (X ,a)→ (Yi ,bi))i∈I initial (= jointly cartesian) ⇐⇒ a =
∧

i∈I f ◦i · bi · (fi)◦

(fi : (Xi ,ai)→ (Y ,b))i∈I final (= jointly cocartes’n) ⇐⇒ b =
∨

i∈I (fi)◦ · ai · f ◦i
Consequently:

V-Cat is complete and cocomplete and O has both adjoints.

V-Cat O // Set⊥
discrete

tt

⊥
indiscrete

ii
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Consequently:

V-Cat is complete and cocomplete and O has both adjoints.

V-Cat O // Set⊥
discrete

tt

⊥
indiscrete

ii
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2.8 V-Cat as a closed category and a 2-category

For X ,Y ∈ V-Cat, consider (evx : V-Cat(X ,Y ) −→ Y )x∈X and put the initial structure on

[X ,Y ] := V-Cat(X ,Y ): [X ,Y ](f ,g) =
∧

x∈X Y (fx ,gx)

=
∧

x ,x ′∈X [X (x , x ′),Y (fx ,gx ′)]

The induced (pre)order on [X ,Y ] is

f ≤ g ⇐⇒ ∀x ∈ X : k ≤ Y (fx ,gx) ⇐⇒ ∀x ∈ X : fx ≤ gx .

With its 2-cells given by ≤, V-Cat is thus a 2-category.

Adjunction in V-Cat:

(X f // Y ) a (Y X )
goo ⇐⇒ X (x ,gy) = Y (fx , y) ⇐⇒ g◦ · a = b · f◦

Note: RHS forces f ,g to be V-functors and gives f a g in Ord, i.e. fg ≤ 1Y and 1X ≤ gf ,
but f a g in Ord secures f a g in V-Cat only when f ,g are actually V-functors.
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2.9 V-Cat as a symmetric monoidal-closed category, Yoneda

X ⊗ Y ((x , y), (x ′, y ′)) = X (x , x ′)⊗ Y (y , y ′), E(∗, ∗) = k

Enriched Universal Property: [Z ⊗ X ,Y ] ∼= [Z , [X ,Y ]]

[X ,Y ]⊗ X ε // Y [X ,V]⊗ X ε // V

Z ⊗ X
f

66

f ]⊗1X

OO

X op ⊗ X
X(−,−)

66

yXop⊗1X

OO

Yoneda V-functor:

yX : X −→ PVX = [X op,V], y 7−→ X (−, y), y]X : X −→ P]VX = [X ,V]op, x 7−→ X (x ,−)

Yoneda Lemma:
PVX (yX y , σ) = σy , P]VX (τ,y]X x) = τx
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3.1 Distributors (profunctors, (bi)modules))

Slogan: function/relation = functor/distributor

For V = [0,∞]+, think of them as “compatible one-way metrics” between two spaces.

Generally:

(X ,a) ◦
ρ // (Y ,b) ⇐⇒ b · ρ · a ≤ ρ

⇐⇒ X (x ′, x)⊗ ρ(x , y)⊗ Y (y , y ′) ≤ ρ(x ′, y ′)
⇐⇒ X op(x , x ′)⊗ Y (y , y ′) ≤ [ρ(x , y), ρ(x ′, y ′)]
⇐⇒ ρ : X op ⊗ Y → V is a V-functor

V-distributors are closed under V-relational composition and under
∧
,
∨

formed in V-Rel.

V-Dist: objects are V-categories X = (X ,a); identity distributor on X : 1∗X = (X ◦a // X )

V-Dist is Sup-enriched (a quantaloid) AND also (V-Cat)-enriched:

V-Dist(X ,Y ) = [X op ⊗ Y ,V], V-Dist(X ,Y )⊗ V-Dist(Y ,Z ) −→ V-Dist(X ,Z )
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3.2 V-functors vs. V-distributors; extensions, liftings, tensor products

(X ,a)
f // (Y ,b) =⇒ X ◦

f∗=b·f◦ // Y , Y ◦f∗=f◦·b // X , f∗ a f ∗ in V-Dist

(−)∗ : V-Cat −→ V-Distco (−)∗ : V-Cat −→ V-Distop

f a g ⇐⇒ f∗ = g∗ ⇐⇒ g∗ a f ∗ ⇐⇒ g∗ a f∗

V-distributors are closed under the formation of extensions and liftings in V-Rel:

“extension of τ along ρ” Z Y ◦σ // Z

X ◦
ρ
//

◦τ
≥

??

Y

◦ [ρ,τ ]

OO

X

◦]σ,τ [

OO

◦
τ

≤
?? “lifting of τ along σ”

V-Dist(Y ,Z )(σ, [ρ, τ ]) = V-Dist(X ,Z )(σ · ρ, τ) = V-Dist(X ,Y )(ρ, ]σ, τ [)

V-Dist is symmetric monoidal: ρ⊗ ϕ : X ⊗ S → Y ⊗ T
ρ⊗ ϕ ((x , s), (y , t)) = ρ(x , y)⊗ ϕ(s, t)
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3.3 V-distributors vs. V-presheaves

V-Dist(X ,Y ) = [X op ⊗ Y ,V] ∼= [Y ,PVX ] ∼= [X op, [Y ,V]] ∼= [X ,P]VY ]op

PVX ∼= V-Dist(X ,E) P]VY ∼= (V-Dist(E ,Y ))op

The Fundamental Presheaf Adjunction: V-Distop

PV ∼= V-Dist(−,E)

11⊥ V-Cat
(−)∗

qq

For X ◦
ρ // Y : PVρ : PVY −→ PVX , (Y ◦σ // E) 7−→ (X ◦

σ·ρ // E)

(PVρ)(σ)(x) =
∨

y∈Y

ρ(x , y)⊗ σ(y)

adjunction units: yX : X −→ PVX , adjunction counits: (yX )∗ : X ◦ // PVX
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3.4 The V-presheaf monad (P ,s,y) and its discretization
P : V-Cat −→ V-Cat, (f : X → Y ) 7−→ (PV f ∗ : PVX → PVY , σ 7→ σ · f ∗)

(Pf )(σ)(y) =
∨

x∈X Y (y , fx)⊗ σx

sX : PPX −→ PX sX (Σ) = Σ · (yX )∗, sX (Σ)(x) =
∨
σ∈PVX Σ(σ)⊗ σ(x)

(P,s,y) is a 2-monad, with P locally fully faithful: (f ≤ g ⇐⇒ Pf ≤ Pg)

(P,s,y) is lax idempotent (Kock–Zöberlein): PyX ≤ yPX

V-Distop

PV ∼= V-Dist(−,E)

11⊥ V-Cat
(−)∗

qq

O
22 Set

d(iscrete)
rr

Pd : Set −→ Set (f : X → Y ) 7−→ (Pdf : VX → VY , σ 7→ σ · f ◦)
(Pdf )(σ)(y) =

∨
x∈f−1y σ(x)

(yd)X : X −→ PdX (yd)X (y) = yXd(y) = 1◦X (−, y)
(sd)X : PdPdX → PdX (sd)X (Σ) = Σ · (yXd)∗, (sd)X (Σ)(x) =

∨
σ∈VX Σ(σ)⊗ σ(x)
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∨
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3.5 Distributors are Kleisli morphisms

X ◦
ϕ // Y ⇐⇒ Y

ϕ]
// PX

X ◦
1∗X // X ⇐⇒ X

yX // PX

( X ◦
ϕ // Y ◦

ψ // Z )] = ( Z
ψ]
// PY

Pϕ]
// PPX

sX // PX )

(V-Dist)op ∼= Kl(P)

(V-Rel)op ∼= Kl(Pd)

Q: What “is” EM(P)?
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4.1 Order completeness vs. conical (co)completeness

Consider X ∈ V-Cat with its induced order (x ≤ y ⇐⇒ k ≤ X (x , y)). Then:

y '
∧

i∈I xi ⇐⇒ ∀z (k ≤ X (z, y)⇐⇒∀i ∈ I : k ≤ X (z, xi))
⇐= ∀z (X (z, y) =

∧
i∈I X (z, xi)) ⇐⇒ : y '

∧O
i∈I xi

⇐⇒ yX y =
∧

i∈I yX xi in PVX = [X op,V]
X conically complete ⇐⇒ X has all conical infima

⇐⇒ X has all infima and yX preserves them
⇐⇒ X is order-complete, yX is an inf-map

y '
∨

i∈I xi ⇐⇒ ∀z (k ≤ X (y , z)⇐⇒∀i ∈ I : k ≤ X (xi , z))
⇐= ∀z (X (y , z) =

∧
i∈I X (xi , z)) ⇐⇒ : y '

∨O
i∈I xi

⇐⇒ y]X y =
∨

i∈I y]X xi in P]VX = [X ,V]op

X conically cocompl. ⇐⇒ X has all conical suprema
⇐⇒ X has all sups and y]X preserves them
⇐⇒ X is order-complete, y]X is an sup-map
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4.2 Conical completeness: examples and remarks

In X ∈ 2-Cat = Ord, every inf/sup is conical; hence:
X conically (co)complete ⇐⇒ X order-complete

In X ∈ [0,∞]-Cat = Met, not even binary infs/sups have to be conical.
The order of X ∈ Metsym,sep is discrete, so that X is order-complete only when |X | = 1.

V ∈ V-Cat is always conically (co)complete, and so is PVX , for all X ∈ V-Cat.

For V non-integral (k < >), one finds X ∈ V-Cat order-compl., but not conically (co)compl.

There is a subspace of [0,∞] ∈ [0,∞]+-Cat is conically complete category but fails to be
conically cocomplete (Clementino).

We need:
a condition on a V-category securing the implication (order-complete⇒ conically compl.)!
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4.3 Tensored and cotensored V-categories

Recall:
X conically complete ⇐⇒ X order complete and (∀x ∈ X : X (x ,−) : X → V pres. infs)

Definition:
X tensored :⇐⇒ ∀x ∈ X : X (x ,−) : X → V has a left adjoint −� x : V → X

X (u � x , y) = [u,X (x , y)] (∗)

X cotensored :⇐⇒ ∀y ∈ X : X (−, y) : X op → V has a left adjoint − t y : V → X

X (x ,u t y) = [u,X (x , y)]

Note:
Necessarily u � x =

∧
{y ∈ X | u ≤ X (x , y)},

but the the existence of these infima does not guarantee (∗)!

Trivially: X (co)tensored =⇒ (X conically (co)complete ⇐⇒ X order-complete ).
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X conically complete ⇐⇒ X order complete and (∀x ∈ X : X (x ,−) : X → V pres. infs)

Definition:
X tensored :⇐⇒ ∀x ∈ X : X (x ,−) : X → V has a left adjoint −� x : V → X

X (u � x , y) = [u,X (x , y)] (∗)

X cotensored :⇐⇒ ∀y ∈ X : X (−, y) : X op → V has a left adjoint − t y : V → X

X (x ,u t y) = [u,X (x , y)]
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∧
{y ∈ X | u ≤ X (x , y)},
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4.4: Tensored V-categories: examples and remarks

∅ 6= X ∈ 2-Cat = Ord is tensored ⇐⇒ X has a least element.

V ∈ V-Cat is tensored and cotensored, with u � x = u ⊗ x and u t x = [u, x ].
More generally, PVX is (co-)tensored, for every V-category X .

A full V-subcategory of V ∈ V-Cat may fail to be tensored or cotensored.

[0,∞]csym (= [0,∞] with the Euclidean metric) fails to be tensored or cotensored in Met.

Products of (co)tensored V-categories are (co)tensored.
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4.5.1 Presenting tensored V-categories via the action of V: prelims

Rules for the action of V on a tensored V-category X :
(1) k� x ' x
(2) (u ⊗ v)� x ' u � (v � x)
(3) (

∨
i∈I ui)� x '

∨
i∈I(ui � x) (with the RHS

∨
existing in X , as part of the condition)

(4−) x ≤ y =⇒ u � x ≤ u � y

Conversely:
Let X be just a preordered set equipped with a map � : V ×X −→ X satisfying (1)− (4−).
Then, for every x ∈ X , the map −� x : V −→ X has a right adjoint X (x ,−), defined by

X (x , y) =
∨
{u | u � x ≤ y},

making X a V-category, whose underlying preorder is the given one and,
by the given rules and adjunction, satisfies

X (u � x , y) = [u,X (x , y)],

making X a tensored V-category.
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4.5.2 Presenting tensored V-categories via the action of V: theorem

Theorem (Martinelli 2021)
There is a 2-equivalence

V-Cattensor ' OrdV1
2 cocts

V-Cattensor:
small tensored V-categories, with tensor-preserving V-functors

OrdV1
2 cocts:

preordered sets on which V acts, satisfying conditions (1), (2), (3), (4−), with
monotone and pseudo-equivariant maps.
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4.6 Weighted colimits and limits: definitions

Given a “diagram” Z h // X in X and “weights” Z ◦ω //W and W ◦υ // Z . Then:

(W
q // X ) ' colimωh :⇐⇒ q∗ = [ω,h∗], (W

p // X ) ' limυh :⇐⇒ p∗ =]υ,h∗[

X W ◦υ // Z

Z ◦
ω
//

◦
h∗
≥

>>

W

◦q∗=[ω,h∗]

OO

X

◦p∗=]υ,h∗[

OO

◦
h∗

≤
>>

X (qt , x) =
∧
z∈Z

[ω(z, t),X (hz, x)] X (x ,pt) =
∧
z∈Z

[υ(t , z),X (x ,hz)]

for all x ∈ X , t ∈W .
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4.7 Tensors and conical sups as weighted colimits, and conversely

Let (x ∈ X ⇐⇒ x : E = ({∗}, k)→ X ) and (f = (xi)i∈I in X ⇐⇒ f : Id ∼=
∐

i∈I E → X ),

let ∇ :
∐

i∈I E → E be the “codiagonal”. Then:

u � x ' colimux ,
∨
i∈I

Oxi ' colim∇∗ f , u t x ' limux ,
∧
i∈I

Oxi ' lim∇
∗
f .

Theorem

Let Z h // X be a diagram in the tensored V-category X with weight Z ◦ω //W . Then

(colimωh)(t) '
∨
z∈Z

Oω(z, t)� h(z)

for all t ∈W, with the colimit on the left existing precisely when the conical supremum on
the right exists in X for all t ∈W.
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4.8 Hiding the diagram in the weight

Corollary

1 X cocomplete ⇐⇒ X is tensored and conically cocomplete;
2 X complete ⇐⇒ X is cotensored and conically complete.
3 X complete and cocomplete ⇐⇒ X tensored, cotensored and order-complete.

Given a diagram Z h // X in X and weights Z ◦ω //W and W ◦υ // Z . Then

colimωh ' colimω·h∗1X and limυh ' limh∗·υ1X ,

with the (co)limit on either side of ' existing when the (co)limit on the other side exists.
In particular:

u � x ∼= colimux ∼= colimu·x∗1X = colimu·yX x1X and
∨
i∈I

Oxi ' colimω1X , with ω =
∨
i∈I

yX xi .

Hence: It suffices to let Z = X ,h = 1X and W = E ; presheaves on X suffice as weights!
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4.9.1 Preservation of (co)limits: definition

Definition

Let h : Z → X , f : X → Y be V-functors and Z ◦ω //W ◦υ // Z be V-distributors.
1 If q ' colimωh exists in X , one says that f : X → Y preserves the colimit if the colimit

colimω(f · h) exists in Y and is given by f · q; equivalently, if one has the implication

q∗ = [ω,h∗] =⇒ (f · q)∗ = [ω, (f · h)∗].

2 Dually, if p ' limυ h exists in X , one says that f : X → Y preserves the limit if the limit
limυ(f · h) exists in Y and is given by f · p; equivalently, if one has the implication

p∗ =]υ,h∗[ =⇒ (f · p)∗ =]υ, (f · h)∗[.

3 The V-functor f is (co)continuous if it preserves all existing (co)limits in X .
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4.9.2 Preservation of (co)limits: criteria, examples

Let f : X → Y , g : Y → X , h : Z → [X ,Y ] be V-functors, x ∈ X , Z ◦ω //W .
1 If X is tensored: f is cocontinuous ⇐⇒ f preserves tensors and conical suprema.
2 If X is cotensored: f is continuous ⇐⇒ f preserves cotensors and conical infima.
3 X (x ,−) : X → V is continuous, X (−, x) : X → Vop is cocontinuous.
4 colimω(h : Z → [X ,Y ]) exists if colimωevxh exists in Y for all x , and it is then

preserved by every evx : [X ,Y ]→ Y .
5 yX : X → PVX = [X op,V] is continuous, y]X : X → P]VX = [X ,V]op is cocontinuous.
6 If f a g, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)

1 Y complete: g : Y → X has a left adjoint V-functor ⇐⇒ g is continuous.
2 X cocomplete: f : X → Y has a right adjoint V-functor ⇐⇒ f is cocontinuous.
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4.10 Completeness Theorem

Theorem

For every V-category X, the following statements are equivalent:
(i) X is cocomplete;
(ii) for every presheaf ω on X, the colimit of 1X weighted by ω exists in X;
(iii) yX : X → [X op,V] has a left adjoint V-functor;
(iv) X is tensored, cotensored and order-complete;
(v) X is complete;
(vi) for every copresheaf υ on X, the limit of 1X weighted by υ exists in X;
(vii) y]X : X → [X ,V]op has a right adjoint V-functor.
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5.1 V is injective in V-Cat

f : X → Y fully faithful ⇐⇒ f ∗ · f∗ = 1∗X ⇐⇒ X (x , x ′) = Y (fx , fx ′) for all x , x ′ ∈ X

V ⇐⇒ Y ◦f
∗
// X ⇐⇒ E

X
f
//

ϕ
??

Y

ψ

OO

E

◦ψ

OO

◦
ϕ

??

X op

◦
ϕ

<<

◦
(f op)∗=(f∗)◦

// Y op

◦ψ

OO

Given f fully faithful and ϕ, there is a least and a largest extension, ψ− and ψ−:

ψ− = f∗ · ϕ and ψ− = [(f ∗)◦, ϕ] = [(f op)∗, ϕ] V

X
f

//

ϕ

88

Y

f∗·ϕ

HH

[(f∗)◦,ϕ]

VV

ψ−y =
∨

x∈X Y (fx , y)⊗ ϕx and ψ−y =
∧

x∈X [Y (y , fx), ϕx ]

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 35 / 67



5.1 V is injective in V-Cat

f : X → Y fully faithful ⇐⇒ f ∗ · f∗ = 1∗X ⇐⇒ X (x , x ′) = Y (fx , fx ′) for all x , x ′ ∈ X

V ⇐⇒ Y ◦f
∗
// X ⇐⇒ E

X
f
//

ϕ
??

Y

ψ

OO

E

◦ψ

OO

◦
ϕ

??

X op

◦
ϕ

<<

◦
(f op)∗=(f∗)◦

// Y op

◦ψ

OO

Given f fully faithful and ϕ, there is a least and a largest extension, ψ− and ψ−:

ψ− = f∗ · ϕ and ψ− = [(f ∗)◦, ϕ] = [(f op)∗, ϕ] V

X
f

//

ϕ

88

Y

f∗·ϕ

HH

[(f∗)◦,ϕ]

VV

ψ−y =
∨

x∈X Y (fx , y)⊗ ϕx and ψ−y =
∧

x∈X [Y (y , fx), ϕx ]

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 35 / 67



5.1 V is injective in V-Cat

f : X → Y fully faithful ⇐⇒ f ∗ · f∗ = 1∗X ⇐⇒ X (x , x ′) = Y (fx , fx ′) for all x , x ′ ∈ X

V ⇐⇒ Y ◦f
∗
// X ⇐⇒ E

X
f
//

ϕ
??

Y

ψ

OO

E

◦ψ

OO

◦
ϕ

??

X op

◦
ϕ

<<

◦
(f op)∗=(f∗)◦

// Y op

◦ψ

OO

Given f fully faithful and ϕ, there is a least and a largest extension, ψ− and ψ−:

ψ− = f∗ · ϕ and ψ− = [(f ∗)◦, ϕ] = [(f op)∗, ϕ] V

X
f

//

ϕ

88

Y

f∗·ϕ

HH

[(f∗)◦,ϕ]

VV

ψ−y =
∨

x∈X Y (fx , y)⊗ ϕx and ψ−y =
∧

x∈X [Y (y , fx), ϕx ]

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 35 / 67



5.1 V is injective in V-Cat

f : X → Y fully faithful ⇐⇒ f ∗ · f∗ = 1∗X ⇐⇒ X (x , x ′) = Y (fx , fx ′) for all x , x ′ ∈ X

V ⇐⇒ Y ◦f
∗
// X ⇐⇒ E

X
f
//

ϕ
??

Y

ψ

OO

E

◦ψ

OO

◦
ϕ

??

X op

◦
ϕ

<<

◦
(f op)∗=(f∗)◦

// Y op

◦ψ

OO

Given f fully faithful and ϕ, there is a least and a largest extension, ψ− and ψ−:

ψ− = f∗ · ϕ and ψ− = [(f ∗)◦, ϕ] = [(f op)∗, ϕ] V

X
f

//

ϕ

88

Y

f∗·ϕ

HH

[(f∗)◦,ϕ]

VV

ψ−y =
∨

x∈X Y (fx , y)⊗ ϕx and ψ−y =
∧

x∈X [Y (y , fx), ϕx ]

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 35 / 67



5.2 V is an injective regular cogenerator in V-Catsep

f 6= g : X → Y , Y separated =⇒ ∃h : Y → V : hf 6= hg

κY : Y −→ V [Y ,V] =
∏

h∈[Y ,V]

V, y 7−→ (hy)h∈[Y ,V]

πY : V [Y ,V] −→ VY , (vh)h∈[Y ,V] 7−→ (vy]
Y z)z∈Y

Theorem

V is a regular cogenerator of the category V-Catsep, and it is injective with respect to fully
faithful V-functors. Every separated V-category Y embeds fully into the Y -fold power VY

of V, which is injective again.
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5.3.1 Colimit and limit completion of a V-category

Every V-presheaf ω on X ∈ V-Cat is a colimit of yX in PVX weighted by ω: ω ' colimωyX .

PVX E ◦υ // X

X ω
◦ //

(yX )∗
◦
≥

>>

E

ω∗◦

OO

P]VX

◦υ∗

OO

◦
(y]

X )∗

≤
>>

Dually, every V-copresheaf υ on X is a limit of representables in P]VX ; that is: υ ' limυ y]X .

Wanted for f : X → Y , Y cocomplete/complete:

X
yX //

f
'

''

PVX

f̃ cocontinuous
��

Y

X
y]

X //

f
'

&&

P]VX

f continuous
��

Y
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5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:
f̃ (ω) ' f̃ (colimωyX ) ' colimω(f̃yX ) ' colimωf

Existence:
f̃ (ω) = colimωf ' colimω·f∗1Y

f̃ ' (colim(-)1Y )(PV f ∗)

f̃yX ' (colim(-)1Y )(PV f ∗)yX ' (colim(-)1Y )yY f ' f .

X

f
��

yX // PVX

PV f∗
��

f̃

wwY
yY

22⊥ PVY
colim(-)1Y

ss

f̃ is cocontinuous, as the composite of two left adjoints!

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 38 / 67



5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:
f̃ (ω) ' f̃ (colimωyX ) ' colimω(f̃yX ) ' colimωf

Existence:
f̃ (ω) = colimωf ' colimω·f∗1Y

f̃ ' (colim(-)1Y )(PV f ∗)

f̃yX ' (colim(-)1Y )(PV f ∗)yX ' (colim(-)1Y )yY f ' f .

X

f
��

yX // PVX

PV f∗
��

f̃

wwY
yY

22⊥ PVY
colim(-)1Y

ss

f̃ is cocontinuous, as the composite of two left adjoints!

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 38 / 67



5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:
f̃ (ω) ' f̃ (colimωyX ) ' colimω(f̃yX ) ' colimωf

Existence:
f̃ (ω) = colimωf ' colimω·f∗1Y

f̃ ' (colim(-)1Y )(PV f ∗)

f̃yX ' (colim(-)1Y )(PV f ∗)yX ' (colim(-)1Y )yY f ' f .

X

f
��

yX // PVX

PV f∗
��

f̃

wwY
yY

22⊥ PVY
colim(-)1Y

ss

f̃ is cocontinuous, as the composite of two left adjoints!

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 38 / 67



5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:
f̃ (ω) ' f̃ (colimωyX ) ' colimω(f̃yX ) ' colimωf

Existence:
f̃ (ω) = colimωf ' colimω·f∗1Y

f̃ ' (colim(-)1Y )(PV f ∗)

f̃yX ' (colim(-)1Y )(PV f ∗)yX ' (colim(-)1Y )yY f ' f .

X

f
��

yX // PVX

PV f∗
��

f̃

wwY
yY

22⊥ PVY
colim(-)1Y

ss

f̃ is cocontinuous, as the composite of two left adjoints!

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 38 / 67



5.4 Cocomplete V-categories as pseudo-algebras and as injectives

Theorem
The following properties for a V-category X are equivalent:

(i) X is (co)complete;
(ii) X carries the structure of a pseudo-algebra with respect to the presheaf monad on
V-Cat;

(iii) The Yoneda V-functor yX has a pseudo-retraction; that is: there is a V-functor
h : PVX → X with h yX ' 1X ;

(iv) X is pseudo-injective in V-Cat with respect to fully faithful functors.

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 39 / 67



5.5.1 Cocomplete V-categories via cocontinuous action

Let X be a (co)complete preordered set equipped with a map � : V × X −→ X satisfying
(1) k� x ' x
(2) (u ⊗ v)� x ' u � (v � x)

(3) (
∨

i∈I ui)� x '
∨

i∈I(ui � x)

(4) u � (
∨

i∈I xi) '
∨

i∈I(u � xi)

Condition (4) (= sup-preservation of every u �− : X −→ X ) makes the (existing) sups in
X conical colimits:

X (
∨
i∈I

xi , y) =
∧
i∈I

X (xi , y).

Combine this with two fundamental enriched colimit formulae we have already seen:

(colimωh)(w) '
∨
z

ω(z,w)� h(z) (h : Z → X , ω : Z op ⊗W → V)

X (colimω1X , x) ' [X op,V](ω,yX x) (ω : X op ∼= X op ⊗ E → V), saying colim(-) a yX ,

to obtain:
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5.5.2 Cocomplete V-categories via cocontinuous action: Theorem

Theorem (Folklore 19??)
There are 2-equivalences

V-CatP' ' V-Catcolim ' (Ordsup)V

V-Catcolim:
(co)complete V-categories, with cocontinuous V-functors

OrdVsup:
(co)complete preordered sets on which V acts satisfying conditions (1), (2), (3), (4), with
sup-preserving and pseudo-equivariant maps

Corollary
There are 2-equivalences

(V-Catsep)P ' V-Catsep, colim ' SupV
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5.6.1 Presenting conically cocomplete V-categories algebraically?

Consider moving from the presheaf-monad P on V-Cat:

P : V-Cat −→ V-Cat, X 7−→ [X op,V], PX (σ, τ) =
∧
z∈X

[σz, τz]

to the Hausdorff submonad H via

jX : HX = {A | A ⊆ X} −→ PX , A 7−→ (z 7→ X (z,A) =
∨
x∈A

X (z, x)).

where HX carries the initial (= cartesian) structure inherited from PX via jX :

HX (A,B) =
∧
z∈X

[
∨
x∈A

X (z, x),
∨
y∈B

X (z, y)] = ... =
∧
x∈A

∨
y∈B

X (x , y).
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5.6.2 Algebraic presentation of conically cocomplete V-categories

Theorem (Akhvlediani-Clementino-T 2009, Stubbe 2009)
Just like P, also H becomes a lax-idempotent monad of the 2-category V-Cat,
lifting the power-set monad of Set, and making j : H −→ P a monad morphism,
which induces the forgetful functor

(V-Cat)P' ' V-Catcolim −→ V-Catconsup ' (V-Cat)H' ,

V-Catcolim:
(co)complete (= all weighted (co)limts exist) V-categories, with cocontinous V-functors;

V-Catconsup :
conically cocomplete (= sups exist, Yoneda preserves) V-cats, with sup-preserving V-funs
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5.7 V-Catsep,colim as a quantification of Sup?

Monadicity:

V-Catsep,colim
monadic //

monadic

))V-Catsep
monadic // V-Cat

topological // Set

Self-duality: V-Catsep,colim
∼= // (V-Catsep,colim)op

X

f a
��

7−→ X op

Y

f∗

dd

7−→ Y op

(f∗)op

OO

Symmetric monoidal-closed?
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5.8 V-Catsep,colim is symmetric monoidal closed

Having an equational presentation of separated cocomplete V-categories, we construct
the tensor product classifying “bimorphisms” in a standard manner:

Given objects X ,Y , form the free object Pd(X × Y ) (with the V-powerset monad of Set)
and then put

X � Y = Pd(X × Y )/∼

with the least congruence relation ∼ making the Yoneda map
y : X × Y −→ Pd(X × Y )/∼ a bimorphism; so, ∼ is generated by:

y(u � x , y) ∼ u � y(x , y) ∼ y(x ,u � y),

y(
∨
i∈I

xi , y) ∼
∨
i∈I

y(xi , y), y(x ,
∨
i∈I

yi) ∼
∨
i∈I

y(x , yi)
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6.1 Cauchy sequences

s = (xn)n∈N sequence in X ∈ V-Cat, x ∈ X

Cauchy(s) :=
∨

N∈N
∧

m,n≥N X (xm, xn)

s is Cauchy :⇐⇒ k ≤ Cauchy(s)

λs(x) :=
∨

N∈N
∧

n≥N X (xn, x) (“left-convergence value of s  x”)
ρs(x) :=

∨
N∈N

∧
n≥N X (x , xn) (“right-convergence value of s  x”)

Facts:
E ◦

λs // X , X ◦
ρs // E , with λs · ρs ≤ 1∗X

s Cauchy ⇐⇒ 1∗E ≤ ρs · λs ⇐⇒ λs a ρs

Definitions:
s  x :⇐⇒ k ≤

∨
N∈N(

∧
m≥N X (xm, x)⊗

∧
n≥N X (x , xn)) ⇐⇒ k ≤ λs(x)⊗ ρs(x)

X Cauchy-complete :⇐⇒ every Cauchy sequence s in X converges to some point x ∈ X
Walter Tholen (York University) Quantale-enriched categories TACL School 2022 46 / 67



6.1 Cauchy sequences

s = (xn)n∈N sequence in X ∈ V-Cat, x ∈ X

Cauchy(s) :=
∨

N∈N
∧

m,n≥N X (xm, xn)

s is Cauchy :⇐⇒ k ≤ Cauchy(s)

λs(x) :=
∨

N∈N
∧

n≥N X (xn, x) (“left-convergence value of s  x”)
ρs(x) :=

∨
N∈N

∧
n≥N X (x , xn) (“right-convergence value of s  x”)

Facts:
E ◦

λs // X , X ◦
ρs // E , with λs · ρs ≤ 1∗X

s Cauchy ⇐⇒ 1∗E ≤ ρs · λs ⇐⇒ λs a ρs

Definitions:
s  x :⇐⇒ k ≤

∨
N∈N(

∧
m≥N X (xm, x)⊗

∧
n≥N X (x , xn)) ⇐⇒ k ≤ λs(x)⊗ ρs(x)

X Cauchy-complete :⇐⇒ every Cauchy sequence s in X converges to some point x ∈ X
Walter Tholen (York University) Quantale-enriched categories TACL School 2022 46 / 67



6.1 Cauchy sequences

s = (xn)n∈N sequence in X ∈ V-Cat, x ∈ X

Cauchy(s) :=
∨

N∈N
∧

m,n≥N X (xm, xn)

s is Cauchy :⇐⇒ k ≤ Cauchy(s)

λs(x) :=
∨

N∈N
∧

n≥N X (xn, x) (“left-convergence value of s  x”)
ρs(x) :=

∨
N∈N

∧
n≥N X (x , xn) (“right-convergence value of s  x”)

Facts:
E ◦

λs // X , X ◦
ρs // E , with λs · ρs ≤ 1∗X

s Cauchy ⇐⇒ 1∗E ≤ ρs · λs ⇐⇒ λs a ρs

Definitions:
s  x :⇐⇒ k ≤

∨
N∈N(

∧
m≥N X (xm, x)⊗

∧
n≥N X (x , xn)) ⇐⇒ k ≤ λs(x)⊗ ρs(x)

X Cauchy-complete :⇐⇒ every Cauchy sequence s in X converges to some point x ∈ X
Walter Tholen (York University) Quantale-enriched categories TACL School 2022 46 / 67



6.1 Cauchy sequences

s = (xn)n∈N sequence in X ∈ V-Cat, x ∈ X

Cauchy(s) :=
∨

N∈N
∧

m,n≥N X (xm, xn)

s is Cauchy :⇐⇒ k ≤ Cauchy(s)

λs(x) :=
∨

N∈N
∧

n≥N X (xn, x) (“left-convergence value of s  x”)
ρs(x) :=

∨
N∈N

∧
n≥N X (x , xn) (“right-convergence value of s  x”)

Facts:
E ◦

λs // X , X ◦
ρs // E , with λs · ρs ≤ 1∗X

s Cauchy ⇐⇒ 1∗E ≤ ρs · λs ⇐⇒ λs a ρs

Definitions:
s  x :⇐⇒ k ≤

∨
N∈N(

∧
m≥N X (xm, x)⊗

∧
n≥N X (x , xn)) ⇐⇒ k ≤ λs(x)⊗ ρs(x)

X Cauchy-complete :⇐⇒ every Cauchy sequence s in X converges to some point x ∈ X
Walter Tholen (York University) Quantale-enriched categories TACL School 2022 46 / 67



6.2 Lawvere completeness

X Lawvere-complete : ⇐⇒ ∀ ϕ a ψ : X ◦ //W ∃ f : W −→ X : ϕ = f∗, ψ = f ∗

⇐⇒ ∀ ϕ a ψ : X ◦ // E ∃ x ∈ X : ϕ = x∗, ψ = x∗

=⇒ X Cauchy-complete

Conversely?

Auxiliary conditions on V:

V integral (k = >) and ∃ (εn)n∈N in V : 1. εn ≤ εn+1, 2. εn � k, 3.
∨

n∈N εn = k

Then: ∀ ϕ a ψ ∃ s Cauchy in X : ϕ = λs, ψ = ρs

Theorem (Hofmann-Reis 2018)
If V satisfies the auxiliary conditions: X Lawvere-complete ⇐⇒ X Cauchy-complete
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6.3 Cocompletion wrt a given class Φ of weights: conditions on Φ

W1 f ∗ ∈ Φ, for every V-functor f ;
W2 f ∗ · ψ, ψ · g∗, ψ · h∗ ∈ Φ, for all ψ ∈ Φ and V-functors f ,g,h with h∗ ∈ Φ,

provided that the composites are defined;

W3 if Y ◦
ψ // X satisfies x∗ · ψ ∈ Φ for all x ∈ X , then ψ ∈ Φ;

W4 f∗ ∈ Φ, for every surjective V-functor f .

Φ cocompletion class :⇐⇒ (W1-3) hold; Φ monadic cocompl. class :⇐⇒ (W1-4) hold.

Largest cocompletion class: all V-distributors; trivially, it is monadic.
Least cocompletion class: {f ∗ | f V-functor}; it may obviously fail to be monadic.
Lawvere cocompletion class: {ψ | ψ right adjoint}; it fails to be monadic already for V = 2.

X ∈ V-Cat is Φ-cocomplete :⇐⇒ all colimits of diagrams in X with weights in Φ exist.

f : X → Y is Φ-cocontinuous :⇐⇒ f preserves Φ-weighted colimits of X .
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6.4 Cocompletion wrt a given class Φ of weights: pseudo-Φ-injectivity

For a cocompletion class Φ call

f : X → Y Φ-dense :⇐⇒ f∗ ∈ Φ;
X pseudo-Φ-injective :⇐⇒ X pseudo-injective wrt fully faithful Φ-dense V-functors;

Put

X
yΦ

X

//

yX

,,ΦX := {ψ ∈ PX | ψ ∈ Φ} //
incΦ

X

// PX

Check:
f has a right adjoint =⇒ f Φ-dense;
f and g : Y → Z Φ-dense =⇒ g · f Φ-dense;
g · f Φ-dense and f∗ · f ∗=1∗Y =⇒ g Φ-dense;
g · f Φ-dense and g fully faithful =⇒ f Φ-dense;
yΦ

X is Φ-dense;

(Y ◦
ψ // X ) ∈ Φ ⇐⇒ the mate ψ] : X → PY factors through incΦ

X .
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f : X → Y Φ-dense :⇐⇒ f∗ ∈ Φ;
X pseudo-Φ-injective :⇐⇒ X pseudo-injective wrt fully faithful Φ-dense V-functors;

Put

X
yΦ

X

//

yX

,,ΦX := {ψ ∈ PX | ψ ∈ Φ} //
incΦ

X

// PX

Check:
f has a right adjoint =⇒ f Φ-dense;
f and g : Y → Z Φ-dense =⇒ g · f Φ-dense;
g · f Φ-dense and f∗ · f ∗=1∗Y =⇒ g Φ-dense;
g · f Φ-dense and g fully faithful =⇒ f Φ-dense;
yΦ

X is Φ-dense;
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6.5 Cocompletion wrt a given class Φ of weights: theorems

Theorem (Clementino-Hofmann 2009)
Let Φ be a cocompletion class.

The following properties for a V-category X are equivalent:
(i) X is Φ-cocomplete, i.e. X has all colimits with weights in Φ;
(ii) X carries the structure of a pseudo-algebra with respect to the Φ-presheaf monad

(Φ,sΦ,yΦ) on V-Cat;
(iii) the Yoneda V-functor yΦ

X has a pseudo-retraction; that is: there is a V-functor
h : PΦX → X with h yΦ

X ' 1X ;
(iv) X is pseudo-Φ-injective in V-Cat.

Φ a (V-Catsep,Φ-colim −→ V-Cat).
If Φ is monadic, then V-Catsep,Φ-colim is monadic over Set.
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6.6 Cauchy completion of a V-category à la Lawvere

Let V satisfy k = > and ∃ (εn)n∈N in V : 1. εn ≤ εn+1, 2. εn � k, 3.
∨

n∈N εn = k;

Consider Φ := {ψ | ψ right adjoint V-distributor}, and let X ∈ V-Cat. Then

ΦX = {ψ ∈ PVX | ψ right adjoint} = {ρs | s = (xn)n Cauchy sequence in X}

with ρs(x) =
∨

N∈N
∧

n≥N X (x , xn) (x ∈ X ), and

1 (trivially) (s ∼ s′ ⇐⇒ ρs = ρs′) is an equivalence relation on the set of all
Cauchy sequences in X , with projection s 7→ ρs;

2 ΦX is Cauchy complete;
3 the restricted Yoneda V-functor X → ΦX , y 7→ ρ(y)n , is a reflection of X into

the full subcategory of Cauchy complete V-categories.
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7.1 The category Set//V = V-wSet of V-weighted or -normed sets

Defining Set//V: A
ϕ //

|−|A

≤

��

B

|−|B��
V

⇐⇒ ∀ a ∈ A : |a|A ≤ |ϕa|B

Set//V is topological over Set: ( A
ϕi //

|−|
≤

  

Bi )i∈I

|−|||
V

initial⇐⇒ |a| =
∧
i∈I

|ϕia|

Set//V is symmetric monoidal-closed:

A⊗ B = ( A× B, |(a,b)| = |a| ⊗ |b| ), E = (1 = {∗}, | ∗ | = k)

[A,B] = ( Set(A,B), |ϕ| =
∧
a∈A

[|a|, |ϕa|] )
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7.2 The category Cat//V = V-wCat of (small) V-weighted categories

Objects of Cat//V are (small) categories X enriched in Set//V; this means (neglecting ∀):
X(x , y)⊗ X(y , z) −→ X(x , z) and E −→ X(x , x) live in Set//V

⇐⇒ |f | ⊗ |g| = |(f ,g)| ≤ |g · f | and k ≤ |1x |

⇐⇒ |-| : X −→ (V,⊗, k) is a lax functor

For a functor F : X −→ Y to be enriched in Set//V means (without universal quantifiers):

X(x , y) −→ Y(Fx ,Fy) lives in Set//V
⇐⇒ |f | ≤ |Ff |

⇐⇒ X F //

|-|
≤

��

Y

|-|��
V
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7.3 The adjunction s a i, monoidal-closed structure, preserved by i, s

V-Cat Cat//V
X , X (x , y)⊗ X (y , z) ≤ X (x , z) � i // iX , ob(iX ) = X

k ≤ X (x , x) x
(x ,y) // y , |(x , y)| = X (x , y)

sX = obX, sX(x , y) =
∨
{|f | | f : x → y} �soo X, |f | ⊗ |g| ≤ |g · f |

k ≤ |1x |

X ⊗ Y = X × Y (as a set) X⊗ Y = X× Y (as a category)
(X ⊗ Y )((x , y), (x ′, y ′)) = X (x , x ′)⊗ Y (y , y ′) |(f ,g)| = |f | ⊗ |g|

[X ,Y ] = V-Cat(X ,Y ) (as a set) [X,Y] = (Cat//V)(X,Y) (as a cat)
[X ,Y ](f ,g) =

∧
x∈X

Y (fx ,gx) | F α // G | =
∧

x∈obX
|αx |
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7.4.1 Example: (V ,≤,⊗, k) = (2,⊥ < >,∧,>)

2-Cat = Ord Cat//2 = sCat

X , x ≤ y ∧ y ≤ z =⇒ x ≤ z � i // iX , ob(iX ) = X

> =⇒ x ≤ x ( x
(x ,y) // y) ∈ S ⇐⇒ x ≤ y

sX = obX, x ≤ y ⇐⇒ ∃(f : x → y) ∈ S �soo X, S, f ,g ∈ S =⇒ g · f ∈ S
> =⇒ 1x ∈ S

X ⊗ Y = X × Y X⊗ Y = X× Y (as a category)
(x , y) ≤ (x ′, y ′)⇐⇒ x ≤ x ′ ∧ y ≤ y ′ SX⊗Y = SX × SY

[X ,Y ] = Ord(X ,Y ) [X,Y] = sCat(X,Y) (as a cat)
f ≤ g ⇐⇒ ∀x ∈ X : fx ≤ gx α ∈ S[X,Y] ⇐⇒ ∀x ∈ obX : αx ∈ SY
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7.4.2 Example: (V ,≤,⊗, k) = ([0,∞],≥,+,0)

[0,∞]-Cat = Met Cat//[0,∞] = wCat

X , d(x , y) + d(y , z) ≥ d(x , z) � i // iX , ob(iX ) = X

0 ≥ d(x , x) x
(x ,y) // y , |(x , y)| = d(x , y)

sX = obX, d(x , y) = inf
f :x→y

|f | �soo X, |f |+ |g| ≥ |g · f |

0 ≥ |1x |

X ⊗ Y = X × Y X⊗ Y = X× Y (as a category)
d((x , y), (x ′, y ′)) = d(x , y) + d(y , y ′) |(f ,g)| = |f |+ |g|

[X ,Y ] = Met(X ,Y ) [X,Y] = wCat(X,Y) (as a cat)
d(f ,g) = sup

x∈X
d(fx ,gx) | F α // G | = sup

x∈obX
|αx |
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7.5.1 Some elementary examples of weighted categories, I

We saw:

V-categories (and their functors) are V-weighted categories (and their functors); in fact,
they are precisely the V weighted categories with indiscrete underlying category.

Question: May Set be “naturally” [0,∞]-weighted?

Goal 1: Let |f | measure the degree to which a map f : X → Y fails to be surjective.

Simply put |f | := #(Y \ f (X )) ∈ N ∪ {∞} ⊆ [0,∞].

Then: 0 ≥ |idX |, and with g : Y → Z we have |f |+ |g| ≥ |g · f |

since (assuming Choice and Y ∩ Z = ∅) there is an injective map

Z \ (g(f (X ))) −→ (Y \ f (X )) + (Z \ g(Y )).

Note: f surjective⇐⇒ |f | = 0.
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7.5.2 Some elementary examples of weighted categories, II

Question: May something similar be done for injectivity? That is:

Goal 2: Let |f | measure the degree to which a map f : X → Y fails to be injective.

First consider #f := supy∈Y #f−1y ; then, with g : Y → Z , we have:

#g ·#f = (sup
z∈Z

#g−1z) · (sup
y∈Y

#f−1y) ≥ sup
z∈Z

#(
⋃

y∈g−1z

f−1y) = #(g · f ), 1 ≥ #idX

Not what we wanted! But ([1,∞],≥, ·,1)
∼=
log
// ([0,∞],≥,+,0) comes to the rescue:

Put |f | := max{0, log #f}; then: |g|+ |f | ≥ |g · |f |. 0 ≥ |idX |.

Note: f injective⇐⇒ |f | = 0.
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7.5.3 A more interesting example of a (large) weighted category: Lip

ob Lip = ob Met, Lip(X ,Y ) = Set(X ,Y ); why call this category Lip ??

Recall: f : X → Y is K (≥ 0)-Lipschitz ⇐⇒ ∀x 6= x ′ : d(fx , fx ′) ≤ K d(x , x ′)

In particular: f : X → Y is a morphism in Met ⇐⇒ f is 1-Lipschitz

Question: How far is an arbitrary map f away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant K ≥ 1 for f (admitting K =∞)

That is: Lip(f ) = max{1, sup
x 6=x ′

d(fx , fx ′)
d(x , x ′)

} (assuming temporarily that X be separated)

Then: Lip(g) · Lip(f ) ≥ Lip(g · f ), 1 ≥ Lip(idX )

No problem:

([1,∞],≥, ·,1)
∼=
log
// ([0,∞],≥,+,0) , |f | = max{0, sup

x ,x ′
(log d(fx , fx ′)− log d(x , x ′))}

Then: |g|+ |f | ≥ |g · f |, 0 ≥ |idX |, (f 1-Lipschitz⇐⇒ |f | = 0)
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7.6 On the axiomatics for weighted/normed categories

The category X is V-weighted by |-| : X −→ V if

k ≤ |1x |
|g| ⊗ |f | ≤ |g · f | ⇐⇒ |f | ≤

∧
g

[|g|, |g · f |] ⇐⇒ |f | =
∧
g

[|g|, |g · f |]

⇐⇒ |g| ≤
∧
f

[|f |, |g · f |] ⇐⇒ |g| =
∧
f

[|f |, |g · f |]

The V-weighted category X is right/left cancellable if

|f | ⊗ |g · f | ≤ |g| ⇐⇒ |f | ≤
∧
g

[|g · f |, |g|] =: |f |R (right cancellable)

|g| ⊗ |g · f | ≤ |f | ⇐⇒ |g| ≤
∧
f

[|g · f |, |f |] =: |g|L (left cancellable; Kubiś: “norm”)

Facts (Insall-Luckhardt for V = [0,∞]): X weighted by |-| =⇒ X weighted by |-|R and |-|L,
and |f | ≤ |f |RR, |f | ≤ |f |LL.
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The V-weighted category X is right/left cancellable if

|f | ⊗ |g · f | ≤ |g| ⇐⇒ |f | ≤
∧
g

[|g · f |, |g|] =: |f |R (right cancellable)

|g| ⊗ |g · f | ≤ |f | ⇐⇒ |g| ≤
∧
f

[|g · f |, |f |] =: |g|L (left cancellable; Kubiś: “norm”)

Facts (Insall-Luckhardt for V = [0,∞]): X weighted by |-| =⇒ X weighted by |-|R and |-|L,
and |f | ≤ |f |RR, |f | ≤ |f |LL.

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 60 / 67



7.6 On the axiomatics for weighted/normed categories

The category X is V-weighted by |-| : X −→ V if

k ≤ |1x |
|g| ⊗ |f | ≤ |g · f | ⇐⇒ |f | ≤

∧
g

[|g|, |g · f |] ⇐⇒ |f | =
∧
g

[|g|, |g · f |]

⇐⇒ |g| ≤
∧
f

[|f |, |g · f |] ⇐⇒ |g| =
∧
f

[|f |, |g · f |]

The V-weighted category X is right/left cancellable if

|f | ⊗ |g · f | ≤ |g| ⇐⇒ |f | ≤
∧
g

[|g · f |, |g|] =: |f |R (right cancellable)

|g| ⊗ |g · f | ≤ |f | ⇐⇒ |g| ≤
∧
f

[|g · f |, |f |] =: |g|L (left cancellable; Kubiś: “norm”)
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7.7 The underlying ordinary category X0 of a V-weighted category X

Note:

An isomorphism f in X may not satisfy k ≤ |f |, and even when it does, we may not have
k ≤ |f−1| (unless the weight is left/right cancellable). Still, in many of the examples with
V = [0,∞] considered in the literature, morphisms f , and especially isomorphisms, of
norm 0 play an important role. They are called “modulators” by Insall-Luckhardt.

Question:

What is the “enriched significance” of considering morphisms f with k ≤ |f |?

Answer:

These are precisely the morphisms of the underlying ordinary category X0 of the
(Set//V)-enriched category X.
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7.8.1 V-weighted cats vs. V-metrically enriched cats: syntax prep

Recall: groups (X ,−,0) in subtractive notation:

x − 0 = x , x − x = 0, (x − y)− (z − y) = x − z

Write V-Met for V-Catsym: “V-metric spaces” = V-categories X with X (x , y) = X (y , x)

Form the category V-MetGrp of “V-metric groups”:

objects are V-metric spaces X with a group structure that makes distances invariant
under translations:

X (x , y) = X (x − z, y − z);

morphisms are V-contractive homomorphisms.

V-MetGrp inherits its symmetric monoidal structure from V-Cat and the cartesian cat Grp.
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7.8.2 V-metric groups as V-weighted groups

The category Grp//V has as

objects: V-weighted sets (X , |-|) with a group structure such that

k ≤ |0|, |x | ⊗ |y | ≤ |x − y |;

morphisms live in both, Set//V and Grp.

Obtain:
Grp//V oo

∼= // V-MetGrp

X � // X (x , y) = |x − y |

|x | = X (x ,0) X�oo
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7.9 V-weighted cats vs V-metrically enriched cats vs V-metagories

Grp//V oo
∼= //

��

V-MetGrp

��
V // i // Set//V V-Met

(Grp//V)-Cat oo
∼= //

��

(V-MetGrp)-Cat

��
V-Cat // i // (Set//V)-Cat = Cat//V (V-Met)-Cat // // V-Metag
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7.10.1 Principal references, I

F. W. Lawvere: Metric spaces, generalized logic, and closed categories

Rendiconti del Seminario Matematico e Fisico di Milano 43:135–166, 1973.

Republished in Reprints in Theory and Applications of Categories 1, 2002.

(This paper not only introduces metric spaces as small categories enriched in the
extended real half-line, considered as a symmetric monoidal-closed category under
addition, but it is also the birthplace of normed categories, introduced as categories
enriched in a certain symmetric monoidal category of normed sets.)

D. Hofmann, G.J. Seal, W.T. (eds.): Monoidal Topology–A Categorical Approach to Order,
Metric and Topology, Cambridge University Press, 2014.

(This book studies the category (T,V)-Cat, for a Set-monad T which is assumed to
interact with the V-presheaf monad PV via a lax distributive law; for T the identity monad
on Set, one obtains the category V-Cat as considered in these lectures.)
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7.10.2 Principal references, II

A. Akhvlediani, M.M. Clementino, W. Tholen: On the categorical meaning of
Hausdorff and Gromov distances I, Topology and its Applications, 2010
M.M. Clementino, D. Hofmann, W. Tholen: One setting for all: metric, topology,
uniformity, approach structure, Applied Categorical Structures, 2004
M.M. Clementino, W. Tholen: Metric, topology and multicategory–a common
approach, Journal of Pure and Applied Algebra, 2003
D. Hofmann: Topological theories and closed objects, Advances in Math., 2007
D. Hofmann, C. Reis: Convergence and quantale-enriched categories, CAGSA, 2018
A. Joyal, M. Tierney: An extension of the Galois theory of Grothendieck, AMS, 1984
E. Martinelli: Actions, injectives and injective hulls in quantale-enriched categories,
PhD thesis, Universidade de Aveiro, 2021
I. Stubbe: “Hausdorff distance” via conical cocompletion, Cahiers de Topologie et
Géom. Diff. Catégoriques, 2010
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7.10.3 Selected other references (related to weighted/normed cats)

A. Aliouche and C. Simpson: Fixed points and lines in 2-metric spaces, Advances in
Mathematics, 2012
P. Bubenik, V. de Silva, J. Scott: Interleaving and Gromov-Hausdorff distance, arXiv,
2017
M. Grandis: Directed Algebraic Topology, Cambridge University Press, 2009
M. Insall, D. Luckhardt: Norms on categories and analogs of the Schröder-Bernstein
Theorem, arXiv, 2021
W. Kubiś: Categories with norms, arXiv, 2018
A. Neeman: Metrics on triangulated categories, arXiv, 2019.
P. Perrone: Lifting couples in Wasserstein spaces, arXiv, 2021
W. Tholen: Remarks on weighted categories and the non-symmetric
Pompeiu-Hausdorff-Gromov metric, Talk at CT 2018 (Ponta Delgada)
W. Tholen, J. Wang: Metagories, Topology and its Applications, 2020
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