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Learning goals for this lecture series

@ Embrace (enriched) category theory as a guide for analytic inquiry

@ Appreciate the quantalic structure of the real half-line as the key for studying metrics
@ Get familiar with other important quantales and study the categories enriched in them
@ Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,

@ in particular: Cauchy vs Lawvere

@ Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),

@ normed/weighted categories, metrically enriched categories, metagories, etc.
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Lectures

1 Metrics: from Frechét via Hausdorff to Lawvere

2 Quantales and the (small) categories enriched in them
3 Distributors and the presheaf monad

4 Weighted colimits, tensors, conical infima

5 Pseudo-algebras of the presheaf monad, injectivity

6 Cauchy- and Lawvere-completeness

7 A glance at normed/weighted categories
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1.1 Fréchet 1906

A Frechét metric d : X x X — R on a set X satisfies:

D-Self 0= d(x, x)
Sep d(x,y)=0=d(y,x) = x=y
Sym d(x,y) = d(y, x)

V-Ing d(x,y)+d(y,z) > d(x, 2)
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1.1 Fréchet 1906

A Frechét metric d : X x X — R on a set X satisfies:

D-Self 0= d(x, x)
Sep d(x,y)=0=d(y,x) = x=y
Sym d(x,y) = d(y,x)
V-Inq d(x,y)+d(y,z) > d(x, z)
Necessarily then:
Pos d(x,y) >0
Possible strengthenings:
Bdd 1 > d(x, y) (bounded metric)
Ult max{(d(x,y),d(y,z)} > d(x, z) (ultrametric)

Metr,ochet - morph’s f: X — Y satisfy dx(x, x') > dy(fx, fx'); write X(x, x) > Y(fx, fx').
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1.2 Some shortcomings of Metrs.net, Hausdorff’s 1914 observations

@ Finitely complete, but countable products (even of 2-point spaces) may not exist.
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@ The (non-symmetrized) Hausdorff distance
d(A, B) = sup inf d(x,y)

xcAY€EB

for A, B C X will (when it exists in [0, c0)) generally satisfy only (0-Self) and (A-Inq)
of the Fréchet axioms, ...
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1.2 Some shortcomings of Metgschet, Hausdorff’s 1914 observations

@ Finitely complete, but countable products (even of 2-point spaces) may not exist.
@ Any two non-empty spaces fail to admit a coproduct.
@ Neither its cartesian structure nor its natural monoidal structure are closed.
@ The (non-symmetrized) Hausdorff distance
d(A, B) = sup |nf d(x,y)

xcAY€EB

for A, B C X will (when it exists in [0, c0)) generally satisfy only (0-Self) and (A-Inq)
of the Fréchet axioms, ...

.. but this remains true even when the given distance function on X satisfies just
these two conditions! Likewise for bounded metrics, ultrametrics, efc.
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1.3 Regrouping Fréchet’s axioms a la Lawvere 1973

A Frechét metric d : X x X — [0, 00] on a set X satisfies

0-Self-distances: 0 > d(x, x) 1 — X(x, x)

V-Inequality: d(x,y)+d(y,z) > d(y, z) X(x,y) x X(y,z) = X(x, 2)
Symmetry:. d(x,y) = (y,x) X(x,y) = Xy, x)

Separation: dx,y)=0=d(y,x) = x=y X(x.y)=1=X(y.x)=—x=y
Finiteness: oo > d(x,y) 0 # X(x,y)
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A map f: X — Y of metric spaces is non-expansive/short/ 1-Lipschitz if
Contraction: dx(x, x") > dy(fx, fx) X(x,x") = Y(fx, fx)

The category Met is complete and cocomplete and symmetric monoidal-closed. But:
—(

reflective, coreflective

reflective
Mets_\ m,sep™ > Met\\ m

topol(% Aoglcal

Metr ccnet
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1.4 Some supporting formulae

@ (fi: X = Yj)jesinitial (jointly cartesian) <= X(x, x") = sup;¢; Yi(fix, fix’)
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@ (fi: X = Yj)jesinitial (jointly cartesian) <= X(x, x") = sup;¢; Yi(fix, fix’)

o X x Y((x,5), (X, y") = max{X(x,x), Y(y,y')}

e X+Y(z,Z)=X(z,Z)ifz,Z € X, and = Y(z,Z/)ifz,Z € Y, and = o otherwise

@ X Y((x,y),(x,y)) = X(x,x")+ Y(y,y') makes Met symmetric monoidal-closed
with internal hom

@ X, Y|(f,g) = supyex Y(fx, gx)

@ Coreflective symmetrization: Xcsym(X, X") = max{X(x, x"), X(x’, x)}

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 7167



1.4 Some supporting formulae

@ (fi: X = Yj)jesinitial (jointly cartesian) <= X(x, x") = sup;¢; Yi(fix, fix’)
° X x Y((x,¥),(x,y)) = max{X(x,x'), Y(y,y')}
e X+Y(z,Z)=X(z,Z)ifz,Z € X, and = Y(z,Z/)ifz,Z € Y, and = o otherwise
@ X Y((x,y),(x,y)) = X(x,x")+ Y(y,y') makes Met symmetric monoidal-closed
with internal hom
@ X, Y|(f,g) = supyex Y(fx, gx)
@ Coreflective symmetrization: Xcsym(X, X") = max{X(x, x"), X(x’, x)}
@ Reflective symmetrization:
Xym(3, ') = inf  E0 min{X(x_1,%), X (% X_1)}

Xn=x" 1=

-----
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@ (fi: X = Yj)jesinitial (jointly cartesian) <= X(x, x") = sup;¢; Yi(fix, fix’)
° X x Y((x,¥),(x,y)) = max{X(x,x'), Y(y,y')}
e X+Y(z,Z)=X(z,Z)ifz,Z € X, and = Y(z,Z/)ifz,Z € Y, and = o otherwise
@ X Y((x,y),(x,y)) = X(x,x")+ Y(y,y') makes Met symmetric monoidal-closed
with internal hom
@ X, Y|(f,g) = supyex Y(fx, gx)
@ Coreflective symmetrization: Xcsym(X, X") = max{X(x, x"), X(x’, x)}
@ Reflective symmetrization:
erym(X,X/) = inf b 1 min{X(Xj’*th)?X(Xj’Xj*”}

X=Xg,---, Xn=X"' =

@ Separation: with (x ~ y: <= X(x,y) =0= X(y, x)), let
X/ = ([x], ¥]) = X(x,y)
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1.4 Some supporting formulae

@ (fi: X = Yj)jesinitial (jointly cartesian) <= X(x, x") = sup;¢; Yi(fix, fix’)

° X x Y((x,y),(x,y')) = max{X(x,x'), Y(y,y')}

e X+Y(z,Z)=X(z,Z)ifz,Z € X, and = Y(z,Z/)ifz,Z € Y, and = o otherwise

@ X Y((x,y),(x,y)) = X(x,x")+ Y(y,y') makes Met symmetric monoidal-closed
with internal hom

@ X, Y|(f,g) = supyex Y(fx, gx)
@ Coreflective symmetrization: Xcsym(X, X") = max{X(x, x"), X(x’, x)}
@ Reflective symmetrization:

Xsym(x, )= _inf _ Ty min{X(x-1,%), X0, X-1)}

X=Xg,---, Xn=X"' 1=

@ Separation: with (x ~ y: <= X(x,y) =0= X(y, x)), let

X/~ (Ix]; [y]) = X(x, y)
... and the formulae remain essentially valid for BMet (bounded mets), UMet (ultramets).
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2.1 Quantales

A (commutative) quantale (V, <, ®,k) is a commutative monoid in (Sup, X, 2); that is:
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A (commutative) quantale (V, <, ®,k) is a commutative monoid in (Sup, X, 2); that is:
@ (V,<)is a complete lattice;

@ (V,®,k) is a commutative monoid,;
@ —®vVv:V — Vpreserves joins forall v € V.
Hence, as a monotone map, every — ® v has a right adjoint; this means:

V is a “thin” symmetric monoidal-closed category, with internal homs [v, w] determined by

u<lv,w] <= uev<w.
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2.1 Quantales

A (commutative) quantale (V, <, ®,k) is a commutative monoid in (Sup, X, 2); that is:
@ (V,<)is a complete lattice;

@ (V,®,k) is a commutative monoid,;
@ —®vVv:V — Vpreserves joins forall v € V.

Hence, as a monotone map, every — ® v has a right adjoint; this means:
V is a “thin” symmetric monoidal-closed category, with internal homs [v, w] determined by
u<lv,w] <= uev<w.

Some useful rules:
k<[u,u], [uvl]@u<v, [k Vv]=V, [U ® U, V] =[u1,[U2, V]] = [U2,[u1, V]],

[\ ui v = Alui v, [u, A\ vil = Alu, vil
icl icl icl icl
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2.1 (Lax) homomorphisms, first examples

vV — W is alax homomorphism if
Voeu <o\ u), puewev<pueyv), ky < pky);
icl iel

p is a (strict) homomorphism if < may be replaced by = .
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2.1 (Lax) homomorphisms, first examples

vV — W is alax homomorphism if

Voou <o\ u), wucwev<e(ueyv), kw<elky)
icl iel
p is a (strict) homomorphism if < may be replaced by = .

@ 1 is the terminal quantale (k = 1)
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@ 2= ({L, T}, <,A,T)is the initial quantale; more generally: (PS,C, N, S) (S any set)
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2.1 (Lax) homomorphisms, first examples

vV — W is alax homomorphism if

Voui <o\ u), puewev<puoyy), k< plky);
icl icl
p is a (strict) homomorphism if < may be replaced by = .
@ 1 is the terminal quantale (k = 1)
@ 2= ({L, T}, <,A,T)is the initial quantale; more generally: (PS,C, N, S) (S any set)
@ even more generally: any locale (frame) L is a “cartesian” quantale (L, <, A, T)
@ the Lawvere quantale [0, co]+ = [0, 1]«, that is: ([0, o], >, +,0) = ([0, 1], <, x, 1)
@ and its “ultra” version [0, c0]max = [0, 1]min: ([0, o0], >, max, 0) = ([0, 1], <, min, 1)
@ the Lukasiewicz quantale [0, 1] = [0, 1], thatis: ([0,1],>,®,0) = ([0,1],<,®,1)
withu® v =min{fu+v,1} andu® v =max{u+v —1,0}

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 9/67



2.2 More examples of quantales

@ the free quantale (PM, C, x, {n}) over a commutative monoid (M, x,n)
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2.2 More examples of quantales

@ the free quantale (PM, C, x, {n}) over a commutative monoid (M, x,n)
@ the quantale (DV, C, ®,, | k) of down(-closed) sets of a quantale (V, ®,k)
@ the quantale Ag, = (A, <, &, k) of distance distribution functions, with

A ={p:[0,00] =[0,1] [Va € [0, 00] : p(a) = sup ©(6)},

for any “t-norm” & on [0, 1], i.e. any operation that makes ([0, 1], <, &, 1) a quantale,
extended to A by
(p&¥)(v) = sup (o) &¥(B);

a+B<y
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@ the free quantale (PM, C, x, {n}) over a commutative monoid (M, x,n)
@ the quantale (DV, C, ®,, | k) of down(-closed) sets of a quantale (V, ®,k)
@ the quantale Ag, = (A, <, &, k) of distance distribution functions, with

A ={p:[0,00] =[0,1] [Va € [0, 00] : p(a) = sup ©(6)},

for any “t-norm” & on [0, 1], i.e. any operation that makes ([0, 1], <, &, 1) a quantale,
extended to A by

(p&P)(y) = sup () &P(B);

a+p<y
the distance distribution function « with x(0) = 0 and x(a) = 1 for & > 0 is &-neutral.
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2.2 More examples of quantales

@ the free quantale (PM, C, x, {n}) over a commutative monoid (M, x,n)
@ the quantale (DV, C, ®,, | k) of down(-closed) sets of a quantale (V, ®,k)
@ the quantale Ag, = (A, <, &, k) of distance distribution functions, with

A ={p:[0,00] =[0,1] [Va € [0, 00] : p(a) = sup ©(6)},

for any “t-norm” & on [0, 1], i.e. any operation that makes ([0, 1], <, &, 1) a quantale,
extended to A by

(p&P)(y) = sup () &P(B);

a+p<y
the distance distribution function « with x(0) = 0 and x(a) = 1 for & > 0 is &-neutral.

[07 OO]+ = Ag b [Oa 1]&
is a coproduct in the category of quantales, since for any ¢ € A:

p= sup o(a) & Tg(p(a)) = SuP o (a) & g (p(a))
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2.3 Quantale-valued relations of sets

X—'>vY = XxY-L-svy — r= (f(X,Y))xex,er
(s-r)(x,z): \/ r(x,y)®s(y,z)
yey
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2.3 Quantale-valued relations of sets

X—'>vY = XxY-L-svy — r= (f(X,Y))xex,er
(s-r)(x,z): \/ r(x,y)®s(y,z)
yeY

Set — V-Rel, (X—>VY)r— (X-LxY) f(x,y)=kiffx =y, = L else
V-Rel is a 2-category with 2-cells given by the pointwise order of V-relations.

V-Rel has the involution re(y, x) = r(x, y); put f° = (£)°; then f, 4 f° (“maps are maps”)
V-Rel is a quantaloid, i.e. a Sup-enriched category:

\s)-r=\(si-n, s-(\V/m)=\(s-n)

iel iel iel iel

V — V-Rel, v+— (1 —"=1) is a homomorphism of quantaloids.

Usefulrule: W—2-X T~y <" 7 (W1 g)(w,z)=r(gw, hz).
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2.4 Extensions and liftings of V-relations

Consider X =Y, Y-3%-7 X'~ Z. Obtain:

—.r S—
—_— —_— T

V-Rel(Y, 2) L V-Rel(X, 2) V-Rel(X, Y) 1 V-Rel(X, 2)
~ @@ ~ @@

[I‘,—] ]Sv_[

s<[nt] <= s-r<t < r<]st
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2.4 Extensions and liftings of V-relations

Consider X =Y, Y-3%-7 X'~ Z. Obtain:

—.r S—
—_— —_— T

V-Rel(Y, 2) L V-Rel(X, 2) V-Rel(X, Y) 1 V-Rel(X, 2)
~ @@ ~ @@

[I‘,—] ]Sv_[

s<[nt] <= s-r<t < r<]st

“extension of t along r” V4 y -7 “lifting of t along s”
t/” </
/\ > [r,1] Is, t[% /\ ;
X——=Y X

.y, 2) = N\Ir(x, ). t(x,2)] Is.tl(x,y) = N\ [s(y, 2), t(x, 2)]

xeX zeZ
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2.5 Small categories and functors enriched in V

(X, a) € v-Cat <= ais a monoid in the monoidal category (V-Rel(X, X), <,-,1%)
— 15 < a, a-a<a
— k<a(x,x), a(x,y)®aly,z)<alx,z)

X € V-Cat <~ k< X(x,x), X(x,y)®X(y,z) <X(x,2z)
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2.5 Small categories and functors enriched in V

(X, a) € V-Cat ais a monoid in the monoidal category (V-Rel(X, X), <,-,1%)
1% < a, a-a<a
k<a(x,x), alx,y)®aly,z)<a(x,z)

X € V-Cat k< X(x,x), X(x,y)®X(y,z) < X(x,2)

f:X = YinV-Cat
f:(X,a) — (Y,b)

X(x,x") < Y(fx, &)
a<fo-b-f, <= fh-a<b-f, <= a-f°<f°-b

1t 11170
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(X, a) € V-Cat ais a monoid in the monoidal category (V-Rel(X, X), <,-,1%)
1% < a, a-a<a
k<a(x,x), alx,y)®aly,z)<a(x,z)

X € V-Cat k< X(x,x), X(x,y)®X(y,z) < X(x,2)

f:X = YinV-Cat
f:(X,a) — (Y,b)

X(x,x") < Y(fx, &)
a<fo-b-f, <= fh-a<b-f, <= a-f°<f°-b

1t 11170

Some prominent objects in V-Cat:
®7 1= ({*}7 T)v E= ({*}71()7 V= (V7 ['7 '])
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f:X = YinV-Cat
f:(X,a) — (Y,b)

X(x,x") < Y(fx, &)
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1t 11170

Some prominent objects in V-Cat:
@, 1= ({*}7 T)v E= ({*}71()7 V= (V7 ['7 '])

Lax homomorphisms of quantales facilitate change-of-base functors:

¢ 1V — W lax homomorphism = B,: V-Cat - W-Cat, (X,a)~— (X,pa)
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(X, a) € V-Cat ais a monoid in the monoidal category (V-Rel(X, X), <,-,1%)
1% < a, a-a<a
k<a(x,x), alx,y)®aly,z)<a(x,z)

X € V-Cat k< X(x,x), X(x,y)®X(y,z) < X(x,2)

f:X = YinV-Cat
f:(X,a) — (Y,b)

X(x,x") < Y(fx, &)
a<fo-b-f, <= fh-a<b-f, <= a-f°<f°-b

1t 11170

Some prominent objects in V-Cat:
@, 1= ({*}7 T)v E= ({*}71()7 V= (V7 ['7 '])

Lax homomorphisms of quantales facilitate change-of-base functors:

¢ 1V — W lax homomorphism = B,: V-Cat - W-Cat, (X,a)~— (X,pa)
p:V —=2with (p(v) =T <= k < v)=B, : V-Cat — Ord with (x < y <= k < X(x,y))
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2.6 Some examples of (categories of) V-categories

1-Cat = Set

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 14/67



2.6 Some examples of (categories of) V-categories

1-Cat = Set

2-Cat = Ord: preordered sets and monotone maps

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 14/67



2.6 Some examples of (categories of) V-categories

1-Cat = Set
2-Cat = Ord: preordered sets and monotone maps
[0, 0] -Cat = Met = [0, 1] «-Cat = ProbOrd: probabilistic (pre)ordered sets

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 14/67



2.6 Some examples of (categories of) V-categories

1-Cat = Set
2-Cat = Ord: preordered sets and monotone maps
[0, 0] -Cat = Met = [0, 1] «-Cat = ProbOrd: probabilistic (pre)ordered sets

[0, 00]max-Cat = UMet = [0, 1],i,-Cat: (Lawvere) ultrametric spaces

Walter Tholen (York University)

Quantale-enriched categories TACL School 2022 14/67



2.6 Some examples of (categories of) V-categories

1-Cat = Set

2-Cat = Ord: preordered sets and monotone maps

[0, 0] -Cat = Met = [0, 1] «-Cat = ProbOrd: probabilistic (pre)ordered sets
[0, co]max-Cat = UMet = [0, 1],in-Cat: (Lawvere) ultrametric spaces

[0, 1]¢-Cat = BMet = [0, 1]-Cat: bounded (Lawvere) metric spaces

Walter Tholen (York University) Quantale-enriched categories TACL School 2022



2.6 Some examples of (categories of) V-categories

1-Cat = Set

2-Cat = Ord: preordered sets and monotone maps

[0, 0] -Cat = Met = [0, 1] «-Cat = ProbOrd: probabilistic (pre)ordered sets
[0, 00]max-Cat = UMet = [0, 1],i,-Cat: (Lawvere) ultrametric spaces

[0, 1]¢-Cat = BMet = [0, 1]-Cat: bounded (Lawvere) metric spaces

A -Cat = ProbMet probabilistic (Lawvere) metric spaces (X,p: X x X — A),
with p(x, y)(«) to be interpreted as probability of “d(x, y) < « for a random metric on X”

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 14/67



2.6 Some examples of (categories of) V-categories

1-Cat = Set

2-Cat = Ord: preordered sets and monotone maps

[0, 0] -Cat = Met = [0, 1] «-Cat = ProbOrd: probabilistic (pre)ordered sets
[0, 00]max-Cat = UMet = [0, 1],i,-Cat: (Lawvere) ultrametric spaces

[0, 1]¢-Cat = BMet = [0, 1]-Cat: bounded (Lawvere) metric spaces

A -Cat = ProbMet probabilistic (Lawvere) metric spaces (X,p: X x X — A),
with p(x, y)(«) to be interpreted as probability of “d(x, y) < « for a random metric on X”

(2=——[0, 0]+ —= A) = (Ord Met ProbMet)

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 14/67
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1-Cat = Set

2-Cat = Ord: preordered sets and monotone maps

[0, 0] -Cat = Met = [0, 1] «-Cat = ProbOrd: probabilistic (pre)ordered sets
[0, 00]max-Cat = UMet = [0, 1],i,-Cat: (Lawvere) ultrametric spaces

[0, 1]¢-Cat = BMet = [0, 1]-Cat: bounded (Lawvere) metric spaces

A -Cat = ProbMet probabilistic (Lawvere) metric spaces (X,p: X x X — A),
with p(x, y)(«) to be interpreted as probability of “d(x, y) < « for a random metric on X”

(2=——[0, 0]+ —= A) = (Ord Met ProbMet)

P(M,x,n)-Cat > (X,(<a)aem) With x <, x, (X<qy &Yy <gzZ= X<pp2)
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2.7 V-Cat as a concrete category over Set

V-Caty = (O:V-Cat — Set)~' X is a complete lattice, with A as in V-Rel(X, X), L = 15
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O:V-Cat — Set is a bifibration with complete fibres and, hence, a topological functor.
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2.7 V-Cat as a concrete category over Set

V-Caty = (O:V-Cat — Set)~' X is a complete lattice, with A as in V-Rel(X, X), L = 15
Every r € V-Rel(X, X) has a V-Catx-hull 7 > r: r=\/ ,r".
O:V-Cat — Set is a bifibration with complete fibres and, hence, a topological functor.

(fi - (X,a) = (Vi bj))ics initial (= jointly cartesian) <= a= A, - b; - (fi)o

(f:: (Xi,ai)) = (Y, b))ies final (= jointly cocartes’n) <= b= \/,,,(f).-ai-f?
Consequently:

V-Cat is complete and cocomplete and O has both adjoints.

discrete
1 0
1

indiscrete

V-Cat Set
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2.8 V-Cat as a closed category and a 2-category

For X, Y € V-Cat, consider (evy : V-Cat(X, Y) — Y),cx and put the initial structure on
[X, Y]:=V-Cat(X,Y):  [X,Y]|(f,9) = Axex Y(fx,9x)
= /\X,X’EX[X(X7X/)’ Y(fX,gX’)]
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2.8 V-Cat as a closed category and a 2-category

For X, Y € V-Cat, consider (evy : V-Cat(X, Y) — Y),cx and put the initial structure on
X, Y] :=V-Cat(X,Y):  [X,Y](f.g) = Axex Y, 9x)

= /\x,x’eX[X(val)’ Y(fx, 9x")]
The induced (pre)order on [X, Y] is

f<g < YxeX: k< Y(fx,gx) < Vxe X:fx<gx.

With its 2-cells given by <, V-Cat is thus a 2-category.
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For X, Y € V-Cat, consider (evy : V-Cat(X, Y) — Y),cx and put the initial structure on
[X, Y]:=V-Cat(X,Y):  [X,Y](f,9) = Aeex Y(X, 9x)

= /\X,X’EX[X(X7X/)’ Y(fX,gX’)]
The induced (pre)order on [X, Y] is

f<g < YxeX: k< Y(fx,gx) < Vxe X:fx<gx.

With its 2-cells given by <, V-Cat is thus a 2-category.
Adjunction in V-Cat:

X—L=v) 4 (Y<2-X) <« X(xgy)=VY(xy < g-a=b-f,
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2.8 V-Cat as a closed category and a 2-category

For X, Y € V-Cat, consider (evy : V-Cat(X, Y) — Y),cx and put the initial structure on
[X, Y] :=V-Cat(X,Y):  [X,Y](f,g9) = Axex Y(X, gx)
= /\x,x’eX[X(val)’ Y(fX,gX’)]

The induced (pre)order on [X, Y] is

f<g < YxeX: k< Y(fx,gx) < Vxe X:fx<gx.
With its 2-cells given by <, V-Cat is thus a 2-category.
Adjunction in V-Cat:
X—L=v) 4 (Y<2-X) <« X(xgy)=VY(xy < g-a=b-f,

Note: RHS forces f, g to be V-functors and gives f 4 g in Ord, i.e. fg < 1y and 1x < gf,
but f 4 g in Ord secures f 4 g in V-Cat only when f, g are actually V-functors.
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2.9 V-Cat as a symmetric monoidal-closed category, Yoneda

X2 Y((x,y),x,y)=X(x,xYo Y(y,y), E(xx*)=k
Enriched Universal Property: [Ze X, Y]I=[Z,[X,Y]]

X, Y] @ X —= A Y
A A
fﬂ@‘lx: / yX0P®1X: %
Z® X XP & X

Walter Tholen (York University) Quantale-enriched categories TACL School 2022
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X2 Y((x,y),x,y)=X(x,xYo Y(y,y), E(xx*)=k
Enriched Universal Property: [Ze X, Y]I=[Z,[X,Y]]

X, Y] @ X —= A Y
A A
fﬂ@‘lx: / yX0P®1X: %
Z® X XP & X

Yoneda V-functor:

Yx X — PuX = [XP V], y — X(—,y), Yi: X — PEX=[X, V] x— X(x,-)
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2.9 V-Cat as a symmetric monoidal-closed category, Yoneda

X2 Y((x,y),x,y)=X(x,xYo Y(y,y), E(xx*)=k
Enriched Universal Property: [Ze X, Y]I=[Z,[X,Y]]

X, Y] @ X —= A Y
A A
fﬂ@‘lx: / yX0P®1X: %
Z® X XP & X

Yoneda V-functor:
Yx X — PuX = [XP V], y — X(—,y), Yi: X — PEX=[X, V] x— X(x,-)

Yoneda Lemma:
PvX(yxy,o) =ay,  PLX(1,yix) = 7x
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3.1 Distributors (profunctors, (bi)modules))

Slogan: function/relation = functor/distributor

For V = [0, o], think of them as “compatible one-way metrics” between two spaces.
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3.1 Distributors (profunctors, (bi)modules))

Slogan: function/relation = functor/distributor
For V = [0, o], think of them as “compatible one-way metrics” between two spaces.

Generally:
(X,a)—6=(Y,b) < b-p-a<p
= XX, x)@px,y)@ Y(y,y) < p(X.y)

= XPx,X)@Y(y,y') < [p(x,y),p(x',y')]
— p: XPRY -V IisaV-functor
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(X,a)—=(Y,b) <« b-p-a<p
= XX, x)@p(x,y)@ Y(y,y') < p(X,y)
= XPx,x)@Y(y,y) <p(x,y), p(x,y')]
— p: XPRY -V IisaV-functor

V-distributors are closed under V-relational composition and under A,\/ formed in V-Rel.

V-Dist: objects are V-categories X = (X, a); identity distributor on X: 1% = (X —8> X)
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3.1 Distributors (profunctors, (bi)modules))

Slogan: function/relation = functor/distributor
For V = [0, o], think of them as “compatible one-way metrics” between two spaces.

Generally:
(X,a)—6=(Y,b) < b-p-a<p
= XX, x)@px,y)@ Y(y,y) < p(X.y)

= XPx,X)@Y(y,y') < [p(x,y),p(x',y')]
— p: XPRY -V IisaV-functor

V-distributors are closed under V-relational composition and under A,\/ formed in V-Rel.
V-Dist: objects are V-categories X = (X, a); identity distributor on X: 1% = (X —8> X)
V-Dist is Sup-enriched (a quantaloid) AND also (V-Cat)-enriched:

V-Dist(X,Y) = [X? @ Y,V],  V-Dist(X, Y)® V-Dist(Y,Z) — V-Dist(X, 2)
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3.2 V-functors vs. V-distributors; extensions, liftings, tensor products

(X,a) = (Y,p) = Xty vy =PP_x £ 4finV-Dist

(=)« : V-Cat — V-Dist® (-)* : v-Cat — V-Dist®
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3.2 V-functors vs. V-distributors; extensions, liftings, tensor products

(X,a) = (Y,p) = Xty vy =PP_x £ 4finV-Dist

(=)« : V-Cat — V-Dist® (-)* : v-Cat — V-Dist®

fd19g <= f,=09" <— g"1f" < g, 1f.

V-distributors are closed under the formation of extensions and liftings in V-Rel:

“extension of 7 along p” Z Y 327 “lifting of = along ¢”
e %[m] ]0,74 </
Sz e
X—o=Y X
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3.2 V-functors vs. V-distributors; extensions, liftings, tensor products

(X,a) = (Y,p) = Xty vy =PP_x £ 4finV-Dist

(=)« : V-Cat — V-Dist® (-)* : v-Cat — V-Dist®

fd19g <= f,=09" <— g"1f" < g, 1f.

V-distributors are closed under the formation of extensions and liftings in V-Rel:

“extension of 7 along p” Z Y 327 “lifting of = along ¢”
-/ } </
o oleTl Jorlo ~o7
- |/
X—o=Y X

V-Dist(Y, Z)(o, [p, 7]) = V-Dist(X, Z)(c - p,7) = V-Dist(X, Y)(p, o, 7[)
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3.2 V-functors vs. V-distributors; extensions, liftings, tensor products

(X,a) = (Y,p) = Xty vy =PP_x £ 4finV-Dist

(=)« : V-Cat — V-Dist® (-)* : v-Cat — V-Dist®

fd19g <= f,=09" <— g"1f" < g, 1f.

V-distributors are closed under the formation of extensions and liftings in V-Rel:

“extension of 7 along p” Z Y 327 “lifting of = along ¢”
-/ } </
o oleTl Jorlo ~o7
- |/
X—o=Y X

V-Dist(Y, Z)(o, [p, 7]) = V-Dist(X, Z)(c - p, 7) = V-Dist(X, Y)(p,]o, 7[)
V-Dist is symmetric monoidal: p@p : XS —>Y & T
p @@ ((x,8),(y,1) = p(x,y) @ ¢(s, 1)
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3.3 V-distributors vs. V-presheaves

V-Dist(X, Y) = [XP & Y, V] 2 [V, PyX] = [XP, [V, V]] = [X, P, Y]
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3.3 V-distributors vs. V-presheaves

V-Dist(X, Y) = [XP & Y, V] 2 [V, PyX] = [XP, [V, V]] = [X, P, Y]

PyX = V-Dist(X,E)  PLY = (V-Dist(E, Y))
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3.3 V-distributors vs. V-presheaves

V-Dist(X, Y) = [XP & Y, V] 2 [V, PyX] = [XP, [V, V]] = [X, P, Y]

PyX = V-Dist(X,E)  PLY = (V-Dist(E, Y))

(-)*
The Fundamental Presheaf Adjunction:  V-Dist® 1 V-Cat

- =
Py = V-Dist(—,E)

For X—=Y: Pup:PyY — PuX, (Y —=2=E) — (X 25E)
(Pup)(@)(x) = \/ p(x,y) @ o(y)

yey
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3.3 V-distributors vs. V-presheaves

V-Dist(X, Y) = [XP & Y, V] 2 [V, PyX] = [XP, [V, V]] = [X, P, Y]

PyX = V-Dist(X,E)  PLY = (V-Dist(E, Y))

(-)*
The Fundamental Presheaf Adjunction:  V-Dist® 1 V-Cat

- =
Py = V-Dist(—,E)

For X—=Y: Pup:PyY — PuX, (Y —=2=E) — (X 25E)
(Pup)(@)(x) = \/ p(x,y) @ o(y)

yey

adjunction units: yx : X — Py X, adjunction counits: (Yx). : X —o=PpX
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3.4 The V-presheaf monad (P, s, y) and its discretization

P.V-Cat — V-Cat, (f:X = Y)r— (Puf: PuX = PyY, 0 0 F*)
(PH@)Y) = Vixex Yy, Ix) @ 0x
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3.4 The V-presheaf monad (P, s, y) and its discretization

P.V-Cat — V-Cat, (f:X = Y)r— (Puf: PuX = PyY, 0 0 F*)
(PH@)Y) = Vixex Yy, Ix) @ 0x

Sy : PPX — PX Sx(Z) =3 (yx)*, SX(Z)(X) = \/UEPVX Z(O') & U(X)

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 21/67



3.4 The V-presheaf monad (P, s, y) and its discretization

P.V-Cat — V-Cat, (f:X = Y)r— (Puf: PuX = PyY, 0 0 F*)
(PH@)Y) = Vixex Yy, Ix) @ 0x

sx : PPX — PX Sx(Z) =X (Yx)«»  Sx(Z)(X) = V,yep,x Z(0) @ a(x)
(P,s,y) is a 2-monad, with P locally fully faithful: (f < g < Pf < Pg)
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3.4 The V-presheaf monad (P, s, y) and its discretization

P:V-Cat— V-Cat, (f: X —=Y)r— (Puf*:PuX—>PyY, 0~ 0-f*)
(PH(0)(¥) = Vyex Yy, ) @ 0x
Sx : PPX —PX  sx(X) =X (Yx), Sx(X)(X) =V,ep,xX(o) @ ()
(P,s,y) is a 2-monad, with P locally fully faithful: (f < g < Pf < Pg)
(P,s,y) is lax idempotent (Kock—Zdberlein): Pyx < ypx

(=)* d(iscrete)
V-Dist* — I _V-Cat—  _Set
Py = V-Dist(—,E) O
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3.4 The V-presheaf monad (P, s, y) and its discretization

P.V-Cat — V-Cat, (f:X = Y)r— (Puf: PuX = PyY, 0 0 F*)
(PH@)Y) = Vixex Yy, Ix) @ 0x

Sx : PPX —PX  sx(X) =X (Yx), Sx(X)(X) =V,ep,xX(o) @ ()
(P,s,y) is a 2-monad, with P locally fully faithful: (f < g < Pf < Pg)
(P,s,y) is lax idempotent (Kock—Zdberlein): Pyx < ypx

(=)* d(iscrete)
V-Dist® L V-Cat— - Set

-_ — = - =
Py = V-Dist(—,E) 0

Py : Set — Set (f: X —=Y)— (Paf VX = VY 0 0-F)
(Paf)(@)(¥) = Vxer1y 0(X)
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3.4 The V-presheaf monad (P, s, y) and its discretization

P:V-Cat— V-Cat, (f: X —=Y)r— (Puf*:PuX—>PyY, 0~ 0-f*)
(PH(0)(¥) = Vyex Yy, ) @ 0x
Sx : PPX —PX  sx(X) =X (Yx), Sx(X)(X) =V,ep,xX(o) @ ()
(P,s,y) is a 2-monad, with P locally fully faithful: (f < g < Pf < Pg)
(P,s,y) is lax idempotent (Kock—Zdberlein): Pyx < ypx

(=)* d(iscrete)
V-Dist* — I _V-Cat—  _Set
Py = V-Dist(—,E) O

f:X—=Y)r— (Paf VX VY o0 f°)
Paf)(@)(¥) = Vxer-1y 0(X)

(

(
(Ya)x : X — PaX (Ya)x(¥) = VXd(,V) =1%(=¥)
(Sd)x : PaPaX — PaX (s

Py : Set — Set

Ox(X) =X (Yx)  (8a)x(X)(X) = Voeyx X(0) © o(x)
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3.5 Distributors are Kleisli morphisms

Xty e v px

*

1
XXX — XY px
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3.5 Distributors are Kleisli morphisms

Xty e v px

*

1
XXX — XY px

(X—2oy—Lozy— (2 py 2L ppx = px)
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3.5 Distributors are Kleisli morphisms

Xty e v px

*

1
XXX — XY px

(X—2oy—Lozy— (2 py 2L ppx = px)

(V-Dist) = KI(P)
(V-Rel) = KI(Py)
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3.5 Distributors are Kleisli morphisms

Xty e v px

1%
XXX — XY px

# #
(X—f-y Yozy=(zpy P2 ppx . px)

(V-Dist) = KI(P)
(V-Rel) = KI(Py)

Q: What “is” EM(P)?
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4.1 Order completeness vs. conical (co)completeness
Consider X € V-Cat with its induced order (x < y <= k < X(x,y)). Then:

Y~ N Xi — Vz (k< X(z,y) = Viel: k< X(z X))
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4.1 Order completeness vs. conical (co)completeness

Consider X € V-Cat with its induced order (x < y <= k < X(x,y)). Then:

Y = NigrXi — Vz (k< X(z,y)<=Viel: k< X(z,x))
= Yz (X(2,y) = Nies X(2, X)) — iy~ AL X
= Yxy = Nig/¥xXi inPpX =[X?P V]
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4.1 Order completeness vs. conical (co)completeness

Consider X € V-Cat with its induced order (x < y <= k < X(x,y)). Then:

Y= NierXi

X conically complete

— Vz (k< X(z,y) = Viel: k< X(z X))

= Yz (X(z,y) = Nie) X(2, X)) =y Nig X
= Yx¥ = Nig/¥xXi  inPuX =[XPV]

<= X has all conical infima

<= X has all infima and yx preserves them

<= X is order-complete, yx is an inf-map

Walter Tholen (York University)

Quantale-enriched categories TACL School 2022 23/67



4.1 Order completeness vs. conical (co)completeness

Consider X € V-Cat with its induced order (x < y <= k < X(x,y)). Then:

Y= NierXi

X conically complete

Y=V X

— Vz (k< X(z,y) = Viel: k< X(z X))

— Vz(X(z,y) = Nie X(2,Xi)) =y NigrXi
= Yx¥ = Nig/YxXi  InPuX =[XP,V]

<= X has all conical infima

<= X has all infima and yx preserves them

<= X is order-complete, yx is an inf-map
=
—
=

Vz(k < X(y,z) <=Viel:k<X(x,2))
vZ (X(y,2) = Nies X(xi, 2)) =y = VigX
Vi = ViV in PLX = [X, V]
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4.1 Order completeness vs. conical (co)completeness

Consider X € V-Cat with its induced order (x < y <= k < X(x,y)). Then:

Y= NierXi

X conically complete

Y=V X

X conically cocompl.

proeery groony

Vz (k< X(z,y)<=Viel: k< X(z X))

vz (X(2,y) = Nie) X(2, X)) <:>3y2/\ivelxi
Yx¥ = Nie/YxXi  in PyX = [XPV]

X has all conical infima

X has all infima and yx preserves them

X is order-complete, yx is an inf-map

Vz(k < X(y,z) <=Viel:k<X(x,2))

vz (X(y,2) = Nie) X(Xi, 2)) — 3y2\/ive/xi
V¥ = VitV in PLX = [X, V]

X has all conical suprema

X has all sups and yg( preserves them

X is order-complete, yg( iS an sup-map
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4.2 Conical completeness: examples and remarks

In X € 2-Cat = Ord, every inf/sup is conical; hence:
X conically (co)complete < X order-complete
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4.2 Conical completeness: examples and remarks

In X € 2-Cat = Ord, every inf/sup is conical; hence:
X conically (co)complete < X order-complete

In X € [0, oc]-Cat = Met, not even binary infs/sups have to be conical.
The order of X € Mety, ., is discrete, so that X is order-complete only when | X| = 1.
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4.2 Conical completeness: examples and remarks

In X € 2-Cat = Ord, every inf/sup is conical; hence:
X conically (co)complete < X order-complete

In X € [0, oc]-Cat = Met, not even binary infs/sups have to be conical.
The order of X € Mety, ., is discrete, so that X is order-complete only when | X| = 1.

Y € V-Cat is always conically (co)complete, and so is Py X, for all X € V-Cat.
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4.2 Conical completeness: examples and remarks

In X € 2-Cat = Ord, every inf/sup is conical; hence:
X conically (co)complete < X order-complete

In X € [0, oc]-Cat = Met, not even binary infs/sups have to be conical.
The order of X € Mety, ., is discrete, so that X is order-complete only when | X| = 1.

Y € V-Cat is always conically (co)complete, and so is Py X, for all X € V-Cat.

For V non-integral (k < T), one finds X € V-Cat order-compl., but not conically (co)compl.

TACL School 2022 24/67
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4.2 Conical completeness: examples and remarks

In X € 2-Cat = Ord, every inf/sup is conical; hence:
X conically (co)complete < X order-complete

In X € [0, oc]-Cat = Met, not even binary infs/sups have to be conical.
The order of X € Mety, ., is discrete, so that X is order-complete only when | X| = 1.

Y € V-Cat is always conically (co)complete, and so is Py X, for all X € V-Cat.
For V non-integral (k < T), one finds X € V-Cat order-compl., but not conically (co)compl.

There is a subspace of [0, o] € [0, oc]-Cat is conically complete category but fails to be
conically cocomplete (Clementino).
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4.2 Conical completeness: examples and remarks

In X € 2-Cat = Ord, every inf/sup is conical; hence:
X conically (co)complete < X order-complete

In X € [0, oc]-Cat = Met, not even binary infs/sups have to be conical.
The order of X € Mety, ., is discrete, so that X is order-complete only when | X| = 1.

Y € V-Cat is always conically (co)complete, and so is Py X, for all X € V-Cat.

For V non-integral (k < T), one finds X € V-Cat order-compl., but not conically (co)compl.
There is a subspace of [0, o] € [0, oc]-Cat is conically complete category but fails to be
conically cocomplete (Clementino).

We need:
a condition on a V-category securing the implication (order-complete =- conically compl.)!
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4.3 Tensored and cotensored V-categories

Recall:
X conically complete <= X order complete and (Vx € X : X(x,—) : X — V pres. infs)

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 25/67



4.3 Tensored and cotensored V-categories

Recall:
X conically complete <= X order complete and (Vx € X : X(x,—) : X — V pres. infs)

Definition:
Xtensored <= Vxe X:X(x,—):X —Vhasaleftadjoint—ox:V— X

XWwox,y)=[uXxy)l  (x)

TACL School 2022 25/67
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4.3 Tensored and cotensored V-categories

Recall:
X conically complete <= X order complete and (Vx € X : X(x,—) : X — V pres. infs)

Definition:
Xtensored <= Vxe X:X(x,—):X —Vhasaleftadjoint—ox:V— X

Xwoxy)=[uXxy)] (*)
X cotensored : <= Vy € X : X(—,y) : X°* > V hasaleftadjoint —hy: vV — X

X(x,uhy) =[u,X(x,y)]
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4.3 Tensored and cotensored V-categories

Recall:
X conically complete <= X order complete and (Vx € X : X(x,—) : X — V pres. infs)

Definition:

Xtensored <= Vxe X:X(x,—):X —Vhasaleftadjoint—ox:V— X
Xuoxy)=[uXxy)]l ()

X cotensored : <= Vy € X : X(—,y) : X°* > V hasaleftadjoint —hy: vV — X

X(x,uhy) =[u,X(x,y)]

Note:
Necessarily uox = A{y e X|u< X(x,y)},
but the the existence of these infima does not guarantee (x)!
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4.3 Tensored and cotensored V-categories

Recall:
X conically complete <= X order complete and (Vx € X : X(x,—) : X — V pres. infs)

Definition:

Xtensored <= Vxe X:X(x,—):X —Vhasaleftadjoint—ox:V— X
Xwoxy)=[uXxy)] (*)

X cotensored : <= Vy € X : X(—,y) : X°* > V hasaleftadjoint —hy: vV — X

X(x,uhy) =[u,X(x,y)]

Note:
Necessarily uox = A{y e X|u< X(x,y)},
but the the existence of these infima does not guarantee (x)!

Trivially: X (co)tensored = (X conically (co)complete < X order-complete ).
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4.4: Tensored V-categories: examples and remarks

() # X € 2-Cat = Ord is tensored < X has a least element.
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4.4: Tensored V-categories: examples and remarks

() # X € 2-Cat = Ord is tensored < X has a least element.

V € V-Cat is tensored and cotensored, with u® x = u® x and u th x = [u, x].
More generally, Py X is (co-)tensored, for every V-category X.
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4.4: Tensored V-categories: examples and remarks

() # X € 2-Cat = Ord is tensored < X has a least element.

V € V-Cat is tensored and cotensored, with u® x = u® x and u th x = [u, x].
More generally, Py X is (co-)tensored, for every V-category X.

A full V-subcategory of V € V-Cat may fail to be tensored or cotensored.
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4.4: Tensored V-categories: examples and remarks

() # X € 2-Cat = Ord is tensored < X has a least element.

V € V-Cat is tensored and cotensored, with u® x = u® x and u th x = [u, x].
More generally, Py X is (co-)tensored, for every V-category X.

A full V-subcategory of V € V-Cat may fail to be tensored or cotensored.

[0, o0]esym (= [0, oo] with the Euclidean metric) fails to be tensored or cotensored in Met.
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4.4: Tensored V-categories: examples and remarks

() # X € 2-Cat = Ord is tensored < X has a least element.

V € V-Cat is tensored and cotensored, with u® x = u® x and u th x = [u, x].
More generally, Py X is (co-)tensored, for every V-category X.

A full V-subcategory of V € V-Cat may fail to be tensored or cotensored.
[0, o0]esym (= [0, oo] with the Euclidean metric) fails to be tensored or cotensored in Met.
Products of (co)tensored V-categories are (co)tensored.
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4.5.1 Presenting tensored V-categories via the action of V: prelims

Rules for the action of V on a tensored V-category X:

(1) kO Xx~x

2 (UeV)ox~uo(vox)

B)  (Viesui) © x ~ V(U ® x) (with the RHS '/ existing in X, as part of the condition)
(47) x<y=uox<uoy
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4.5.1 Presenting tensored V-categories via the action of V: prelims

Rules for the action of V on a tensored V-category X:

(1) kO Xx~x

(2 (URV)OXxX~UuG(veX)

B)  (Viesui) © x ~ V(U ® x) (with the RHS '/ existing in X, as part of the condition)
47) x<y=uox<uoy

Conversely:

Let X be just a preordered set equipped with amap ® : ¥V x X — X satisfying (1) — (47).
Then, for every x € X, the map — ® x : V — X has a right adjoint X(x, —), defined by

X(x,y)=\{uluox<yl,

making X a V-category, whose underlying preorder is the given one and,
by the given rules and adjunction, satisfies

X(uox,y) = [u,X(x,y)l,
making X a tensored V-category.
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4.5.2 Presenting tensored V-categories via the action of V: theorem

Theorem (Martinelli 2021)
There is a 2-equivalence

V-Caty,o ~ OrdY
2

5 cocts

V 'Cattensor ;
small tensored V-categories, with tensor-preserving V-functors

ordY
5 CcocCts

preordered sets on which V acts, satisfying conditions (1), (2), (3), (4™), with
monotone and pseudo-equivariant maps.
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4.6 Weighted colimits and limits: definitions

Given a “diagram” Z —~ X in X and “weights” Z—%= W and W —5— Z . Then:

(W—-X) ~colim*h: < q, = [w,h], (W—L>X) ~lim*h: < p* =]v, h'[

X W52
h /1 b </
o «=[w, s *=]v,h*
s |q [w,hs] p*=] [I /h
Z—o—> W X
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4.6 Weighted colimits and limits: definitions

Given a “diagram” Z —~ X in X and “weights” Z—%= W and W —5— Z . Then:

(W—-X) ~colim*h: < q, = [w,h], (W—L>X) ~lim*h: < p* =]v, h'[

/X w g;Z
hs RTINS
/o > %q =[w,hx] p*=]v,h [% /oh*
zleow X
X(@t.x) = Nz 0.X(hz.)]  X(x.pt) = \ [o(t.2). X(x, hz)]
zeZ zeZ

forallx e X,;te W.
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4.7 Tensors and conical sups as weighted colimits, and conversely

Let(x € X <= x:E=({x},k) = X) and (f = (X)icsin X <= f: L =]];c,E = X),
let V : [[;c; E — E be the “codiagonal”. Then:
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4.7 Tensors and conical sups as weighted colimits, and conversely

Let(x € X <= x:E=({x},k) = X) and (f = (X)icsin X <= f: L =]];c,E = X),
let V : [[;c; E — E be the “codiagonal”. Then:

U® X ~ colim“x, \/VX,- ~ colimV*f, uMx ~lim“x, /\VX,- ~ limV f.
iel iel
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4.7 Tensors and conical sups as weighted colimits, and conversely

Let(x € X <= x:E=({x},k) = X) and (f = (X)icsin X <= f: L =]];c,E = X),
let V : [[;c; E — E be the “codiagonal”. Then:

U® x ~ colim“x Vxj ~ colimV*f, UM x ~limYx Vx; ~ lim" f.
) I 9 ’
iel iel

Let Z—"~ X bea diagram in the tensored V-category X with weight Z —5— W . Then
(colim*h)(t) ~ \/"w(z, t) © h(z)
zeZ

for all t € W, with the colimit on the left existing precisely when the conical supremum on
the right exists in X forallt € W.
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4.8 Hiding the diagram in the weight

@ X cocomplete < X is tensored and conically cocomplete;
@ X complete <= X is cotensored and conically complete.
© X complete and cocomplete < X tensored, cotensored and order-complete.
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4.8 Hiding the diagram in the weight

@ X cocomplete < X is tensored and conically cocomplete;
@ X complete <= X is cotensored and conically complete.
© X complete and cocomplete < X tensored, cotensored and order-complete.

Given a diagram Z —""~ X in X and weights Z —%~ W and W —%> Z . Then
colim“h ~ colim“™1yx  and  lim"h ~lim™ "1y,

with the (co)limit on either side of ~ existing when the (co)limit on the other side exists.
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4.8 Hiding the diagram in the weight

@ X cocomplete < X is tensored and conically cocomplete;
@ X complete <= X is cotensored and conically complete.
© X complete and cocomplete < X tensored, cotensored and order-complete.

Given a diagram Z —""~ X in X and weights Z —%~ W and W —%> Z . Then
colim“h ~ colim“™1yx  and  lim"h ~lim™ "1y,

with the (co)limit on either side of ~ existing when the (co)limit on the other side exists.
In particular:

U® X = colim¥x 2 colim¥* 1y = colim“¥**1y and \/VX,- ~ colim“1y, with w = \/yXX,-.
icl icl
Hence: It sufficesto let Z = X, h=1x and W = E; presheaves on X suffice as weights!
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4.9.1 Preservation of (co)limits: definition

Leth: Z — X, f: X — Y be V-functors and Z—¢> W —5—= Z be V-distributors.

@ If g ~ colim*h exists in X, one says that f : X — Y preserves the colimit if the colimit
colim”(f - h) exists in Y and is given by f - g; equivalently, if one has the implication

9 =wh] = (f-q.=lw(f h).]
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4.9.1 Preservation of (co)limits: definition

Leth: Z — X, f: X — Y be V-functors and Z—¢> W —5—= Z be V-distributors.

@ If g ~ colim*h exists in X, one says that f : X — Y preserves the colimit if the colimit
colim”(f - h) exists in Y and is given by f - g; equivalently, if one has the implication

9 =wh] = (f-q.=lw(f h).]

© Dually, if p ~ lim" h exists in X, one says that f : X — Y preserves the limit if the limit
lim“(f - h) exists in Y and is given by f - p; equivalently, if one has the implication

pr =i = (F-p) =Ju.(F- )L

© The V-functor f is (co)continuous if it preserves all existing (co)limits in X.
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4.9.2 Preservation of (co)limits: criteria, examples

Letf: X —=Y,g:Y— X, h:Z—[X,Y]be V-functors, x € X, Z 4= W.
@ If X is tensored: f is cocontinuous <= f preserves tensors and conical suprema.
@ |If X is cotensored: f is continuous <= f preserves cotensors and conical infima.
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4.9.2 Preservation of (co)limits: criteria, examples

Letf: X —=Y,g:Y— X, h:Z—[X,Y]be V-functors, x € X, Z 4= W.

@ If X is tensored: f is cocontinuous <= f preserves tensors and conical suprema.
@ |If X is cotensored: f is continuous <= f preserves cotensors and conical infima.
Q X(x,-): X — Viscontinuous, X(—,x): X — V° is cocontinuous.
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4.9.2 Preservation of (co)limits: criteria, examples

Letf: X —=Y,g:Y— X, h:Z—[X,Y]be V-functors, x € X, Z 4= W.

@ If X is tensored: f is cocontinuous <= f preserves tensors and conical suprema.
@ |If X is cotensored: f is continuous <= f preserves cotensors and conical infima.
Q X(x,-): X — Viscontinuous, X(—,x): X — V° is cocontinuous.

Q colim“(h: Z — [X, Y]) exists if colim“evyh exists in Y for all x, and it is then
preserved by every evy : [X, Y] — Y.
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4.9.2 Preservation of (co)limits: criteria, examples

Letf: X —=Y,g:Y— X, h:Z—[X,Y]be V-functors, x € X, Z 4= W.

@ If X is tensored: f is cocontinuous <= f preserves tensors and conical suprema.
@ |If X is cotensored: f is continuous <= f preserves cotensors and conical infima.
Q X(x,-): X — Viscontinuous, X(—,x): X — V° is cocontinuous.

Q colim“(h: Z — [X, Y]) exists if colim“evyh exists in Y for all x, and it is then
preserved by every evy : [X, Y] — Y.

Q yx: X — PyX =[X V]is continuous, yﬁ( X = Pf,X = [X, V]°P is cocontinuous.
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4.9.2 Preservation of (co)limits: criteria, examples

Letf: X —=Y,g:Y— X, h:Z—[X,Y]be V-functors, x € X, Z 4= W.

@ If X is tensored: f is cocontinuous <= f preserves tensors and conical suprema.
@ |If X is cotensored: f is continuous <= f preserves cotensors and conical infima.
Q X(x,-): X — Viscontinuous, X(—,x): X — V° is cocontinuous.

Q colim“(h: Z — [X, Y]) exists if colim“evyh exists in Y for all x, and it is then
preserved by every evy : [X, Y] — Y.

Q yx: X — PyX =[X V]is continuous, yﬁ( X = Pf,X = [X, V]°P is cocontinuous.
© If f - g, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)

@ Y complete: g:Y — X has a left adjoint V-functor <= g is continuous.
@ X cocomplete: f : X — Y has a right adjoint V-functor < f is cocontinuous.
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4.10 Completeness Theorem

For every V-category X, the following statements are equivalent:
(i) X is cocomplete;
(i) for every presheaf w on X, the colimit of 1x weighted by w exists in X;
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4.10 Completeness Theorem

For every V-category X, the following statements are equivalent:
(i) X is cocomplete;

(i) for every presheaf w on X, the colimit of 1x weighted by w exists in X;
(i) yx : X = [X°P, V] has a left adjoint V-functor;
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4.10 Completeness Theorem

Theorem

For every V-category X, the following statements are equivalent:
(i) X is cocomplete;
(i) for every presheaf w on X, the colimit of 1x weighted by w exists in X;
(i) yx : X = [X°P, V] has a left adjoint V-functor;
(iv) X is tensored, cotensored and order-complete;
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4.10 Completeness Theorem

For every V-category X, the following statements are equivalent:
(i) X is cocomplete;
(i) for every presheaf w on X, the colimit of 1x weighted by w exists in X;
(i) yx : X = [X°P, V] has a left adjoint V-functor;
(iv) X is tensored, cotensored and order-complete;
(v) X is complete;
)
)

(vi) for every copresheaf v on X, the limit of 1x weighted by v exists in X;
(vii) y% : X = [X, V] has a right adjoint V-functor.
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5.1 Vis injective in V-Cat

f: X = Yiullyfaithful < - f, =1} < X(x,x') = Y(fx,&x') forall x,x" € X
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5.1 Vis injective in V-Cat

f: X = Yiullyfaithful < - f, =1} < X(x,x') = Y(fx,&x') forall x,x" € X

1% = on*;X — E
° I 0"
/ Tw wl L P lw
X—Y E P _o 5 YOP
f (FP).=(F*)°
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5.1 Vis injective in V-Cat

f: X = Yiullyfaithful < - f, =1} < X(x,x') = Y(fx,&x') forall x,x" € X

1% = on*;X — E
° I 0"
/ Tw wl L P lw
X—Y E P _o 5 YOP
f (FP).=(F*)°

Given f fully faithful and ¢, there is a least and a largest extension, ¢ and ¢~:

v =f-p and ¥ =[(f)°, o] = [(fP)., ¢] v
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5.1 Vis injective in V-Cat

f: X = Yiullyfaithful < - f, =1} < X(x,x') = Y(fx,&x') forall x,x" € X

1% = on*;X — E
° I 0"
/ Tw wl L P lw
X—Y E P _o 5 YOP
f (FP).=(F*)°

Given f fully faithful and ¢, there is a least and a largest extension, ¢ and ¢~:

v =f-p and ¥ =[(f)°, o] = [(fP)., ¢] v

Voy =Vyex Y(IX,y)@ox and ¢~y = A\ ex[Y(, &X), ¢X]
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5.2 V is an injective regular cogenerator in V-Cat,,

f#g: X —Y, Yseparated — Jh: Y — V: hf # hg

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 36/67



5.2 V is an injective regular cogenerator in V-Cat,,

f#g: X —Y, Yseparated — Jh: Y — V: hf # hg

ky Y — VM =TT v, yr— (W)hepym
helY, V]
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5.2 V is an injective regular cogenerator in V-Cat,,

f#g: X —Y, Yseparated — Jh: Y — V: hf # hg

ky Y — VM =TT v, yr— (W)hepym
helY, V]

my VYT VY (V) hepv ) — (Vyt )zev
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5.2 V is an injective regular cogenerator in V-Cat,,

f#g: X —Y, Yseparated — Jh: Y — V: hf # hg

ky Y — VM =TT v, yr— (W)hepym
helY, V]

my VYT VY (V) hepv ) — (Vyt )zev

V is a regular cogenerator of the category V-Cat,.,,, and it is injective with respect to fully
faithful V-functors. Every separated V-category Y embeds fully into the Y -fold power VY
of V, which is injective again.
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5.3.1 Colimit and limit completion of a V-category

Every V-presheaf w on X € V-Cat is a colimit of yx in Py, X weighted by w: w ~ colim“yy .

Py X E—6>X
(yX)*o/ iw* U*I < o/
/ > | L7 b
X—o>E PLX

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 37/67



5.3.1 Colimit and limit completion of a V-category

Every V-presheaf w on X € V-Cat is a colimit of yx in Py, X weighted by w: w ~ colim“yy .

Py X E—%.X
(yX)*O/ iw* U*I So/
Sz %
X—o>E PLX

Dually, every V-copresheaf v on X is a limit of representables in P?,X; that is: v ~ lim" yﬁ(.

Wanted for f : X — Y, Y cocomplete/complete:

f
X— Y _px XY _p
|

B I'f cocontinuous =
f Y f
Y

X

_ =

f continuous

< =<
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5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:

f(w) ~ f(colim?yx) ~ colim*(fyx) ~ colim“f
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5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:

f(w) ~ f(colim“yx) ~ colim“(fyx) ~ colim*f
Existence: 3
f(w) = colim”f ~ colim“ " 1y

f ~ (colim1y ) (Pyf¥)
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5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:

f(w) ~ f(colim“yx) ~ colim“(fyx) ~ colim*f
Existence: ;
f(w) = colim”f ~ colim“ " 1y

f ~ (colim1y ) (Pyf¥)

fyx ~ (colimO1 y)(Pyf*)yx ~ (colimO1y)yyf ~ f.

X X . puX
f )
fl colim1 y LPW‘
Y— L Py
Yy
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5.3.2 Proof of the Colimit Completion Theorem

Uniqueness:

f(w) ~ f(colim“yx) ~ colim“(fyx) ~ colim*f
Existence: 3
f(w) = colim”f ~ colim“ " 1y

f ~ (colim1y ) (Pyf¥)

fyx ~ (colimO1 y)(Pyf*)yx ~ (colimO1y)yyf ~ f.

X X . puX
f )
fl colim1 y LPW‘
Y— L Py
Yy

f is cocontinuous, as the composite of two left adjoints!
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5.4 Cocomplete V-categories as pseudo-algebras and as injectives

Theorem

The following properties for a V-category X are equivalent:
(i) X is (co)complete;

(i) X carries the structure of a pseudo-algebra with respect to the presheaf monad on

V-Cat;

(i) The Yoneda V-functoryyx has a pseudo-retraction; that is: there is a V-functor

h:PyX — X withhyyx ~1x;
(iv) X is pseudo-injective in V-Cat with respect to fully faithful functors.

Walter Tholen (York University)
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5.5.1 Cocomplete V-categories via cocontinuous action

Let X be a (co)complete preordered set equipped with amap @ : ¥V x X — X satisfying
(1) kOXx~x

2 (Wev)ox~xuo(vox)

(3) (\/,-e,U,')@XE \/iel(ui@x)

4 uo(Vigxi) = Viguox)
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5.5.1 Cocomplete V-categories via cocontinuous action

Let X be a (co)complete preordered set equipped with amap @ : ¥V x X — X satisfying
(1) kO Xx~x

2 (Wev)ox~xuo(vox)

(3) (\/,-e,U,')@XE \/iel(ui@x)

4 uo(Vigxi) = Viguox)

Condition (4) (= sup-preservation of every u ® — : X — X) makes the (existing) sups in

X conical colimits:
X(\/Xiay) = /\X(Xivy)'

iel i€l
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5.5.1 Cocomplete V-categories via cocontinuous action

Let X be a (co)complete preordered set equipped with amap @ : ¥V x X — X satisfying
(1) kO Xx~x

2 (Wev)ox~xuo(vox)

(3) (\/,-e,U,')@XE \/iel(ui@x)

4 uo(Vigxi) = Viguox)

Condition (4) (= sup-preservation of every u ® — : X — X) makes the (existing) sups in
X conical colimits:
X(\/Xiay) = /\X(Xivy)'

iel icl
Combine this with two fundamental enriched colimit formulae we have already seen:

(colim*h)(w) ~ \/w(z,w)© h(z)  (h:Z =X, w:ZPR@ W = V)

V4
X(colim“1x, x) =~ [X®, V](w,yxx)  (w: XP=XP®E =), saying colim" yx,
to obtain:
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5.5.2 Cocomplete V-categories via cocontinuous action: Theorem

Theorem (Folklore 1977)
There are 2-equivalences

V-Cat™ ~ V-Catojim =~ (Ordy,,)”

% —Catcohm s
(co)complete V-categories, with cocontinuous V-functors

ordy,,:

(co)complete preordered sets on which V acts satisfying conditions (1), (2), (3), (4), with

sup-preserving and pseudo-equivariant maps

Walter Tholen (York University) Quantale-enriched categories

TACL School 2022

41/67



5.5.2 Cocomplete V-categories via cocontinuous action: Theorem

Theorem (Folklore 1977)
There are 2-equivalences

V-Cat™ ~ V-Catojim =~ (Ordy,,)”

Vv ’catcolim o
(co)complete V-categories, with cocontinuous V-functors
ordy,,:

(co)complete preordered sets on which V acts satisfying conditions (1), (2), (3), (4), with
sup-preserving and pseudo-equivariant maps

Corollary
There are 2-equivalences

| A

(V'catsep)P = V'Catsep,colim = Supv
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5.6.1 Presenting conically cocomplete V-categories algebraically?

Consider moving from the presheaf-monad P on V-Cat:

P:V-Cat— V-Cat, X+ [XP V], PX(o,7)= /\ [0z 72
zeX

to the Hausdorff submonad H via

jx HX={A|ACX} —PX, A (2 X(z,A)=\/ X(z,X)).
XEA
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5.6.1 Presenting conically cocomplete V-categories algebraically?

Consider moving from the presheaf-monad P on V-Cat:

P:V-Cat— V-Cat, X+ [XP V], PX(o,7)= /\ [0z 72
zeX

to the Hausdorff submonad H via

jx HX={A|ACX} —PX, A (2 X(z,A)=\/ X(z,X)).
XEA

where H X carries the initial (= cartesian) structure inherited from P X via jx:

HX(AB)= N[\ X(z,x), \/ X(zy)]=..= \ V X(x.y).

zeX xeA yeB x€eA yeB
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5.6.2 Algebraic presentation of conically cocomplete V-categories

Theorem (Akhvlediani-Clementino-T 2009, Stubbe 2009)

Just like P, also H becomes a lax-idempotent monad of the 2-category V-Cat,
lifting the power-set monad of Set, and making j : H — P a monad morphism,
which induces the forgetful functor

(V'Cat),}): = V‘Catcohm — V'catconsup = (V'cat)H:,

% —Catcoﬁm s
(co)complete (= all weighted (co)limts exist) V-categories, with cocontinous V-functors;

V-Cateonup :

conically cocomplete (= sups exist, Yoneda preserves) V-cats, with sup-preserving V-funs
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5.7 V-Caty coiim @s a quantification of Sup?
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5.7 V-Caty coiim @s a quantification of Sup?

@ Monadicity:
monadic
V- c atsep,colim monadic V- c atsep monadic V- Cat polog Set
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5.7 V-Caty coiim @s a quantification of Sup?

@ Monadicity:
monadic
V'Catsep,colm\ St
@ Self-duality: V-Catep colim = (V-Catyep coim)
X — Xop
lf} fe T(f*)op
Y — Yop
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5.7 V-Caty coiim @s a quantification of Sup?

@ Monadicity:
monadic
V'Catsep,colm\ St
@ Self-duality: V-Catep colim = (V-Catyep coim)
X — Xop
lf} fe T(f*)op
Y — Yop

@ Symmetric monoidal-closed?
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5.8 V-Caty, ciim IS Symmetric monoidal closed

Having an equational presentation of separated cocomplete V-categories, we construct
the tensor product classifying “bimorphisms” in a standard manner:

Given objects X, Y, form the free object P4(X x Y) (with the V-powerset monad of Set)
and then put
XRY =Py(XxY)/ ~

with the least congruence relation ~ making the Yoneda map
y: X x Y — Pa(X x Y)/~ abimorphism;
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5.8 V-Caty, ciim IS Symmetric monoidal closed

Having an equational presentation of separated cocomplete V-categories, we construct
the tensor product classifying “bimorphisms” in a standard manner:

Given objects X, Y, form the free object P4(X x Y) (with the V-powerset monad of Set)
and then put
XRY =Py(XxY)/ ~

with the least congruence relation ~ making the Yoneda map
y: X x Y — Pa(X x Y)/~ abimorphism; so, ~ is generated by:

YUuoXx,y)~uoyxy)~yx,uoy),
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5.8 V-Caty, ciim IS Symmetric monoidal closed

Having an equational presentation of separated cocomplete V-categories, we construct
the tensor product classifying “bimorphisms” in a standard manner:

Given objects X, Y, form the free object P4(X x Y) (with the V-powerset monad of Set)
and then put
XRY =Py(XxY)/ ~

with the least congruence relation ~ making the Yoneda map
y: X x Y — Pa(X x Y)/~ abimorphism; so, ~ is generated by:

y(UGXay) ~ U@y(X7y) Ny(X)UQy))
v/ X 0) ~\y(ay), v\ v) ~ \ vy n)

iel iel iel i€l
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6.1 Cauchy sequences

S = (Xn)nen Se€quence in X € V-Cat, x € X

Cauchy(s) := \/NeN /\m,nZN X(Xm, Xn)
sis Cauchy : <= k < Cauchy(s)
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6.1 Cauchy sequences

S = (Xn)nen Se€quence in X € V-Cat, x € X
Cauchy(s) := \/NeN /\m,nZN X(Xm, Xn)
sis Cauchy : <= k < Cauchy(s)

As(X) = Vnen Ansn X(Xn, ) (“left-convergence value of s ~ x)
ps(X) =V nen Ansn X(X; Xn) (“right-convergence value of s ~ x”)
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6.1 Cauchy sequences

S = (Xn)nen Se€quence in X € V-Cat, x € X
Cauchy(s) := \/NeN /\m,nZN X(Xm, Xn)
sis Cauchy : <= k < Cauchy(s)

As(X) = Vnen Ansn X(Xn, ) (“left-convergence value of s ~ x)
ps(X) =V nen Ansn X(X; Xn) (“right-convergence value of s ~ x”)

Facts:
E—¥-X, X%~ E, with As-ps < 1%

s Cauchy <= 15 < ps-As <= s 1ps
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6.1 Cauchy sequences

S = (Xn)nen Se€quence in X € V-Cat, x € X
Cauchy(s) := \/NeN /\m,nZN X(Xm, Xn)
sis Cauchy : <= k < Cauchy(s)

As(X) = Vnen Ansn X(Xn, ) (“left-convergence value of s ~ x)
ps(X) =V nen Ansn X(X; Xn) (“right-convergence value of s ~ x”)

Facts:
E-2-X, X-2~E, with \e-ps < 1%
s Cauchy <= 15 < ps-As <= s 1ps

Definitions:
S~ X 1= K< Vnen(Amsn X(Xm, X) @ Apsy X(X, Xn)) <= k < Ag(X) @ ps(X)

X Cauchy-complete : <= every Cauchy sequence s in X converges to some point x € X
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6.2 Lawvere completeness

X Lawvere-complete: <« Veo-d¢y: X——=W IFfF- W —X:p=Ff,v=F
— Vedy: X——=E IxeX:p=x, 1) =x*
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6.2 Lawvere completeness

X Lawvere-complete: <« Veo-d¢y: X——=W IFfF- W —X:p=Ff,v=F
— Veody: X——=E IxeX:p=X, 1 =x*

— X Cauchy-complete
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6.2 Lawvere completeness

X Lawvere-complete: <« Veo-d¢y: X——=W IFfF- W —X:p=Ff,v=F
— Veody: X——=E IxeX:p=X, 1 =x*

— X Cauchy-complete

Conversely?
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6.2 Lawvere completeness

X Lawvere-complete: <« Veo-d¢y: X——=W IFfF- W —X:p=Ff,v=F
— Veody: X——=E IxeX:p=X, 1 =x*
— X Cauchy-complete
Conversely?
Auxiliary conditions on V:
Vintegral (k = T) and 3 (ep)nen iNV : 1. ep <eppq, 2.en <Kk, 3. Vpenen =k
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6.2 Lawvere completeness

X Lawvere-complete: <— Ve dy: X—o=W If - W —X:0o=1,¢="F*
— Veody: X——=E IxeX:p=X, 1 =x*
— X Cauchy-complete
Conversely?
Auxiliary conditions on V:
Vintegral (k = T) and 3 (ep)nen iNV : 1. ep <eppq, 2.en <Kk, 3. Vpenen =k
Then: V¢ 44 3s Cauchyin X : o = Xg, ¢ = ps

Walter Tholen (York University) Quantale-enriched categories TACL School 2022



6.2 Lawvere completeness

X Lawvere-complete: <« Veo-d¢y: X——=W IFfF- W —X:p=Ff,v=F
— Veody: X——=E IxeX:p=X, 1 =x*
— X Cauchy-complete
Conversely?
Auxiliary conditions on V:
Vintegral (k = T) and 3 (ep)nen iNV : 1. ep <eppq, 2.en <Kk, 3. Vpenen =k
Then: V¢ 44 3s Cauchyin X : o = Xg, ¢ = ps

Theorem (Hofmann-Reis 2018)
IfV satisfies the auxiliary conditions: X Lawvere-complete < X Cauchy-complete

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 47/67



6.3 Cocompletion wrt a given class ¢ of weights: conditions on ¢

W1 f* € o, for every V-functor f;
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W2 -4, - g*, - h, €, forally € & and V-functors f, g, h with h, € ®,
provided that the composites are defined;

Walter Tholen (York University) Quantale-enriched categories TACL School 2022 48/67



6.3 Cocompletion wrt a given class ¢ of weights: conditions on ¢

W1 f* € o, for every V-functor f;

W2 -4, - g*, - h, €, forally € & and V-functors f, g, h with h, € ®,
provided that the composites are defined;

W3 if Y —5~ X satisfies x* - ¢ € ® for all x € X, then o € ®;
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6.3 Cocompletion wrt a given class ¢ of weights: conditions on ¢

W1 f* € o, for every V-functor f;

W2 -4, - g*, - h, €, forally € & and V-functors f, g, h with h, € ®,
provided that the composites are defined;

W3 if Y —5~ X satisfies x* - ¢ € ® for all x € X, then o € ®;
W4 f, € &, for every surjective V-functor f.

& cocompletion class : <= (W1-3) hold; ® monadic cocompl. class : <= (W1-4) hold.

Largest cocompletion class: all V-distributors; trivially, it is monadic.
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W1 f* € o, for every V-functor f;
W2 -4, - g*, - h, €, forally € & and V-functors f, g, h with h, € ®,
provided that the composites are defined;

W3 if Y —5> X satisfies x* - € & for all x € X, then ¢ € o;
W4 f, € &, for every surjective V-functor f.
& cocompletion class : <= (W1-3) hold; ® monadic cocompl. class : <= (W1-4) hold.

Largest cocompletion class: all V-distributors; trivially, it is monadic.
Least cocompletion class: {f* | f V-functor}; it may obviously fail to be monadic.
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6.3 Cocompletion wrt a given class ¢ of weights: conditions on ¢

W1 f* € o, for every V-functor f;

W2 -4, - g*, - h, €, forally € & and V-functors f, g, h with h, € ®,
provided that the composites are defined;

W3 if ¥ Y- X satisfies x* - v € & for all x € X, then ¢ € &;

W4 f, € &, for every surjective V-functor f.

& cocompletion class : <= (W1-3) hold; ® monadic cocompl. class : <= (W1-4) hold.

Largest cocompletion class: all V-distributors; trivially, it is monadic.
Least cocompletion class: {f* | f V-functor}; it may obviously fail to be monadic.
Lawvere cocompletion class: {¢ | ¥ right adjoint}; it fails to be monadic already for V = 2.
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6.3 Cocompletion wrt a given class ¢ of weights: conditions on ¢

W1 f* € o, for every V-functor f;

W2 -4, - g*, - h, €, forally € & and V-functors f, g, h with h, € ®,
provided that the composites are defined;

W3 if Y —5> X satisfies x* - € & for all x € X, then ¢ € o;
W4 f, € &, for every surjective V-functor f.
& cocompletion class : <= (W1-3) hold; ® monadic cocompl. class : <= (W1-4) hold.

Largest cocompletion class: all V-distributors; trivially, it is monadic.
Least cocompletion class: {f* | f V-functor}; it may obviously fail to be monadic.
Lawvere cocompletion class: {¢ | ¥ right adjoint}; it fails to be monadic already for V = 2.

X € V-Cat is $-cocomplete : < all colimits of diagrams in X with weights in ¢ exist.
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6.3 Cocompletion wrt a given class ¢ of weights: conditions on ¢

W1 f* € o, for every V-functor f;

W2 -4, - g*, - h, €, forally € & and V-functors f, g, h with h, € ®,
provided that the composites are defined;

W3 if Y —5> X satisfies x* - € & for all x € X, then ¢ € o;
W4 f, € &, for every surjective V-functor f.
& cocompletion class : <= (W1-3) hold; ® monadic cocompl. class : <= (W1-4) hold.

Largest cocompletion class: all V-distributors; trivially, it is monadic.
Least cocompletion class: {f* | f V-functor}; it may obviously fail to be monadic.
Lawvere cocompletion class: {¢ | ¥ right adjoint}; it fails to be monadic already for V = 2.

X € V-Cat is $-cocomplete : < all colimits of diagrams in X with weights in ¢ exist.

f: X — Yis ®-cocontinuous : < f preserves ®-weighted colimits of X.
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6.4 Cocompletion wrt a given class ¢ of weights: pseudo-®-injectivity

For a cocompletion class ¢ call

f: X — Y o-dense <= f, € b;
X pseudo-®-injective : <= X pseudo-injective wrt fully faithful -dense V-functors;
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6.4 Cocompletion wrt a given class ¢ of weights: pseudo-®-injectivity

For a cocompletion class ¢ call

f: X — Y o-dense <= f, € b;
X pseudo-®-injective : <= X pseudo-injective wrt fully faithful -dense V-functors;

Put

Yx
X==0X = {y €PX | ¥ € ®}——=PX
X IIICX
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6.4 Cocompletion wrt a given class ¢ of weights: pseudo-®-injectivity

For a cocompletion class ¢ call

f: X — Y o-dense <= f, € b;
X pseudo-®-injective : <= X pseudo-injective wrt fully faithful -dense V-functors;

Put
Yx
X7>¢X::{¢6PX|1/)E¢} — PX
B% IIICX

Check:
@ f has a right adjoint = f ®-dense;
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6.4 Cocompletion wrt a given class ¢ of weights: pseudo-®-injectivity

For a cocompletion class ¢ call

f: X — Y o-dense <= f, € b;
X pseudo-®-injective : <= X pseudo-injective wrt fully faithful -dense V-functors;

Put
Yx
X7>¢X::{¢6PX|1/)E¢} — PX
B% IIICX

Check:
@ f has a right adjoint = f ®-dense;
@ fandg: Y — Z d-dense — g - f d-dense;
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6.4 Cocompletion wrt a given class ¢ of weights: pseudo-®-injectivity

For a cocompletion class ¢ call

f: X — Y o-dense <= f, € b;
X pseudo-®-injective : <= X pseudo-injective wrt fully faithful -dense V-functors;

Put
Yx
X7>¢X::{¢6PX|1/)E¢} — PX
B% IIICX

Check:
@ f has a right adjoint = f ®-dense;
@ fandg: Y — Z d-dense — g - f d-dense;
@ g-f®-dense and f, - f*=1}, — g ®-dense;
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6.4 Cocompletion wrt a given class ¢ of weights: pseudo-®-injectivity

For a cocompletion class ¢ call
f: X — Y o-dense <= f, € b;
X pseudo-®-injective : <= X pseudo-injective wrt fully faithful -dense V-functors;

Put
Yx
X7>¢X::{¢6PX|1/)E¢} — PX
B% IIICX

Check:
@ f has a right adjoint = f ®-dense;
@ fandg: Y — Z d-dense — g - f d-dense;
@ g-f®-dense and f, - f*=1}, — g ®-dense;
@ g - f ®-dense and g fully faithful = f ®-dense;
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6.4 Cocompletion wrt a given class ¢ of weights: pseudo-®-injectivity

For a cocompletion class ¢ call

f: X — Y o-dense <= f, € b;
X pseudo-®-injective : <= X pseudo-injective wrt fully faithful -dense V-functors;

Put
Yx
X7>¢X::{¢6PX|1/)E¢} — PX
B% IIICX

Check:
@ f has a right adjoint = f ®-dense;
@ fandg: Y — Z d-dense — g - f d-dense;
@ g-f®-dense and f, - f*=1}, — g ®-dense;
@ g - f ®-dense and g fully faithful = f ®-dense;
e y} is d-dense;
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6.4 Cocompletion wrt a given class ¢ of weights: pseudo-®-injectivity

For a cocompletion class ¢ call
f: X — Y o-dense <= f, € b;
X pseudo-®-injective : <= X pseudo-injective wrt fully faithful -dense V-functors;

Put
Yx
X7>¢X::{¢6PX|1/)E¢} — PX
B% IIICX

Check:
@ f has a right adjoint = f ®-dense;
@ fandg: Y — Z d-dense — g - f d-dense;
@ g-f®-dense and f, - f*=1}, — g ®-dense;
@ g - f ®-dense and g fully faithful = f ®-dense;
e y} is d-dense;

o (Y Y-X) ed < themate ¢! : X — PY factors through inc§.
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6.5 Cocompletion wrt a given class ¢ of weights: theorems

Theorem (Clementino-Hofmann 2009)

Let ® be a cocompletion class.
@ The following properties for a V-category X are equivalent:
(i) X is ®-cocomplete, i.e. X has all colimits with weights in ®;
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Let ® be a cocompletion class.
@ The following properties for a V-category X are equivalent:
(i) X is ®-cocomplete, i.e. X has all colimits with weights in ®;

(il)y X carries the structure of a pseudo-algebra with respect to the ®-presheaf monad

(0,8%,y®) onV-Cat;
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Theorem (Clementino-Hofmann 2009)

Let ® be a cocompletion class.
@ The following properties for a V-category X are equivalent:
(i) X is ®-cocomplete, i.e. X has all colimits with weights in ®;

(il)y X carries the structure of a pseudo-algebra with respect to the ®-presheaf monad

(0,8%,y®) onV-Cat;

(i) the Yoneda V-functory$, has a pseudo-retraction; that is: there is a V-functor

h:P®X — X with hy$ ~ 1x;
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6.5 Cocompletion wrt a given class ¢ of weights: theorems

Theorem (Clementino-Hofmann 2009)

Let ® be a cocompletion class.
@ The following properties for a V-category X are equivalent:
(i) X is ®-cocomplete, i.e. X has all colimits with weights in ®;
(il)y X carries the structure of a pseudo-algebra with respect to the ®-presheaf monad
(0,8%,y®) onV-Cat;
(i) the Yoneda V-functory$, has a pseudo-retraction; that is: there is a V-functor
h:P®X — X with hy$ ~ 1x;
(iv) X is pseudo-®-injective in V-Cat.
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6.5 Cocompletion wrt a given class ¢ of weights: theorems

Theorem (Clementino-Hofmann 2009)

Let ® be a cocompletion class.
@ The following properties for a V-category X are equivalent:

(i) X is ®-cocomplete, i.e. X has all colimits with weights in ®;
(il)y X carries the structure of a pseudo-algebra with respect to the ®-presheaf monad
(0,8%,y®) onV-Cat;
(i) the Yoneda V-functory$, has a pseudo-retraction; that is: there is a V-functor
h:P®X — X with hy$ ~ 1x;
(iv) X is pseudo-®-injective in V-Cat.

@ & (V-Catyp o -coim — V-Cat).
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6.5 Cocompletion wrt a given class ¢ of weights: theorems

Theorem (Clementino-Hofmann 2009)

Let ® be a cocompletion class.
@ The following properties for a V-category X are equivalent:
(i) X is ®-cocomplete, i.e. X has all colimits with weights in ®;
(il)y X carries the structure of a pseudo-algebra with respect to the ®-presheaf monad
(¢,8%,y®) onV-Cat;
(i) the Yoneda V-functory$; has a pseudo-retraction; that is: there is a V-functor
h:P®*X — X with hy§ ~ 1x;
(iv) X is pseudo-®-injective in V-Cat.
@ O (V—Catseppﬂ,hm — V—Cat).

@ [f® is monadic, then V-Caty., o-colim /S monadic over Set.
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6.6 Cauchy completion of a V-category a la Lawvere

Let Vsatisfyk =T and 3 (en)neninV: 1.ep <eppq, 2.6n <k, 3. Vyenen=k;
Consider ¢ := {v | ¢ right adjoint V-distributor}, and let X € V-Cat. Then

X = {¢p € PpX | ¢ right adjoint} = {ps | s = (xn)n Cauchy sequence in X}
with ps(X) = Vyen Ap=n X(X; Xn) (x € X), and

@ (trivially) (s ~ ' < ps = pg) is an equivalence relation on the set of all
Cauchy sequences in X, with projection s — pg;

@ oXis Cauchy complete;

© the restricted Yoneda V-functor X — & X, y — P(y),» s areflection of X into
the full subcategory of Cauchy complete V-categories.
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7.1 The category Set//V = V-wSet of V-weighted or -normed sets

@ Defining Set//V:

B <« VacA: |aa<|valp

\ /B
@ Set//V is topological over Set: Jier initial <= |a| = /\ |g;al

N /

@ Set//V is symmetric monoidal-closed:
A@B=(AxB, |(ab)=lal®|bl), E=(1={}|+|=Kk)

[A, B] = (Set(A,B), o] = A\ llal. l¢all)

acA
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7.2 The category Cat//V = V-wCat of (small) V-weighted categories

Objects of Cat//V are (small) categories X enriched in Set//V; this means (neglecting v):
X(x,y)@X(y,z) — X(x,z) and E — X(x,Xx) live in Set//V

— |flelgl=I(f,g)l <9 and k< [14|

— |-]: X — (V,®,k)is alax functor
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7.2 The category Cat//V = V-wCat of (small) V-weighted categories

Objects of Cat//V are (small) categories X enriched in Set//V; this means (neglecting v):
X(x,y)@X(y,z) — X(x,z) and E — X(x,Xx) live in Set//V
— [flelgl=I(f.9) <I|g-f and k< |14

— |-]: X — (V,®,k)is alax functor
For a functor F : X — Y to be enriched in Set//V means (without universal quantifiers):
X(x,y) — Y(Fx, Fy) livesin Set//V
— |f| < |Ff|

F

N

— X Y
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7.3 The adjunction s - i, monoidal-closed structure, preserved by i, s

V-Cat

X, X(x,y)® X(y,z) < X(x, 2) —
k< X(x,x)

sX = obX, sX(x,y)=V{|f| | f:x—y} <~

X®Y=XxY(as aset)
(X @ Y)((x,y), (x,y)) =

[X, Y] =V-Cat(X,Y) (as a set)
(X, Y1(f,g) = )\ Y(f,gx)
xeX

Walter Tholen (York University)

X(xx )@ Y(y,y')

Quantale-enriched categories

Cat//V
iX, ob(iX) = X
x ()] = X(%,y)

X, [flelgl<|g-fl
k < |14

X®Y =X xY (as a category)

[(f,9)l = fle]dl
[X,Y] = (Cat//V)(X,Y) (as a cat)
|F—>G|= N\ lax

X€obX
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7.4.1 Example: (V,<,®,k)=(2, L < T,A, T)

2-Cat = Ord Cat//2 = sCat
X, x<yny<z=x<z —— iX, ob(iX)=X

(x (%)

T=— x<x y) eS<—=x<y

sX=0bX, x<y<=3I(f:x—-y)leS — XS f,geS=g-fes

XY=XxY X®Y =X xY (as a category)
X y)<(Xy)e= x<xX ny<y Sxgy = Sx X Sy
[X,Y]=0rd(X,Y) [X,Y] = sCat(X,Y) (as a cat)

f<g<—=VxeX:fix<gx a € Sixy) <= VX € 0bX : ax € Sy
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7.4.2 Example: (V, <, ®,k) = ([0, 00|, >, +,0)

[0, oc]-Cat = Met
X, d(x,y)+d(y,z) = d(x,2)

0> d(x,x)

sX =obX, d(x,y)= finf If]
X—=Y

XY=XxY

d((X,y),(Xl,y,)) = d(X7.y) + d(yay/)

[X, Y] = Met(X, Y)
d(f,9) = sup d(fx, gx)
xeX

Walter Tholen (York University)

Quantale-enriched categories

Cat//[0, oc] = wCat
iX, ob(iX)=X
(x.y)
XLy |G y) = d(x, y)
X, |fl+lgl>19-f|
0> [1,]

X®Y =X xY (as a category)
(,9) = |f| + g

[X,Y] = wCat(X,Y) (as a cat)

| F—=G|= sup |ax]
xeobX

TACL School 2022
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7.5.1 Some elementary examples of weighted categories, |

We saw:

V-categories (and their functors) are V-weighted categories (and their functors); in fact,
they are precisely the V weighted categories with indiscrete underlying category.

Question: May Set be “naturally” [0, co]-weighted?
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7.5.1 Some elementary examples of weighted categories, |

We saw:

V-categories (and their functors) are V-weighted categories (and their functors); in fact,
they are precisely the V weighted categories with indiscrete underlying category.

Question: May Set be “naturally” [0, co]-weighted?

Goal 1: Let |f| measure the degree to which a map f : X — Y fails to be surjective.
Simply put  |f| ;== #(Y \ f(X)) € NU {o0} C [0, 0.

Then: 0 > |idx|, and with g: Y — Z we have |f| + |g| > |g - f|

since (assuming Choice and Y N Z = () there is an injective map

Z\ (g(f(X))) — (YA (X)) +(£\ g(Y))
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7.5.1 Some elementary examples of weighted categories, |

We saw:

V-categories (and their functors) are V-weighted categories (and their functors); in fact,
they are precisely the V weighted categories with indiscrete underlying category.

Question: May Set be “naturally” [0, co]-weighted?
Goal 1: Let |f| measure the degree to which a map f : X — Y fails to be surjective.
Simply put  |f| ;== #(Y \ f(X)) € NU {o0} C [0, 0.
Then: 0 > |idx|, and with g: Y — Z we have |f| + |g| > |g - f|
since (assuming Choice and Y N Z = () there is an injective map
Z\ (9(f(X))) — (Y \ £(X)) + (£\ g(Y)).

Note: f surjective < |f| = 0.
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7.5.2 Some elementary examples of weighted categories,

Question: May something similar be done for injectivity? That is:

Goal 2: Let |f| measure the degree to which a map f : X — Y fails to be injective.

First consider #f := sup,cy #f~1y; then, with g : Y — Z, we have:

#9 - #f—(sup#g '2)- (sup#f yzsup#( |J ) =#(g- 1), 1> #idx

zeZ yeg—1z

Walter Tholen (York University)
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7.5.2 Some elementary examples of weighted categories,

Question: May something similar be done for injectivity? That is:

Goal 2: Let |f| measure the degree to which a map f : X — Y fails to be injective.

First consider #f := sup,cy #f~1y; then, with g : Y — Z, we have:

#9 - #f = (sup#g ') (sup #y) =sup#( | Fly)=#(g-f), 1> #idx
zeZ yeg—1z
Not what we wanted! But ([1,00],2,-,1)%([0,00],2,—1—,0) comes to the rescue:
Put |f| := max{0,log #f}; then: |g|+ |f| > |g-|f|. 0 > |idx].
Note: f injective <= |f| =
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7.5.3 A more interesting example of a (large) weighted category: Lip

obLip =obMet, Lip(X,Y)=Set(X,Y), why callthis category Lip ??
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7.5.3 A more interesting example of a (large) weighted category: Lip
obLip = obMet, Lip(X,Y) = Set(X, Y);
Recall: f: X — Yis K(> 0)-Lipschitz

why call this category Lip ??

< Vx # X' d(fx, X') < Kd(x, x")
In particular: f: X — Y is a morphism in Met < f is 1-Lipschitz

Question:  How far is an arbitrary map f away from being 1-Lipschitz?
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7.5.3 A more interesting example of a (large) weighted category: Lip
obLip =obMet, Lip(X,Y)=Set(X,Y), why callthis category Lip ??
Recall: f: X — Yis K(> 0)-Lipschitz <= Vx # x’: d(fx, x') < Kd(x,x’)

In particular: f: X — Y is a morphism in Met < f is 1-Lipschitz

Question:  How far is an arbitrary map f away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant K > 1 for f (admitting K = o)
. . d(fx, fx") . .
That is: Lip(f) = max{1, sup———} (assuming temporarily that X be separated)
xx (X, x')
Then: Lip(g) - Lip(f) = Lip(g - f), 1 = Lip(idy)
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7.5.3 A more interesting example of a (large) weighted category: Lip

obLip =obMet, Lip(X,Y)=Set(X,Y), why callthis category Lip ??
Recall: f: X — Yis K(> 0)-Lipschitz <= Vx # x’: d(fx, x') < Kd(x,x’)
In particular: f: X — Y is a morphism in Met < f is 1-Lipschitz

Question:  How far is an arbitrary map f away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant K > 1 for f (admitting K = o)
. . d(fx, fx") . .
That is: Lip(f) = max{1, sup ———=-"} (assuming temporarily that X be separated)
xx (X, x')
Then: Lip(g) - Lip(f) = Lip(g - f), 1 = Lip(idy)
No problem:
(1, 00], >, -, 1)% ([0,00],>,+,0), || = max{0, sup (log d(fx, fx') — log d(x, x'))}
X, x!
Then: lg| +|f| > 1]g-fl, 0> lidx]|, (f 1-Lipschitz < |f| = 0)
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7.6 On the axiomatics for weighted/normed categories

The category X is V-weighted by |-| : X — V if
k < [1x]
lgl@|f| <lg-f| < |f| < Allgllg-fl] — | = Algl.lg-1l]

g9 g
< gl < Alfl.lg-fl < lgl = Alifl.1g - fl]
f f
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7.6 On the axiomatics for weighted/normed categories

The category X is V-weighted by |-| : X — V if

k < [14]
gl |fl <lg-f| = |f| < Algl.|g-fl] — |fl=llgl1g-1l]
g g
= lgl < Alfl.lg-fl] — |gl= A\lfl.1g-1l]
f f
The V-weighted category X is right/left cancellable if
flolg-f| < gl < |f1< Allg-fl.lgll =: [f*  (right cancellable)
g
gl ®|g - f| <|f] — |g| < /\[]g f|,If]] =: lg|~ (left cancellable; Kubi$: “norm”)
f
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7.6 On the axiomatics for weighted/normed categories

The category X is V-weighted by |-| : X — V if

k < [14]
gl |fl <lg-f| = |f| < Algl.|g-fl] — |fl=llgl1g-1l]
g g
= lgl < Alfl.lg-fl] — |gl= A\lfl.1g-1l]
f f
The V-weighted category X is right/left cancellable if
flolg-f| < gl < |f1< Allg-fl.lgll =: [f*  (right cancellable)
g
gl ®|g - f| <|f] — |g| < /\[]g f|,If]] =: lg|~ (left cancellable; Kubi$: “norm”)

f
Facts (Insall-Luckhardt for V = [0, x]): X weighted by |-| = X weighted by |-|} and |-|*,
and |f| < [f[RR, |f] < [f[*.
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7.7 The underlying ordinary category X, of a V-weighted category X

Note:

An isomorphism f in X may not satisfy k < |f|, and even when it does, we may not have
k < |f~'| (unless the weight is left/right cancellable). Still, in many of the examples with
V = [0, o] considered in the literature, morphisms f, and especially isomorphisms, of
norm O play an important role. They are called “modulators” by Insall-Luckhardt.

Question:

What is the “enriched significance” of considering morphisms f with k < |f|?
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7.7 The underlying ordinary category X, of a V-weighted category X

Note:

An isomorphism f in X may not satisfy k < |f|, and even when it does, we may not have
k < |f~'| (unless the weight is left/right cancellable). Still, in many of the examples with
V = [0, o] considered in the literature, morphisms f, and especially isomorphisms, of
norm O play an important role. They are called “modulators” by Insall-Luckhardt.

Question:
What is the “enriched significance” of considering morphisms f with k < |f|?
Answer:

These are precisely the morphisms of the underlying ordinary category Xg of the
(Set//V)-enriched category X.
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7.8.1 V-weighted cats vs. V-metrically enriched cats: syntax prep

Recall: groups (X, —, 0) in subtractive notation:
X—0=x,x—x=0,(x—y)—(z—y)=x—-2z

Write V-Met for V-Cat,,n: “V-metric spaces” = V-categories X with X(x, y) = X(y, x)
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7.8.1 V-weighted cats vs. V-metrically enriched cats: syntax prep

Recall: groups (X, —, 0) in subtractive notation:
X-0=x,x—x=0,(x—-y)—(z—y)=x—-2z

Write V-Met for V-Cat,,n: “V-metric spaces” = V-categories X with X(x, y) = X(y, x)

Form the category V-MetGrp of “V-metric groups”:

objects are V-metric spaces X with a group structure that makes distances invariant
under translations:

X(x,y)=X(x =2,y - 2);

morphisms are V-contractive homomorphisms.

V-MetGrp inherits its symmetric monoidal structure from V-Cat and the cartesian cat Grp.
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7.8.2 V-metric groups as V-weighted groups

The category Grp//V has as

objects: V-weighted sets (X, |-|) with a group structure such that

k<0, x|yl <[x—yl
morphisms live in both, Set//V and Grp.
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7.8.2 V-metric groups as V-weighted groups
The category Grp//V has as

objects: V-weighted sets (X, |-|) with a group structure such that

k<0, x|yl <[x—yl
morphisms live in both, Set//V and Grp.

Obtain:
Grp//V — V-MetGrp
X X(x,y)=[x—y|
|x] = X(x,0) 1 X
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7.9 V-weighted cats vs V-metrically enriched cats vs V-metagories

o

Grp//V V-MetGrp
V— 1 . Set//V V-Met
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7.9 V-weighted cats vs V-metrically enriched cats vs V-metagories

o

Grp//V V-MetGrp
V— 1 . Set//V V-Met

o)

(Grp//V)-Cat (V-MetGrp)-Cat

l l

V-Cat—' (Set//V)-Cat = Cat//V (V-Met)-Cat

V-Metag
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7.10.1 Principal references, |

F. W. Lawvere: Metric spaces, generalized logic, and closed categories
Rendiconti del Seminario Matematico e Fisico di Milano 43:135-166, 1973.
Republished in Reprints in Theory and Applications of Categories 1, 2002.

(This paper not only introduces metric spaces as small categories enriched in the
extended real half-line, considered as a symmetric monoidal-closed category under
addition, but it is also the birthplace of normed categories, introduced as categories
enriched in a certain symmetric monoidal category of normed sets.)

D. Hofmann, G.J. Seal, W.T. (eds.): Monoidal Topology—A Categorical Approach to Order,
Metric and Topology, Cambridge University Press, 2014.

(This book studies the category (T, V)-Cat, for a Set-monad T which is assumed to
interact with the V-presheaf monad Py, via a lax distributive law; for T the identity monad
on Set, one obtains the category V-Cat as considered in these lectures.)
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Hausdorff and Gromov distances |, Topology and its Applications, 2010

@ M.M. Clementino, D. Hofmann, W. Tholen: One setting for all: metric, topology,
uniformity, approach structure, Applied Categorical Structures, 2004

@ M.M. Clementino, W. Tholen: Metric, topology and multicategory—a common
approach, Journal of Pure and Applied Algebra, 2003

D. Hofmann: Topological theories and closed objects, Advances in Math., 2007
D. Hofmann, C. Reis: Convergence and quantale-enriched categories, CAGSA, 2018
A. Joyal, M. Tierney: An extension of the Galois theory of Grothendieck, AMS, 1984

E. Martinelli: Actions, injectives and injective hulls in quantale-enriched categories,
PhD thesis, Universidade de Aveiro, 2021

@ |. Stubbe: “Hausdorff distance” via conical cocompletion, Cahiers de Topologie et
Géom. Diff. Catégoriques, 2010
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