From Metric Spaces to Quantale-Enriched Categories

Walter Tholen

York University, Toronto, Canada

Topology, Algebra, and Categories in Logic Summer School at Praia de Mira, Portugal 13–18 June 2022

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantatic structure of the real nati-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

- Embrace (enriched) category theory as a guide for analytic inquiry
- Appreciate the quantalic structure of the real half-line as the key for studying metrics
- Get familiar with other important quantales and study the categories enriched in them
- Study the core of the theory: cocompleteness vs injectivity vs pseudo-algebraicity,
- in particular: Cauchy vs Lawvere
- Feel prepared to study monad-quantale-enriched categories (Monoidal Topology),
- normed/weighted categories, metrically enriched categories, metagories, etc.

Lectures

- 1 Metrics: from Frechét via Hausdorff to Lawvere
- 2 Quantales and the (small) categories enriched in them
- 3 Distributors and the presheaf monad
- 4 Weighted colimits, tensors, conical infima
- 5 Pseudo-algebras of the presheaf monad, injectivity
- 6 Cauchy- and Lawvere-completeness
- 7 A glance at normed/weighted categories

1.1 Fréchet 1906

A Frechét metric $d: X \times X \longrightarrow \mathbb{R}$ on a set X satisfies:

$$0\text{-Self }0=d(x,x)$$

Sep
$$d(x,y) = 0 = d(y,x) \Longrightarrow x = y$$

$$\operatorname{Sym} \ d(x,y) = d(y,x)$$

$$\nabla$$
-Ing $d(x,y) + d(y,z) \ge d(x,z)$

Necessarily then

Pos
$$d(x, y) \ge 0$$

Possible strengthenings:

Bdd
$$1 \ge d(x, y)$$
 (bounded metric

Ult
$$\max\{(d(x,y),d(y,z))\} \geq d(x,z)$$
 (ultrametric)

 $\mathbf{Met}_{\mathsf{Frech\acute{e}t}}$: morph's $f: X \to Y$ satisfy $d_X(x,x') \geq d_Y(fx,fx')$; write $X(x,x') \geq Y(fx,fx')$.

4/67

1.1 Fréchet 1906

A Frechét metric $d: X \times X \longrightarrow \mathbb{R}$ on a set X satisfies:

$$0\text{-Self }0=d(x,x)$$

Sep
$$d(x,y) = 0 = d(y,x) \Longrightarrow x = y$$

$$\mathsf{Sym} \ d(x,y) = d(y,x)$$

$$\nabla$$
-Ing $d(x,y) + d(y,z) \ge d(x,z)$

Necessarily then:

Pos
$$d(x, y) \ge 0$$

Possible strengthenings:

Bdd
$$1 \ge d(x, y)$$
 (bounded metric)

Ult
$$\max\{(d(x,y),d(y,z)\} \geq d(x,z) \text{ (ultrametric)}$$

Met_{Frechét}: morph's $f: X \to Y$ satisfy $d_X(x, x') \ge d_Y(fx, fx')$; write $X(x, x') \ge Y(fx, fx')$.

1.1 Fréchet 1906

A Frechét metric $d: X \times X \longrightarrow \mathbb{R}$ on a set X satisfies:

$$0\text{-Self }0=d(x,x)$$

Sep
$$d(x,y) = 0 = d(y,x) \Longrightarrow x = y$$

$$\mathsf{Sym} \ d(x,y) = d(y,x)$$

$$\nabla$$
-Ing $d(x,y) + d(y,z) \ge d(x,z)$

Necessarily then:

Pos
$$d(x, y) \ge 0$$

Possible strengthenings:

Bdd
$$1 \ge d(x, y)$$
 (bounded metric)

Ult
$$\max\{(d(x,y),d(y,z)\} \ge d(x,z)$$
 (ultrametric)

Met_{Frechét}: morph's $f: X \to Y$ satisfy $d_X(x, x') \ge d_Y(fx, fx')$; write $X(x, x') \ge Y(fx, fx')$.

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed
- The (non-symmetrized) Hausdorff distance

$$d(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y)$$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy *only* (0-Self) and (\triangle -Inq) of the Fréchet axioms, ...

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed
- The (non-symmetrized) Hausdorff distance

$$d(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y)$$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy *only* (0-Self) and (\triangle -Inq) of the Fréchet axioms, ...

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.
- The (non-symmetrized) Hausdorff distance

$$d(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y)$$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy *only* (0-Self) and (\triangle -Inq) of the Fréchet axioms, ...

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.
- The (non-symmetrized) Hausdorff distance

$$d(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y)$$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy *only* (0-Self) and (\triangle -Inq) of the Fréchet axioms, ...

- Finitely complete, but countable products (even of 2-point spaces) may not exist.
- Any two non-empty spaces fail to admit a coproduct.
- Neither its cartesian structure nor its natural monoidal structure are closed.
- The (non-symmetrized) Hausdorff distance

$$d(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y)$$

for $A, B \subseteq X$ will (when it exists in $[0, \infty)$) generally satisfy *only* (0-Self) and (\triangle -Inq) of the Fréchet axioms, ...

A Frechét metric $d: X \times X \longrightarrow [0, \infty]$ on a set X satisfies

0-Self-distances:
$$0 \ge d(x,x)$$
 $1 \to X(x,x)$ ∇ -Inequality: $d(x,y) + d(y,z) \ge d(y,z)$ $X(x,y) \times X(y,z) \to X(x,z)$ Symmetry: $X(x,y) = X(y,x)$

Separation: $d(x,y) = 0 = d(y,x) \Longrightarrow x = y$ $X(x,y) \cong 1 \cong X(y,x) \Longrightarrow x = y$ Finiteness: $\infty > d(x,y)$ $\emptyset \neq X(x,y)$

where the Manufacture and the second second

A map $f: X \to Y$ of metric spaces is non-expansive/short/1-Lipschitz if

Contraction:
$$d_X(x, x') \ge d_Y(fx, fx')$$
 $X(x, x') \to Y(fx, fx')$

The category Met is complete and cocomplete and symmetric monoidal-closed. But:

topological set

A Frechét metric $d: X \times X \longrightarrow [0, \infty]$ on a set X satisfies

0-Self-distances:
$$0 \ge d(x, x)$$
 $1 \to X(x, x)$

$$abla$$
-Inequality: $d(x,y) + d(y,z) \ge d(y,z)$ $X(x,y) \times X(y,z) \to X(x,z)$

Symmetry:
$$d(x, y) = d(y, x)$$
 $X(x, y) \cong X(y, x)$

Separation:
$$d(x,y) = 0 = d(y,x) \Longrightarrow x = y$$
 $X(x,y) \cong 1 \cong X(y,x) \Longrightarrow x = y$

Finiteness: $\infty > d(x, y)$ $\emptyset \neq X(x, y)$

A map $f: X \to Y$ of metric spaces is non-expansive/short/1-Lipschitz if

Contraction:
$$d_X(x, x') \ge d_Y(fx, fx')$$
 $X(x, x') \to Y(fx, fx')$

The category Met is complete and cocomplete and symmetric monoidal-closed. But:

topological set

A Frechét metric $d: X \times X \longrightarrow [0, \infty]$ on a set X satisfies

0-Self-distances:
$$0 \ge d(x,x)$$
 $1 \to X(x,x)$ ∇ -Inequality: $d(x,y) + d(y,z) \ge d(y,z)$ $X(x,y) \times X(y,z) \to X(x,z)$ Symmetry: $d(x,y) = d(y,x)$ $X(x,y) \cong X(y,x)$ $X(x,y) \cong X(y,x)$ Separation: $X(x,y) = 0 = x$

Finiteness: $\infty > d(x, y)$

 $0(x,y) = 0 = 0(y,x) \longrightarrow x = y \quad X(x,y) = 1 = X(y,x) \longrightarrow x = y$ $0 \neq X(x,y)$ $0 \neq X(x,y)$

A map $f: X \to Y$ of metric spaces is non-expansive/short/1-Lipschitz if

Contraction: $d_X(x, x') \ge d_Y(fx, fx')$ $X(x, x') \to Y(fx, fx')$

The category Met is complete and cocomplete and symmetric monoidal-closed. But:

topological set

A Frechét metric $d: X \times X \longrightarrow [0, \infty]$ on a set X satisfies

0-Self-distances:
$$0 \ge d(x,x)$$
 $1 \to X(x,x)$ ∇ -Inequality: $d(x,y) + d(y,z) \ge d(y,z)$ $X(x,y) \times X(y,z) \to X(x,z)$ Symmetry: $d(x,y) = d(y,x)$ $X(x,y) \cong X(y,x)$ $X(x,y) \cong X(y,x)$ Separation: $X(x,y) = x = y$ $X(x,y) \cong x = y$ Finiteness: $x > x = y$ $x = y = x = y$

A map $f: X \to Y$ of metric spaces is non-expansive/short/1-Lipschitz if

Contraction:
$$d_X(x, x') \ge d_Y(fx, fx')$$
 $X(x, x') \to Y(fx, fx')$

The category Met is complete and cocomplete and symmetric monoidal-closed. But:

- $(f_i: X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- $X \otimes Y((x,y),(x',y')) = X(x,x') + Y(y,y')$ makes **Met** symmetric monoidal-closed with internal hom
- $\bullet \ [X, Y](f, g) = \sup_{x \in X} Y(fx, gx)$
- Coreflective symmetrization: $X_{\text{csym}}(x, x') = \max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x,y) = 0 = X(y,x))$, let

$$X/\simeq ([x],[y])=X(x,y)$$

... and the formulae remain essentially valid for BMet (bounded mets), UMet (ultramets), and

- $(f_i: X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x,y),(x',y')) = \max\{X(x,x'),Y(y,y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- $X \otimes Y((x,y),(x',y')) = X(x,x') + Y(y,y')$ makes **Met** symmetric monoidal-closed with internal hom
- $\bullet \ [X,Y](f,g) = \sup_{x \in X} Y(fx,gx)$
- Coreflective symmetrization: $X_{\text{csym}}(x, x') = \max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x,y) = 0 = X(y,x))$, let

$$X/\simeq([x],[y])=X(x,y)$$

... and the formulae remain essentially valid for BMet (bounded mets), UMet (ultramets), and

- $(f_i: X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- $X \otimes Y((x,y),(x',y')) = X(x,x') + Y(y,y')$ makes **Met** symmetric monoidal-closed with internal hom
- $\bullet \ [X,Y](f,g) = \sup_{x \in X} Y(fx,gx)$
- Coreflective symmetrization: $X_{\text{csym}}(x, x') = \max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x,y) = 0 = X(y,x))$, let

$$X/\!\simeq ([x],[y])=X(x,y)$$

... and the formulae remain essentially valid for BMet (bounded mets), ... ultramets), ...

- $(f_i: X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- $X \otimes Y((x, y), (x', y')) = X(x, x') + Y(y, y')$ makes **Met** symmetric monoidal-closed with internal hom
- Coreflective symmetrization: $X_{csym}(x, x') = max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x,y) = 0 = X(y,x))$, let

$$X/\simeq ([x],[y])=X(x,y)$$

... and the formulae remain essentially valid for BMet (bounded mets), ... ultramets), ...

- $(f_i: X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- $X \otimes Y((x,y),(x',y')) = X(x,x') + Y(y,y')$ makes **Met** symmetric monoidal-closed with internal hom
- Coreflective symmetrization: $X_{csym}(x, x') = \max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x,y) = 0 = X(y,x))$, let

$$X/\simeq ([x],[y])=X(x,y)$$

... and the formulae remain essentially valid for BMet (bounded mets), , UMet (ultramets), , c

- $(f_i: X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- $X \otimes Y((x,y),(x',y')) = X(x,x') + Y(y,y')$ makes **Met** symmetric monoidal-closed with internal hom
- Coreflective symmetrization: $X_{csym}(x, x') = \max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x,y) = 0 = X(y,x))$, let

$$X/\simeq ([x],[y])=X(x,y)$$

... and the formulae remain essentially valid for BMet (bounded mets), , UMet (ultramets), , c

- $(f_i: X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- $X \otimes Y((x, y), (x', y')) = X(x, x') + Y(y, y')$ makes **Met** symmetric monoidal-closed with internal hom
- Coreflective symmetrization: $X_{csym}(x, x') = \max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x,y) = 0 = X(y,x))$, let

$$X/\simeq([x],[y])=X(x,y)$$

... and the formulae remain essentially valid for BMet (bounded mets), , UMet (ultramets), , c

- $(f_i: X \to Y_i)_{i \in I}$ initial (jointly cartesian) $\iff X(x, x') = \sup_{i \in I} Y_i(f_i x, f_i x')$
- $X \times Y((x, y), (x', y')) = \max\{X(x, x'), Y(y, y')\}$
- X + Y(z, z') = X(z, z') if $z, z' \in X$, and = Y(z, z') if $z, z' \in Y$, and $= \infty$ otherwise
- $X \otimes Y((x,y),(x',y')) = X(x,x') + Y(y,y')$ makes **Met** symmetric monoidal-closed with internal hom
- $[X, Y](f, g) = \sup_{x \in X} Y(fx, gx)$
- Coreflective symmetrization: $X_{csym}(x, x') = \max\{X(x, x'), X(x', x)\}$
- Reflective symmetrization:

$$X_{\text{rsym}}(x, x') = \inf_{x = x_0, \dots, x_n = x'} \sum_{j=1}^n \min\{X(x_{j-1}, x_j), X(x_j, x_{j-1})\}$$

• Separation: with $(x \simeq y : \iff X(x,y) = 0 = X(y,x))$, let

$$X/\simeq([x],[y])=X(x,y)$$

... and the formulae remain essentially valid for BMet (bounded mets), UMet (ultramets),

A (commutative) quantale $(\mathcal{V}, \leq, \otimes, k)$ is a commutative monoid in $(\textbf{Sup}, \boxtimes, 2)$; that is:

- (\mathcal{V}, \leq) is a complete lattice;
- $(\mathcal{V}, \otimes, k)$ is a commutative monoid;
- $\otimes v : \mathcal{V} \to \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$.

Hence, as a monotone map, every $-\otimes v$ has a right adjoint; this means:

 ${\mathcal V}$ is a "thin" symmetric monoidal-closed category, with internal homs [v,w] determined by

$$u \leq [v, w] \iff u \otimes v \leq w.$$

$$k \le [u, u], [u, v] \otimes u \le v, [k, v] = v, [u_1 \otimes u_2, v] = [u_1, [u_2, v_1]]$$

$$[\bigvee_{i \in I} u_i, v] = \bigwedge_{i \in I} [u_i, v], [u, \bigwedge_{i \in I} v_i] = \bigwedge_{i \in I} [u, v_i].$$

A (commutative) quantale $(\mathcal{V}, \leq, \otimes, k)$ is a commutative monoid in $(\textbf{Sup}, \boxtimes, 2)$; that is:

- (\mathcal{V}, \leq) is a complete lattice;
- $(\mathcal{V}, \otimes, \mathbf{k})$ is a commutative monoid;
- ullet $-\otimes v: \mathcal{V} \to \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$.

Hence, as a monotone map, every $-\otimes v$ has a right adjoint; this means

 ${\mathcal V}$ is a "thin" symmetric monoidal-closed category, with internal homs [v,w] determined by

$$u \le [v, w] \iff u \otimes v \le w.$$

$$k \le [u, u], [u, v] \otimes u \le v, [k, v] = v, [u_1 \otimes u_2, v] = [u_1, [u_2, v]] = [$$

$$[\bigvee_{i \in I} u_i, v] = \bigwedge_{i \in I} [u_i, v], [u, \bigwedge_{i \in I} v_i] = \bigwedge_{i \in I} [u, v_i].$$

A (commutative) quantale $(\mathcal{V}, \leq, \otimes, k)$ is a commutative monoid in $(\textbf{Sup}, \boxtimes, 2)$; that is:

- (\mathcal{V}, \leq) is a complete lattice;
- $(\mathcal{V}, \otimes, \mathbf{k})$ is a commutative monoid;
- ullet $-\otimes v: \mathcal{V} \to \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$.

Hence, as a monotone map, every $- \otimes v$ has a right adjoint; this means:

 ${\mathcal V}$ is a "thin" symmetric monoidal-closed category, with internal homs $[{\mathcal V},{\mathcal W}]$ determined by

$$u \leq [v, w] \iff u \otimes v \leq w.$$

$$k \leq [u, u], \ [u, v] \otimes u \leq v, \ [k, v] = v, \ [u_1 \otimes u_2, v] = [u_1, [u_2, v]] = [u_2, [u_1, v]],$$

$$[\bigvee_{i \in I} u_i, v] = \bigwedge_{i \in I} [u_i, v], \quad [u, \bigwedge_{i \in I} v_i] = \bigwedge_{i \in I} [u, v_i].$$

A (commutative) quantale $(\mathcal{V},\leq,\otimes,k)$ is a commutative monoid in (Sup, \boxtimes , 2); that is:

- (\mathcal{V}, \leq) is a complete lattice;
- $(\mathcal{V}, \otimes, \mathbf{k})$ is a commutative monoid;
- $\otimes v : \mathcal{V} \to \mathcal{V}$ preserves joins for all $v \in \mathcal{V}$.

Hence, as a monotone map, every $- \otimes v$ has a right adjoint; this means:

 $\mathcal V$ is a "thin" symmetric monoidal-closed category, with internal homs [v,w] determined by

$$u \leq [v, w] \iff u \otimes v \leq w.$$

$$k \le [u, u], [u, v] \otimes u \le v, [k, v] = v, [u_1 \otimes u_2, v] = [u_1, [u_2, v]] = [u_2, [u_1, v]],$$

$$[\bigvee_{i \in I} u_i, v] = \bigwedge_{i \in I} [u_i, v], \quad [u, \bigwedge_{i \in I} v_i] = \bigwedge_{i \in I} [u, v_i].$$

2.1 (Lax) homomorphisms, first examples

 $\varphi: \mathcal{V} \to \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I}\varphi u_i\leq \varphi(\bigvee_{i\in I}u_i),\quad \varphi u\otimes_{\mathcal{W}}\varphi v\leq \varphi(u\otimes_{\mathcal{V}}v),\quad k_{\mathcal{W}}\leq \varphi(k_{\mathcal{V}});$$

 φ is a (strict) homomorphism if \leq may be replaced by = .

- 1 is the terminal quantale $(k = \bot)$
- 2 = $(\{\bot, \top\}, \le, \land, \top)$ is the initial quantale; more generally: $(\mathcal{PS}, \subseteq, \cap, S)$ (S any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0,\infty]_+\cong [0,1]_\times$, that is: $([0,\infty],\geq,+,0)\cong ([0,1],\leq,\times,1)$
- $\bullet \ \ \text{and its "ultra" version } [0,\infty]_{max} \cong [0,1]_{min} \colon ([0,\infty],\geq,\mathsf{max},0) \cong ([0,1],\leq,\mathsf{min},1)$
- the Lukasiewicz quantale $[0,1]_{\oplus}\cong [0,1]_{\odot}$, that is: $([0,1],\geq,\oplus,0)\cong ([0,1],\leq,\odot,1)$ with $u\oplus v=\min\{u+v,1\}$ and $u\odot v=\max\{u+v-1,0\}$

2.1 (Lax) homomorphisms, first examples

 $\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I}\varphi u_i\leq \varphi(\bigvee_{i\in I}u_i),\quad \varphi u\otimes_{\mathcal{W}}\varphi v\leq \varphi(u\otimes_{\mathcal{V}}v),\quad k_{\mathcal{W}}\leq \varphi(k_{\mathcal{V}});$$

 φ is a (strict) homomorphism if \leq may be replaced by = .

- 1 is the terminal quantale $(k = \bot)$
- 2 = $(\{\bot, \top\}, \le, \land, \top)$ is the initial quantale; more generally: $(\mathcal{PS}, \subseteq, \cap, S)$ (S any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0,\infty]_+\cong [0,1]_\times$, that is: $([0,\infty],\geq,+,0)\cong ([0,1],\leq,\times,1)$
- $\bullet \ \ \text{and its "ultra" version } [0,\infty]_{\text{max}} \cong [0,1]_{\text{min}} \colon ([0,\infty],\geq,\text{max},0) \cong ([0,1],\leq,\text{min},1)$
- the Lukasiewicz quantale $[0,1]_{\oplus}\cong [0,1]_{\odot}$, that is: $([0,1],\geq,\oplus,0)\cong ([0,1],\leq,\odot,1)$ with $u\oplus v=\min\{u+v,1\}$ and $u\odot v=\max\{u+v-1,0\}$

2.1 (Lax) homomorphisms, first examples

 $\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I}\varphi u_i\leq \varphi(\bigvee_{i\in I}u_i),\quad \varphi u\otimes_{\mathcal{W}}\varphi v\leq \varphi(u\otimes_{\mathcal{V}}v),\quad k_{\mathcal{W}}\leq \varphi(k_{\mathcal{V}});$$

 φ is a (strict) homomorphism if \leq may be replaced by = .

- 1 is the terminal quantale $(k = \bot)$
- 2 = $(\{\bot, \top\}, \le, \land, \top)$ is the initial quantale; more generally: $(\mathcal{PS}, \subseteq, \cap, \mathcal{S})$ (\mathcal{S} any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0,\infty]_+\cong [0,1]_\times$, that is: $([0,\infty],\geq,+,0)\cong ([0,1],\leq,\times,1)$
- $\bullet \text{ and its "ultra" version } [0,\infty]_{max} \cong [0,1]_{min} \colon ([0,\infty],\geq,\text{max},0) \cong ([0,1],\leq,\text{min},1)$
- the Lukasiewicz quantale $[0,1]_{\oplus}\cong [0,1]_{\odot}$, that is: $([0,1],\geq,\oplus,0)\cong ([0,1],\leq,\odot,1)$ with $u\oplus v=\min\{u+v,1\}$ and $u\odot v=\max\{u+v-1,0\}$

 $\varphi: \mathcal{V} \to \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I}\varphi u_i\leq \varphi(\bigvee_{i\in I}u_i),\quad \varphi u\otimes_{\mathcal{W}}\varphi v\leq \varphi(u\otimes_{\mathcal{V}}v),\quad k_{\mathcal{W}}\leq \varphi(k_{\mathcal{V}});$$

- 1 is the terminal quantale $(k = \bot)$
- 2 = $(\{\bot, \top\}, \le, \land, \top)$ is the initial quantale; more generally: $(\mathcal{PS}, \subseteq, \cap, \mathcal{S})$ (\mathcal{S} any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0,\infty]_+\cong [0,1]_\times$, that is: $([0,\infty],\geq,+,0)\cong ([0,1],\leq,\times,1)$
- $\bullet \text{ and its "ultra" version } [0,\infty]_{max} \cong [0,1]_{min} \colon ([0,\infty],\geq,\text{max},0) \cong ([0,1],\leq,\text{min},1)$
- the Lukasiewicz quantale $[0,1]_{\oplus}\cong [0,1]_{\odot}$, that is: $([0,1],\geq,\oplus,0)\cong ([0,1],\leq,\odot,1)$ with $u\oplus v=\min\{u+v,1\}$ and $u\odot v=\max\{u+v-1,0\}$

 $\varphi: \mathcal{V} \rightarrow \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I}\varphi u_i\leq \varphi(\bigvee_{i\in I}u_i),\quad \varphi u\otimes_{\mathcal{W}}\varphi v\leq \varphi(u\otimes_{\mathcal{V}}v),\quad k_{\mathcal{W}}\leq \varphi(k_{\mathcal{V}});$$

- 1 is the terminal quantale $(k = \bot)$
- 2 = $(\{\bot, \top\}, \le, \land, \top)$ is the initial quantale; more generally: $(\mathcal{PS}, \subseteq, \cap, S)$ (S any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0,\infty]_+\cong [0,1]_\times$, that is: $([0,\infty],\geq,+,0)\cong ([0,1],\leq,\times,1)$
- $\bullet \ \ \text{and its "ultra" version } [0,\infty]_{max} \cong [0,1]_{min} \colon ([0,\infty],\geq,\text{max},0) \cong ([0,1],\leq,\text{min},1)$
- the Lukasiewicz quantale $[0,1]_{\oplus}\cong [0,1]_{\odot}$, that is: $([0,1],\geq,\oplus,0)\cong ([0,1],\leq,\odot,1)$ with $u\oplus v=\min\{u+v,1\}$ and $u\odot v=\max\{u+v-1,0\}$

 $\varphi: \mathcal{V} \to \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I}\varphi u_i\leq \varphi(\bigvee_{i\in I}u_i),\quad \varphi u\otimes_{\mathcal{W}}\varphi v\leq \varphi(u\otimes_{\mathcal{V}}v),\quad k_{\mathcal{W}}\leq \varphi(k_{\mathcal{V}});$$

- 1 is the terminal quantale $(k = \bot)$
- 2 = $(\{\bot, \top\}, \le, \land, \top)$ is the initial quantale; more generally: $(\mathcal{PS}, \subseteq, \cap, S)$ (S any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0,\infty]_+\cong [0,1]_\times$, that is: $([0,\infty],\geq,+,0)\cong ([0,1],\leq,\times,1)$
- $\bullet \text{ and its "ultra" version } [0,\infty]_{\text{max}} \cong [0,1]_{\text{min}} \text{: } ([0,\infty],\geq,\text{max},0) \cong ([0,1],\leq,\text{min},1)$
- the Lukasiewicz quantale $[0,1]_{\oplus} \cong [0,1]_{\odot}$, that is: $([0,1],\geq,\oplus,0) \cong ([0,1],\leq,\odot,1)$ with $u \oplus v = \min\{u+v,1\}$ and $u \odot v = \max\{u+v-1,0\}$

 $\varphi: \mathcal{V} \to \mathcal{W}$ is a lax homomorphism if

$$\bigvee_{i\in I}\varphi u_i\leq \varphi(\bigvee_{i\in I}u_i),\quad \varphi u\otimes_{\mathcal{W}}\varphi v\leq \varphi(u\otimes_{\mathcal{V}}v),\quad k_{\mathcal{W}}\leq \varphi(k_{\mathcal{V}});$$

- 1 is the terminal quantale $(k = \bot)$
- 2 = $(\{\bot, \top\}, \le, \land, \top)$ is the initial quantale; more generally: $(\mathcal{PS}, \subseteq, \cap, \mathcal{S})$ (\mathcal{S} any set)
- even more generally: any locale (frame) L is a "cartesian" quantale (L, \leq, \wedge, \top)
- the Lawvere quantale $[0,\infty]_+\cong [0,1]_\times$, that is: $([0,\infty],\geq,+,0)\cong ([0,1],\leq,\times,1)$
- $\bullet \text{ and its "ultra" version } [0,\infty]_{\text{max}} \cong [0,1]_{\text{min}} \text{: } ([0,\infty],\geq,\text{max},0) \cong ([0,1],\leq,\text{min},1)$
- the Lukasiewicz quantale $[0,1]_{\oplus}\cong [0,1]_{\odot}$, that is: $([0,1],\geq,\oplus,0)\cong ([0,1],\leq,\odot,1)$ with $u\oplus v=\min\{u+v,1\}$ and $u\odot v=\max\{u+v-1,0\}$

- the free quantale $(\mathcal{P}M,\subseteq,*,\{\eta\})$ over a commutative monoid $(M,*,\eta)$
- the quantale $(\mathcal{DV}, \subseteq, \otimes_{\downarrow}, \downarrow k)$ of down(-closed) sets of a quantale $(\mathcal{V}, \otimes, k)$
- the quantale $\Delta_{\&} = (\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$\Delta = \{ \varphi \colon [0, \infty] \to [0, 1] \mid \forall \alpha \in [0, \infty] : \varphi(\alpha) = \sup_{\beta < \alpha} \varphi(\beta) \}$$

for any "t-norm" & on [0,1], *i.e.* any operation that makes $([0,1], \leq, \&, 1)$ a quantale, extended to Δ by

$$(\varphi \& \psi)(\gamma) = \sup_{\alpha + \beta < \gamma} \varphi(\alpha) \& \psi(\beta);$$

the distance distribution function κ with $\kappa(0)=0$ and $\kappa(\alpha)=1$ for $\alpha>0$ is &-neutral.

$$[0,\infty]_+ \stackrel{\sigma_+}{-\!-\!-\!-\!-\!-\!-\!-\!-\!-} \Delta_\& \leftarrow \stackrel{ au_\&}{-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-} [0,1]_\&$$

$$\varphi = \sup_{0 \le \alpha \le \infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha)) = \sup_{0 < \alpha < \infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha))$$

- the free quantale $(\mathcal{P}M,\subseteq,*,\{\eta\})$ over a commutative monoid $(M,*,\eta)$
- the quantale $(\mathcal{DV}, \subseteq, \otimes_{\downarrow}, \downarrow k)$ of down(-closed) sets of a quantale $(\mathcal{V}, \otimes, k)$
- the quantale $\Delta_{\&} = (\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$\Delta = \{\varphi \colon [0,\infty] \to [0,1] \mid \forall \alpha \in [0,\infty] : \varphi(\alpha) = \sup_{\beta < \alpha} \varphi(\beta) \},$$

for any "t-norm" & on [0,1], *i.e.* any operation that makes ([0,1], \leq , &, 1) a quantale, extended to Δ by

$$(\varphi \& \psi)(\gamma) = \sup_{\alpha+\beta<\gamma} \varphi(\alpha) \& \psi(\beta);$$

the distance distribution function κ with $\kappa(0)=0$ and $\kappa(\alpha)=1$ for $\alpha>0$ is &-neutral.

$$[0,\infty]_+ \stackrel{\sigma_+}{-\!-\!-\!-\!-\!-\!-\!-\!-\!-} \Delta_\& \leftarrow \stackrel{ au_\&}{-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-} [0,1]_\&$$

$$\varphi = \sup_{0 \le \alpha \le \infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha)) = \sup_{0 < \alpha < \infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha))$$

- the free quantale $(\mathcal{P}M,\subseteq,*,\{\eta\})$ over a commutative monoid $(M,*,\eta)$
- the quantale $(\mathcal{DV},\subseteq,\otimes_{\downarrow},\downarrow k)$ of down(-closed) sets of a quantale (\mathcal{V},\otimes,k)
- the quantale $\Delta_{\&} = (\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$\Delta = \{ \varphi \colon [\mathsf{0}, \infty] \to [\mathsf{0}, \mathsf{1}] \mid \forall \alpha \in [\mathsf{0}, \infty] : \varphi(\alpha) = \sup_{\beta < \alpha} \varphi(\beta) \},$$

for any "t-norm" & on [0,1], *i.e.* any operation that makes ($[0,1], \leq, \&, 1$) a quantale, extended to Δ by

$$(\varphi \& \psi)(\gamma) = \sup_{\alpha + \beta < \gamma} \varphi(\alpha) \& \psi(\beta);$$

the distance distribution function κ with $\kappa(0)=0$ and $\kappa(\alpha)=1$ for $\alpha>0$ is &-neutral.

$$[0,\infty]_+ \stackrel{\sigma_+}{-\!-\!-\!-\!-\!-\!-\!-\!-} \Delta_\& \leftarrow \stackrel{ au_\&}{-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-} [0,1]_\&$$

$$\varphi = \sup_{0 \le \alpha \le \infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha)) = \sup_{0 < \alpha < \infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha))$$

- the free quantale $(\mathcal{P}M,\subseteq,*,\{\eta\})$ over a commutative monoid $(M,*,\eta)$
- ullet the quantale $(\mathcal{DV},\subseteq,\otimes_\downarrow,\downarrow k)$ of down(-closed) sets of a quantale (\mathcal{V},\otimes,k)
- the quantale $\Delta_{\&} = (\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$\Delta = \{ \varphi \colon [\mathsf{0}, \infty] \to [\mathsf{0}, \mathsf{1}] \mid \forall \alpha \in [\mathsf{0}, \infty] : \varphi(\alpha) = \sup_{\beta < \alpha} \varphi(\beta) \},$$

for any "t-norm" & on [0,1], *i.e.* any operation that makes ($[0,1],\leq,\&,1$) a quantale, extended to Δ by

$$(\varphi \& \psi)(\gamma) = \sup_{\alpha + \beta < \gamma} \varphi(\alpha) \& \psi(\beta);$$

the distance distribution function κ with $\kappa(0) = 0$ and $\kappa(\alpha) = 1$ for $\alpha > 0$ is &-neutral.

$$[0,\infty]_+ \stackrel{\sigma_+}{-\!-\!-\!-\!-\!-\!-\!-\!-} \Delta_\& \leftarrow \stackrel{ au_\&}{-\!-\!-\!-\!-\!-\!-\!-\!-\!-\!-} [0,1]_\&$$

$$\varphi = \sup_{0 \le \alpha \le \infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha)) = \sup_{0 < \alpha < \infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha))$$

- the free quantale $(\mathcal{P}M,\subseteq,*,\{\eta\})$ over a commutative monoid $(M,*,\eta)$
- ullet the quantale $(\mathcal{DV},\subseteq,\otimes_\downarrow,\downarrow k)$ of down(-closed) sets of a quantale (\mathcal{V},\otimes,k)
- the quantale $\Delta_{\&} = (\Delta, \leq, \&, \kappa)$ of distance distribution functions, with

$$\Delta = \{\varphi \colon [\mathsf{0},\infty] \to [\mathsf{0},\mathsf{1}] \mid \forall \alpha \in [\mathsf{0},\infty] : \varphi(\alpha) = \sup_{\beta < \alpha} \varphi(\beta)\},$$

for any "t-norm" & on [0,1], *i.e.* any operation that makes ($[0,1],\leq,\&,1$) a quantale, extended to Δ by

$$(\varphi \& \psi)(\gamma) = \sup_{\alpha + \beta < \gamma} \varphi(\alpha) \& \psi(\beta);$$

the distance distribution function κ with $\kappa(0) = 0$ and $\kappa(\alpha) = 1$ for $\alpha > 0$ is &-neutral.

$$[0,\infty]_+ \xrightarrow{\sigma_+} \Delta_\& \xleftarrow{\tau_\&} [0,1]_\&$$

$$\varphi = \sup_{\mathbf{0} \leq \alpha \leq \infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha)) = \sup_{\mathbf{0} < \alpha < \infty} \sigma_{+}(\alpha) \& \tau_{\&}(\varphi(\alpha))$$

$$X \xrightarrow{r} Y \iff X \times Y \xrightarrow{r} \mathcal{V} \iff r = (r(x, y))_{x \in X, y \in Y}$$

$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

Set $\longrightarrow \mathcal{V}$ -Rel, $(X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_o} Y)$ $f_o(x,y) = k \text{ if } fx = y, = \bot \text{ else}$

V-Rel is a 2-category with 2-cells given by the pointwise order of V-relations.

 \mathcal{V} -Rel has the involution $r^{\circ}(y,x) = r(x,y)$; put $f^{\circ} = (f_{\circ})^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V} -Rel is a quantaloid f_{\circ} a Sup-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $V \longrightarrow V$ -Rel, $v \longmapsto (1 \stackrel{v}{\longrightarrow} 1)$ is a homomorphism of quantaloids.

Useful rule:
$$W \xrightarrow{g} X \xrightarrow{r} Y \xleftarrow{h} Z$$
 $(h^{\circ} \cdot r \cdot g_{\circ})(w, z) = r(gw, hz)$.

$$X \xrightarrow{r} Y \iff X \times Y \xrightarrow{r} \mathcal{V} \iff r = (r(x, y))_{x \in X, y \in Y}$$

$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

Set
$$\longrightarrow \mathcal{V}$$
-Rel, $(X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_o} Y)$ $f_o(x,y) = k \text{ if } fx = y, = \bot \text{ else}$

V-Rel is a 2-category with 2-cells given by the pointwise order of V-relations

 \mathcal{V} -ReI has the involution $r^{\circ}(y, x) = r(x, y)$; put $f^{\circ} = (f_{\circ})^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V} -ReI is a quantaloid, *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $V \longrightarrow V$ -Rel, $v \longmapsto (1 \stackrel{v}{\longrightarrow} 1)$ is a homomorphism of quantaloids.

$$X \xrightarrow{r} Y \iff X \times Y \xrightarrow{r} \mathcal{V} \iff r = (r(x, y))_{x \in X, y \in Y}$$

$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

Set $\longrightarrow \mathcal{V}$ -**Rel**, $(X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_{\circ}} Y)$ $f_{\circ}(x,y) = k$ if fx = y, $= \bot$ else \mathcal{V} -**Rel** is a 2-category with 2-cells given by the pointwise order of \mathcal{V} -relations.

 \mathcal{V} -ReI has the involution $r^{\circ}(y, x) = r(x, y)$; put $f^{\circ} = (f_{\circ})^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V} -ReI is a quantaloid, *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $V \longrightarrow V$ -Rel, $v \longmapsto (1 \xrightarrow{v} 1)$ is a homomorphism of quantaloids.

$$X \xrightarrow{r} Y \iff X \times Y \xrightarrow{r} \mathcal{V} \iff r = (r(x, y))_{x \in X, y \in Y}$$

$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

Set
$$\longrightarrow \mathcal{V}$$
-Rel, $(X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_o} Y)$ $f_o(x,y) = k$ if $fx = y$, $f_o(x,y) = k$

 \mathcal{V} -**Rel** is a 2-category with 2-cells given by the pointwise order of \mathcal{V} -relations.

 \mathcal{V} -Rel has the involution $r^{\circ}(y,x) = r(x,y)$; put $f^{\circ} = (f_{\circ})^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps")

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $V \longrightarrow V$ -Rel, $v \longmapsto (1 \stackrel{v}{\longrightarrow} 1)$ is a homomorphism of quantaloids.

$$X \xrightarrow{r} Y \iff X \times Y \xrightarrow{r} \mathcal{V} \iff r = (r(x, y))_{x \in X, y \in Y}$$

$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

Set
$$\longrightarrow \mathcal{V}$$
-Rel, $(X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_o} Y)$ $f_o(x,y) = k$ if $fx = y$, $f_o(x,y) = k$

V-**Rel** is a 2-category with 2-cells given by the pointwise order of V-relations.

 \mathcal{V} -Rel has the involution $r^{\circ}(y,x)=r(x,y)$; put $f^{\circ}=(f_{\circ})^{\circ}$; then $f_{\circ}\dashv f^{\circ}$ ("maps are maps") \mathcal{V} -Rel is a quantaloid, *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $V \longrightarrow V$ -Rel, $v \longmapsto (1 \xrightarrow{v} 1)$ is a homomorphism of quantaloids.

$$X \xrightarrow{r} Y \iff X \times Y \xrightarrow{r} \mathcal{V} \iff r = (r(x, y))_{x \in X, y \in Y}$$

$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

Set
$$\longrightarrow \mathcal{V}$$
-**Rel**, $(X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_{\circ}} Y)$ $f_{\circ}(x,y) = k \text{ if } fx = y, = \bot \text{ else}$

V-**Rel** is a 2-category with 2-cells given by the pointwise order of V-relations.

 \mathcal{V} -Rel has the involution $r^{\circ}(y,x)=r(x,y)$; put $f^{\circ}=(f_{\circ})^{\circ}$; then $f_{\circ}\dashv f^{\circ}$ ("maps are maps") \mathcal{V} -Rel is a quantaloid. *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $V \longrightarrow V$ -Rel, $v \longmapsto (1 \stackrel{v}{\longrightarrow} 1)$ is a homomorphism of quantaloids.

$$X \xrightarrow{r} Y \iff X \times Y \xrightarrow{r} \mathcal{V} \iff r = (r(x, y))_{x \in X, y \in Y}$$

$$(s \cdot r)(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$

Set
$$\longrightarrow \mathcal{V}$$
-**Rel**, $(X \xrightarrow{f} Y) \longmapsto (X \xrightarrow{f_{\circ}} Y)$ $f_{\circ}(x,y) = k \text{ if } fx = y, = \bot \text{ else}$

V-**Rel** is a 2-category with 2-cells given by the pointwise order of V-relations.

 \mathcal{V} -**Rel** has the involution $r^{\circ}(y, x) = r(x, y)$; put $f^{\circ} = (f_{\circ})^{\circ}$; then $f_{\circ} \dashv f^{\circ}$ ("maps are maps") \mathcal{V} -**Rel** is a quantaloid, *i.e.* a **Sup**-enriched category:

$$(\bigvee_{i\in I} s_i) \cdot r = \bigvee_{i\in I} (s_i \cdot r), \qquad s \cdot (\bigvee_{i\in I} r_i) = \bigvee_{i\in I} (s \cdot r_i)$$

 $V \longrightarrow V$ -Rel, $v \longmapsto (1 \stackrel{v}{\longrightarrow} 1)$ is a homomorphism of quantaloids.

Useful rule:
$$W \xrightarrow{g} X \xrightarrow{r} Y \xleftarrow{h} Z$$
 $(h^{\circ} \cdot r \cdot g_{\circ})(w, z) = r(gw, hz)$.

2.4 Extensions and liftings of $\overline{\mathcal{V}}$ -relations

Consider $X \xrightarrow{r} Y$. $Y \xrightarrow{s} Z$. $X \xrightarrow{t} Z$. Obtain:

$$\mathcal{V}\text{-Rel}(Y,Z) \xrightarrow{\qquad \qquad } \mathcal{V}\text{-Rel}(X,Z) \qquad \mathcal{V}\text{-Rel}(X,Y) \xrightarrow{\qquad \qquad } \mathcal{V}\text{-Rel}(X,Z)$$

$$\mathcal{V}$$
-Rel (X,Y) \perp \mathcal{V} -Rel (X,Z)

$$s \leq [r,t] \iff s \cdot r \leq t \iff r \leq]s,t[$$

$$\begin{array}{c}
Y \longrightarrow Z \\
\downarrow \\
\downarrow \\
X
\end{array}$$

$$[r,t](y,z) = \bigwedge_{x \in X} [r(x,y), t(x,z)]$$

$$]s,t[(x,y) = \bigwedge_{z \in Z} [s(y,z),t(x,z)]$$

2.4 Extensions and liftings of V-relations

Consider $X \xrightarrow{r} Y \cdot Y \xrightarrow{s} Z \cdot X \xrightarrow{t} Z$. Obtain:

$$\mathcal{V}\text{-Rel}(Y,Z) \xrightarrow{f_{r,-}} \mathcal{V}\text{-Rel}(X,Z) \qquad \mathcal{V}\text{-Rel}(X,Y) \xrightarrow{\mathfrak{s}\cdot-} \mathcal{V}\text{-Rel}(X,Z)$$

$$\mathcal{V}$$
-Rel (X,Y) \perp \mathcal{V} -Rel (X,Z)

$$s \leq [r,t] \iff s \cdot r \leq t \iff r \leq]s,t[$$

"extension of t along r"

$$Y \xrightarrow{s} Z$$

$$\downarrow s, t [\downarrow f]$$

$$X$$

"lifting of t along s"

$$[r,t](y,z) = \bigwedge_{x \in X} [r(x,y),t(x,z)]$$

$$[r,t](y,z) = \bigwedge_{x \in X} [r(x,y),t(x,z)] \qquad]s,t[(x,y) = \bigwedge_{z \in Z} [s(y,z),t(x,z)]$$

$$(X,a) \in \mathcal{V}\text{-Cat} \qquad \iff a \text{ is a monoid in the monoidal category } (\mathcal{V}\text{-Rel}(X,X),\leq,\cdot,1_X^\circ) \\ \iff 1_X^\circ \leq a, \qquad a \cdot a \leq a \\ \iff k \leq a(x,x), \quad a(x,y) \otimes a(y,z) \leq a(x,z) \\ X \in \mathcal{V}\text{-Cat} \qquad \iff k \leq X(x,x), \quad X(x,y) \otimes X(y,z) \leq X(x,z)$$

$$\begin{array}{ll} f: X \to Y \text{ in } \mathcal{V}\text{-}\textbf{Cat} & \Longleftrightarrow X(x,x') \leq Y(fx,fx') \\ f: (X,a) \to (Y,b) & \Longleftrightarrow a \leq f^{\circ} \cdot b \cdot f_{\circ} & \Longleftrightarrow f_{\circ} \cdot a \leq b \cdot f_{\circ} & \Longleftrightarrow a \cdot f^{\circ} \leq f^{\circ} \cdot b \end{array}$$

Some prominent objects in V-Cat:

$$\emptyset$$
, $1 = (\{*\}, \top)$, $E = (\{*\}, k)$, $V = (V, [-, -])$

Lax homomorphisms of quantales facilitate change-of-base functors:

$$\varphi: \mathcal{V} \to \mathcal{W} \text{ lax homomorphism} \Longrightarrow B_{\varphi}: \mathcal{V}\text{-}\mathbf{Cat} \to \mathcal{W}\text{-}\mathbf{Cat}, \quad (X, a) \mapsto (X, \varphi a)$$
$$p: \mathcal{V} \to 2 \text{ with } (p(v) = \top \iff k \le v) \Longrightarrow B_p: \mathcal{V}\text{-}\mathbf{Cat} \to \mathbf{Ord} \text{ with } (x \le y \iff k \le X(x, y))$$

$$(X,a) \in \mathcal{V}\text{-Cat} \qquad \iff a \text{ is a monoid in the monoidal category } (\mathcal{V}\text{-Rel}(X,X),\leq,\cdot,1_X^\circ) \\ \iff 1_X^\circ \leq a, \qquad a \cdot a \leq a \\ \iff k \leq a(x,x), \quad a(x,y) \otimes a(y,z) \leq a(x,z) \\ \iff k \leq X(x,x), \quad X(x,y) \otimes X(y,z) \leq X(x,z)$$

$$\begin{array}{lll} f: X \to Y \text{ in } \mathcal{V}\text{-}\textbf{Cat} & \iff X(x,x') \leq Y(fx,fx') \\ f: (X,a) \to (Y,b) & \iff a \leq f^{\circ} \cdot b \cdot f_{\circ} \iff f_{\circ} \cdot a \leq b \cdot f_{\circ} \iff a \cdot f^{\circ} \leq f^{\circ} \cdot b \end{array}$$

Some prominent objects in V-Cat:

$$\emptyset$$
, $1 = (\{*\}, \top)$, $E = (\{*\}, k)$, $V = (V, [-, -])$

Lax homomorphisms of quantales facilitate change-of-base functors:

$$\varphi: \mathcal{V} \to \mathcal{W}$$
 lax homomorphism $\Longrightarrow B_{\varphi}: \mathcal{V}\text{-Cat} \to \mathcal{W}\text{-Cat}, \quad (X, a) \mapsto (X, \varphi a)$
 $p: \mathcal{V} \to 2$ with $(p(v) = \top \iff k \le v) \Longrightarrow B_p: \mathcal{V}\text{-Cat} \to \text{Ord}$ with $(x \le y \iff k \le X(x, y))$

$$(X,a) \in \mathcal{V}\text{-Cat} \qquad \iff a \text{ is a monoid in the monoidal category } (\mathcal{V}\text{-Rel}(X,X),\leq,\cdot,1_X^\circ) \\ \iff 1_X^\circ \leq a, \qquad a \cdot a \leq a \\ \iff k \leq a(x,x), \quad a(x,y) \otimes a(y,z) \leq a(x,z) \\ \iff k \leq X(x,x), \quad X(x,y) \otimes X(y,z) \leq X(x,z)$$

$$\begin{array}{ll} f: X \to Y \text{ in } \mathcal{V}\text{-}\textbf{Cat} & \iff X(x,x') \leq Y(fx,fx') \\ f: (X,a) \to (Y,b) & \iff a \leq f^{\circ} \cdot b \cdot f_{\circ} \iff f_{\circ} \cdot a \leq b \cdot f_{\circ} \iff a \cdot f^{\circ} \leq f^{\circ} \cdot b \end{array}$$

Some prominent objects in V-Cat:

$$\emptyset$$
, $1 = (\{*\}, \top)$, $E = (\{*\}, k)$, $V = (V, [-, -])$

Lax homomorphisms of quantales facilitate change-of-base functors:

$$\varphi: \mathcal{V} \to \mathcal{W}$$
 lax homomorphism $\Longrightarrow B_{\varphi}: \mathcal{V}\text{-Cat} \to \mathcal{W}\text{-Cat}, \quad (X, a) \mapsto (X, \varphi a)$
 $p: \mathcal{V} \to 2$ with $(p(v) = \top \iff k \le v) \Longrightarrow B_p: \mathcal{V}\text{-Cat} \to \text{Ord}$ with $(x \le y \iff k \le X(x, y))$

$$(X,a) \in \mathcal{V}\text{-Cat} \qquad \iff a \text{ is a monoid in the monoidal category } (\mathcal{V}\text{-Rel}(X,X),\leq,\cdot,1_X^\circ) \\ \iff 1_X^\circ \leq a, \qquad a \cdot a \leq a \\ \iff k \leq a(x,x), \quad a(x,y) \otimes a(y,z) \leq a(x,z) \\ X \in \mathcal{V}\text{-Cat} \qquad \iff k \leq X(x,x), \quad X(x,y) \otimes X(y,z) \leq X(x,z)$$

$$\begin{array}{ll} f: X \to Y \text{ in } \mathcal{V}\text{-}\textbf{Cat} & \iff X(x,x') \leq Y(fx,fx') \\ f: (X,a) \to (Y,b) & \iff a \leq f^{\circ} \cdot b \cdot f_{\circ} \iff f_{\circ} \cdot a \leq b \cdot f_{\circ} \iff a \cdot f^{\circ} \leq f^{\circ} \cdot b \end{array}$$

Some prominent objects in V-Cat:

$$\emptyset, \quad \mathbf{1} = (\{*\}, \top), \quad E = (\{*\}, k), \quad \mathcal{V} = (\mathcal{V}, [\text{-}, \text{-}])$$

Lax homomorphisms of quantales facilitate change-of-base functors:

$$\varphi: \mathcal{V} \to \mathcal{W} \text{ lax homomorphism} \Longrightarrow B_{\varphi}: \mathcal{V}\text{-Cat} \to \mathcal{W}\text{-Cat}, \quad (X, a) \mapsto (X, \varphi a)$$

$$p: \mathcal{V} \to 2 \text{ with } (p(v) = \top \iff k \le v) \Longrightarrow B_p: \mathcal{V}\text{-Cat} \to \text{Ord with } (x \le y \iff k \le X(x, y))$$

$$(X,a) \in \mathcal{V}\text{-Cat} \qquad \iff a \text{ is a monoid in the monoidal category } (\mathcal{V}\text{-Rel}(X,X),\leq,\cdot,1_X^\circ) \\ \iff 1_X^\circ \leq a, \qquad a \cdot a \leq a \\ \iff k \leq a(x,x), \quad a(x,y) \otimes a(y,z) \leq a(x,z) \\ X \in \mathcal{V}\text{-Cat} \qquad \iff k \leq X(x,x), \quad X(x,y) \otimes X(y,z) \leq X(x,z)$$

$$\begin{array}{ll} f: X \to Y \text{ in } \mathcal{V}\text{-}\textbf{Cat} & \iff X(x,x') \leq Y(fx,fx') \\ f: (X,a) \to (Y,b) & \iff a \leq f^{\circ} \cdot b \cdot f_{\circ} \iff f_{\circ} \cdot a \leq b \cdot f_{\circ} \iff a \cdot f^{\circ} \leq f^{\circ} \cdot b \end{array}$$

Some prominent objects in V-Cat:

$$\emptyset$$
, $1 = (\{*\}, \top)$, $E = (\{*\}, k)$, $V = (V, [-, -])$

Lax homomorphisms of quantales facilitate change-of-base functors:

$$\varphi: \mathcal{V} \to \mathcal{W} \text{ lax homomorphism } \Longrightarrow B_{\varphi} \colon \mathcal{V}\text{-Cat} \to \mathcal{W}\text{-Cat}, \quad (X, a) \mapsto (X, \varphi a) \\ p: \mathcal{V} \to 2 \text{ with } (p(v) = \top \iff k \leq v) \Longrightarrow B_p: \mathcal{V}\text{-Cat} \to \text{Ord with } (x \leq y \iff k \leq X(x, y))$$

1-Cat = Set

2-Cat = Ord: preordered sets and monotone maps

$$[0,\infty]_+$$
-Cat = Met $\cong [0,1]_\times$ -Cat = ProbOrd: probabilistic (pre)ordered sets

$$[0,\infty]_{\text{max}}$$
-Cat = UMet $\cong [0,1]_{\text{min}}$ -Cat: (Lawvere) ultrametric spaces

$$[0,1]_{\oplus}$$
-Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

$$\Delta_{\times}$$
-Cat = ProbMet probabilistic (Lawvere) metric spaces $(X, p : X \times X \to \Delta)$,

with $p(x,y)(\alpha)$ to be interpreted as probability of " $d(x,y) < \alpha$ for a random metric on X"

$$(2 {>\!\!\!>} > [0,\infty]_+ {>\!\!\!>} > \Delta_\times) \qquad \Longrightarrow \qquad (\text{Ord} {>\!\!\!>} \text{Met} {>\!\!\!>} > \text{ProbMet})$$

$$\mathcal{P}(M,*,\eta)$$
-Cat $\ni (X,(\leq_{\alpha})_{\alpha\in M})$ with $x\leq_{\eta} x, (x\leq_{\alpha} y \& y\leq_{\beta} z\Longrightarrow x\leq_{\alpha*\beta} z)$

1-Cat = Set

2-Cat = Ord: preordered sets and monotone maps

$$[0,\infty]_+$$
-Cat = Met $\cong [0,1]_\times$ -Cat = ProbOrd: probabilistic (pre)ordered sets

$$[0,\infty]_{\sf max}$$
-Cat $=$ UMet \cong $[0,1]_{\sf min}$ -Cat: (Lawvere) ultrametric spaces

$$[0,1]_{\oplus}$$
-Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

$$\Delta_X$$
-Cat = ProbMet probabilistic (Lawvere) metric spaces $(X, p : X \times X \to \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X "

$$(2 {>\!\!\!\!>} > [0,\infty]_+ {>\!\!\!\!>} \Delta_\times) \qquad \Longrightarrow \qquad (\text{Ord} {>\!\!\!\!>} \text{Met} {>\!\!\!\!>} > \text{ProbMet})$$

$$\mathcal{P}(M, *, \eta)$$
-Cat $\ni (X, (\leq_{\alpha})_{\alpha \in M})$ with $x \leq_{\eta} x$, $(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z)$

- 1-Cat = Set
- 2-**Cat** = **Ord**: preordered sets and monotone maps

$$[0,\infty]_+$$
-Cat = Met $\cong [0,1]_\times$ -Cat = ProbOrd: probabilistic (pre)ordered sets

$$[0,\infty]_{\text{max}}$$
-Cat = UMet $\cong [0,1]_{\text{min}}$ -Cat: (Lawvere) ultrametric spaces

$$[0,1]_{\oplus}$$
-Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_X -Cat = ProbMet probabilistic (Lawvere) metric spaces $(X, p : X \times X \to \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

$$(2 {\longmapsto} [0, \infty]_+ {\longmapsto} \Delta_\times) \qquad \Longrightarrow \qquad (\text{Ord} {\longmapsto} \text{Met} {\longmapsto} \text{ProbMet})$$

$$\mathcal{P}(M,*,\eta)$$
-Cat $\ni (X,(\leq_{\alpha})_{\alpha\in M})$ with $X\leq_{\eta} X,$ $(X\leq_{\alpha} y \& y\leq_{\beta} z\Longrightarrow X\leq_{\alpha*\beta} z)$

- 1-Cat = Set
- 2-Cat = Ord: preordered sets and monotone maps

$$[0,\infty]_+$$
-Cat = Met $\cong [0,1]_\times$ -Cat = ProbOrd: probabilistic (pre)ordered sets

$$[0,\infty]_{\text{max}}\text{-}\textbf{Cat} = \textbf{UMet} \cong [0,1]_{\text{min}}\text{-}\textbf{Cat}$$
: (Lawvere) ultrametric spaces

$$[0,1]_{\oplus}$$
-Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_X -Cat = ProbMet probabilistic (Lawvere) metric spaces $(X, p : X \times X \to \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

$$(2 {\longmapsto} [0, \infty]_+ {\longmapsto} \Delta_\times) \qquad \Longrightarrow \qquad (\text{Ord} {\longmapsto} \text{Met} {\longmapsto} \text{ProbMet})$$

$$\mathcal{P}(M,*,\eta)$$
-Cat $\ni (X,(\leq_{\alpha})_{\alpha\in M})$ with $X\leq_{\eta} X,$ $(X\leq_{\alpha} y \& y\leq_{\beta} z\Longrightarrow X\leq_{\alpha*\beta} z)$

- 1-Cat = Set
- 2-**Cat** = **Ord**: preordered sets and monotone maps

$$[0,\infty]_+$$
-Cat = Met $\cong [0,1]_\times$ -Cat = ProbOrd: probabilistic (pre)ordered sets

$$[0,\infty]_{\text{max}} ext{-} ext{Cat} = ext{UMet}\cong [0,1]_{\text{min}} ext{-} ext{Cat} : (Lawvere) \ \text{ultrametric spaces}$$

$$[0,1]_{\oplus}$$
-Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_X -Cat = ProbMet probabilistic (Lawvere) metric spaces $(X, p: X \times X \to \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

$$(2 {>\!\!\!>} > [0,\infty]_+ {>\!\!\!>} > \Delta_\times) \qquad \Longrightarrow \qquad (\text{Ord} {>\!\!\!>} \text{Met} {>\!\!\!>} > \text{ProbMet})$$

$$\mathcal{P}(M, *, \eta)$$
-Cat $\ni (X, (\leq_{\alpha})_{\alpha \in M})$ with $x \leq_{\eta} x$, $(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z)$

- 1-Cat = Set
- 2-**Cat** = **Ord**: preordered sets and monotone maps

$$[0,\infty]_+$$
-Cat = Met $\cong [0,1]_\times$ -Cat = ProbOrd: probabilistic (pre)ordered sets

$$[0,\infty]_{\text{max}}$$
-Cat = UMet $\cong [0,1]_{\text{min}}$ -Cat: (Lawvere) ultrametric spaces

$$[0,1]_{\oplus}$$
-Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_{\times} -Cat = ProbMet probabilistic (Lawvere) metric spaces $(X, p : X \times X \to \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

$$(2 \longrightarrow [0, \infty]_{+} \longrightarrow \Delta_{\times}) \qquad \Longrightarrow \qquad (\text{Ord} \longrightarrow \text{Met} \longrightarrow \text{ProbMet})$$

$$\mathcal{P}(M,*,\eta)$$
-Cat $\ni (X,(\leq_{\alpha})_{\alpha\in M})$ with $X\leq_{\eta} X,$ $(X\leq_{\alpha} y \& y\leq_{\beta} z\Longrightarrow X\leq_{\alpha*\beta} z)$

- 1-Cat = Set
- 2-**Cat** = **Ord**: preordered sets and monotone maps

$$[0,\infty]_+$$
-Cat = Met $\cong [0,1]_\times$ -Cat = ProbOrd: probabilistic (pre)ordered sets

$$[0,\infty]_{\text{max}} ext{-} ext{Cat} = ext{UMet}\cong [0,1]_{\text{min}} ext{-} ext{Cat} : (Lawvere) \ \text{ultrametric spaces}$$

$$[0,1]_{\oplus}$$
-Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_{\times} -Cat = ProbMet probabilistic (Lawvere) metric spaces $(X, p : X \times X \to \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

$$(2 {>\!\!\!\!>} > [0,\infty]_+ {>\!\!\!\!>} > \Delta_\times) \qquad \Longrightarrow \qquad (\text{Ord} {>\!\!\!\!>} > \text{Met} {>\!\!\!\!>} > \text{ProbMet})$$

$$\mathcal{P}(M, *, \eta)$$
-Cat $\ni (X, (\leq_{\alpha})_{\alpha \in M})$ with $x \leq_{\eta} x$, $(x \leq_{\alpha} y \& y \leq_{\beta} z \Longrightarrow x \leq_{\alpha * \beta} z)$

- 1-Cat = Set
- 2-**Cat** = **Ord**: preordered sets and monotone maps

$$[0,\infty]_+$$
-Cat = Met $\cong [0,1]_\times$ -Cat = ProbOrd: probabilistic (pre)ordered sets

$$[0,\infty]_{\text{max}}$$
-Cat = UMet $\cong [0,1]_{\text{min}}$ -Cat: (Lawvere) ultrametric spaces

$$[0,1]_{\oplus}$$
-Cat = BMet $\cong [0,1]_{\odot}$ -Cat: bounded (Lawvere) metric spaces

 Δ_{\times} -Cat = ProbMet probabilistic (Lawvere) metric spaces $(X, p : X \times X \to \Delta)$, with $p(x, y)(\alpha)$ to be interpreted as probability of " $d(x, y) < \alpha$ for a random metric on X"

$$(2 {\longmapsto} [0, \infty]_+ {\longmapsto} \Delta_\times) \qquad \Longrightarrow \qquad (\text{Ord} {\longmapsto} \text{Met} {\longmapsto} \text{ProbMet})$$

$$\mathcal{P}(M,*,\eta)$$
-Cat $\ni (X,(\leq_{\alpha})_{\alpha\in M})$ with $x\leq_{\eta} x,$ $(x\leq_{\alpha} y \& y\leq_{\beta} z\Longrightarrow x\leq_{\alpha*\beta} z)$

 $\mathcal{V} ext{-}\mathbf{Cat}_X=(\mathrm{O}\!:\!\mathcal{V} ext{-}\mathbf{Cat} o\mathbf{Set})^{-1}X$ is a complete lattice, with \bigwedge as in $\mathcal{V} ext{-}\mathbf{Rel}(X,X), \perp=1_X^\circ$

Every $r \in \mathcal{V}$ -Rel(X, X) has a \mathcal{V} -Cat $_X$ -hull $\overline{r} \geq r$: $\overline{r} = \bigvee_{n \geq 0} r^n$.

O: V-Cat \to Set is a bifibration with complete fibres and, hence, a topological functor.

$$(f_i:(X,a) o (Y_i,b_i))_{i\in I}$$
 initial (= jointly cartesian) $\iff a=\bigwedge_{i\in I}f_i^\circ\cdot b_i\cdot (f_i)_{i\in I}$

$$(f_i:(X_i,a_i) o (Y,b))_{i\in I}$$
 final (= jointly cocartes'n) $\iff b = \overline{\bigvee_{i\in I} (f_i)_{\circ} \cdot a_i \cdot f_i^{\circ}}$

Consequently:

 $\mathcal{V}\text{-}\mathbf{Cat}_X = (O:\mathcal{V}\text{-}\mathbf{Cat} \to \mathbf{Set})^{-1}X$ is a complete lattice, with \bigwedge as in $\mathcal{V}\text{-}\mathbf{Rel}(X,X), \bot = \mathbf{1}_X^\circ$ Every $r \in \mathcal{V}\text{-}\mathbf{Rel}(X,X)$ has a $\mathcal{V}\text{-}\mathbf{Cat}_X$ -hull $\overline{r} \geq r$: $\overline{r} = \bigvee_{n \geq 0} r^n$.

O: V-Cat \to Set is a bifibration with complete fibres and, hence, a topological functor.

$$(f_i:(X,a) o (Y_i,b_i))_{i\in I}$$
 initial (= jointly cartesian) $\iff a=\bigwedge_{i\in I}f_i^\circ\cdot b_i\cdot (f_i)_\circ$

$$(f_i:(X_i,a_i) \to (Y,b))_{i \in I}$$
 final (= jointly cocartes'n) $\iff b = \overline{\bigvee_{i \in I} (f_i)_{\circ} \cdot a_i \cdot f_i^{\circ}}$

Consequently:

 \mathcal{V} -Cat $_X = (O: \mathcal{V}$ -Cat \to Set) ^{-1}X is a complete lattice, with \bigwedge as in \mathcal{V} -Rel(X,X), $\bot = 1_X^\circ$ Every $r \in \mathcal{V}$ -Rel(X,X) has a \mathcal{V} -Cat $_X$ -hull $\overline{r} > r$: $\overline{r} = \bigvee_{n \ge 0} r^n$.

O: V-Cat \to Set is a bifibration with complete fibres and, hence, a topological functor.

$$(f_i:(X,a) \to (Y_i,b_i))_{i \in I}$$
 initial (= jointly cartesian) $\iff a = \bigwedge_{i \in I} f_i^{\circ} \cdot b_i \cdot (f_i)_{\circ}$
 $(f_i:(X_i,a_i) \to (Y,b))_{i \in I}$ final (= jointly cocartes'n) $\iff b = \overline{\bigvee_{i \in I} (f_i)_{\circ} \cdot a_i \cdot f_i^{\circ}}$
Consequently:

 $\mathcal{V}\text{-}\mathbf{Cat}_X = (O:\mathcal{V}\text{-}\mathbf{Cat} \to \mathbf{Set})^{-1}X$ is a complete lattice, with \bigwedge as in $\mathcal{V}\text{-}\mathbf{Rel}(X,X), \bot = \mathbf{1}_X^{\circ}$ Every $r \in \mathcal{V}\text{-}\mathbf{Rel}(X,X)$ has a $\mathcal{V}\text{-}\mathbf{Cat}_X\text{-}\text{hull } \overline{r} \geq r$: $\overline{r} = \bigvee_{n \geq 0} r^n$.

 $O: \mathcal{V}\text{-Cat} \to \text{Set}$ is a bifibration with complete fibres and, hence, a topological functor.

$$(f_i:(X,a) o (Y_i,b_i))_{i\in I}$$
 initial (= jointly cartesian) $\iff a=\bigwedge_{i\in I}f_i^\circ\cdot b_i\cdot (f_i)_\circ$

$$(f_i:(X_i,a_i)\to (Y,b))_{i\in I}$$
 final (= jointly cocartes'n) $\iff b=\overline{\bigvee_{i\in I}(f_i)_{\circ}\cdot a_i\cdot f_i^{\circ}}$

Consequently

 $\mathcal{V} ext{-}\mathbf{Cat}$ is complete and cocomplete and O has both adjoints.

 \mathcal{V} -Cat $_X = (O: \mathcal{V}$ -Cat \to Set) ^{-1}X is a complete lattice, with \bigwedge as in \mathcal{V} -Rel(X,X), $\bot = 1_X^\circ$ Every $r \in \mathcal{V}$ -Rel(X,X) has a \mathcal{V} -Cat $_X$ -hull $\overline{r} > r$: $\overline{r} = \bigvee_{n \ge 0} r^n$.

 $O: \mathcal{V}$ -Cat \to Set is a bifibration with complete fibres and, hence, a topological functor.

$$(f_i:(X,a) o (Y_i,b_i))_{i\in I}$$
 initial (= jointly cartesian) $\iff a=\bigwedge_{i\in I}f_i^\circ\cdot b_i\cdot (f_i)_\circ$

$$(f_i:(X_i,a_i) \to (Y,b))_{i \in I}$$
 final (= jointly cocartes'n) $\iff b = \overline{\bigvee_{i \in I} (f_i)_{\circ} \cdot a_i \cdot f_i^{\circ}}$

Consequently:

2.7 V-Cat as a concrete category over Set

 \mathcal{V} -Cat $_X = (O:\mathcal{V}$ -Cat \to Set $)^{-1}X$ is a complete lattice, with \bigwedge as in \mathcal{V} -Rel $(X,X), \bot = 1_X^{\circ}$

Every $r \in \mathcal{V}$ -Rel(X, X) has a \mathcal{V} -Cat $_X$ -hull $\overline{r} \geq r$: $\overline{r} = \bigvee_{n \geq 0} r^n$.

O: V-Cat \to Set is a bifibration with complete fibres and, hence, a topological functor.

$$(f_i:(X,a) \to (Y_i,b_i))_{i \in I}$$
 initial (= jointly cartesian) $\iff a = \bigwedge_{i \in I} f_i^{\circ} \cdot b_i \cdot (f_i)_{\circ}$

$$(f_i:(X_i,a_i) o (Y,b))_{i\in I}$$
 final (= jointly cocartes'n) $\iff b=\overline{\bigvee_{i\in I}(f_i)_\circ\cdot a_i\cdot f_i^\circ}$

Consequently:

 \mathcal{V} -Cat is complete and cocomplete and O has both adjoints.

For $X, Y \in \mathcal{V}$ -Cat, consider $(ev_X : \mathcal{V}$ -Cat $(X, Y) \longrightarrow Y)_{X \in X}$ and put the initial structure on

$$[X, Y] := \mathcal{V}\text{-Cat}(X, Y): \qquad [X, Y](f, g) = \bigwedge_{x \in X} Y(fx, gx)$$
$$= \bigwedge_{x, x' \in X} [X(x, x'), Y(fx, gx')]$$

The induced (pre)order on [X, Y] is

$$f \leq g \iff \forall x \in X : k \leq Y(fx, gx) \iff \forall x \in X : fx \leq gx.$$

With its 2-cells given by \leq , V-Cat is thus a 2-category.

Adjunction in V-Cat:

$$(X \xrightarrow{f} Y) \dashv (Y \xleftarrow{g} X) \iff X(x, gy) = Y(fx, y) \iff g^{\circ} \cdot a = b \cdot f_{\circ}$$

Note: RHS forces f, g to be \mathcal{V} -functors and gives $f \dashv g$ in \mathbf{Ord} , i.e. $fg \leq 1_Y$ and $1_X \leq gf$ but $f \dashv g$ in \mathbf{Ord} secures $f \dashv g$ in \mathcal{V} -Cat only when f, g are actually \mathcal{V} -functors.

16/67

For $X, Y \in \mathcal{V}$ -Cat, consider $(ev_X : \mathcal{V}$ -Cat $(X, Y) \longrightarrow Y)_{X \in X}$ and put the initial structure on

$$[X, Y] := \mathcal{V}\text{-Cat}(X, Y): \qquad [X, Y](f, g) = \bigwedge_{x \in X} Y(fx, gx)$$
$$= \bigwedge_{x, x' \in X} [X(x, x'), Y(fx, gx')]$$

The induced (pre)order on [X, Y] is

$$f \leq g \iff \forall x \in X : k \leq Y(fx, gx) \iff \forall x \in X : fx \leq gx.$$

With its 2-cells given by \leq , \mathcal{V} -Cat is thus a 2-category.

Adjunction in V-Cat

$$(X \xrightarrow{f} Y) \dashv (Y \xleftarrow{g} X) \iff X(x, gy) = Y(fx, y) \iff g^{\circ} \cdot a = b \cdot f_{\circ}$$

Note: RHS *forces* f, g to be \mathcal{V} -functors and gives $f \dashv g$ in **Ord**, *i.e.* $fg \leq 1_Y$ and $1_X \leq gf$, but $f \dashv g$ in **Ord** secures $f \dashv g$ in \mathcal{V} -**Cat** only when f, g are actually \mathcal{V} -functors.

For $X, Y \in \mathcal{V}$ -Cat, consider $(ev_X : \mathcal{V}$ -Cat $(X, Y) \longrightarrow Y)_{X \in X}$ and put the initial structure on

$$[X, Y] := \mathcal{V}\text{-Cat}(X, Y): \qquad [X, Y](f, g) = \bigwedge_{x \in X} Y(fx, gx)$$
$$= \bigwedge_{x, x' \in X} [X(x, x'), Y(fx, gx')]$$

The induced (pre)order on [X, Y] is

$$f \leq g \iff \forall x \in X : k \leq Y(fx, gx) \iff \forall x \in X : fx \leq gx.$$

With its 2-cells given by \leq , V-**Cat** is thus a 2-category.

Adjunction in V-Cat:

$$(X \xrightarrow{f} Y) \dashv (Y \xleftarrow{g} X) \iff X(x, gy) = Y(fx, y) \iff g^{\circ} \cdot a = b \cdot f_{\circ}$$

Note: RHS *forces* f, g to be \mathcal{V} -functors and gives $f \dashv g$ in **Ord**, *i.e.* $fg \leq 1_Y$ and $1_X \leq gf$, but $f \dashv g$ in **Ord** secures $f \dashv g$ in \mathcal{V} -**Cat** only when f, g are actually \mathcal{V} -functors.

For $X, Y \in \mathcal{V}$ -Cat, consider $(ev_X : \mathcal{V}$ -Cat $(X, Y) \longrightarrow Y)_{X \in X}$ and put the initial structure on

$$[X, Y] := \mathcal{V}\text{-Cat}(X, Y): \qquad [X, Y](f, g) = \bigwedge_{x \in X} Y(fx, gx)$$
$$= \bigwedge_{x, x' \in X} [X(x, x'), Y(fx, gx')]$$

The induced (pre)order on [X, Y] is

$$f \leq g \iff \forall x \in X : k \leq Y(fx, gx) \iff \forall x \in X : fx \leq gx.$$

With its 2-cells given by \leq , V-**Cat** is thus a 2-category.

Adjunction in V-Cat:

$$(X \xrightarrow{f} Y) \dashv (Y \xleftarrow{g} X) \iff X(x, gy) = Y(fx, y) \iff g^{\circ} \cdot a = b \cdot f_{\circ}$$

Note: RHS *forces* f, g to be \mathcal{V} -functors and gives $f \dashv g$ in **Ord**, *i.e.* $fg \leq 1_Y$ and $1_X \leq gf$, but $f \dashv g$ in **Ord** secures $f \dashv g$ in \mathcal{V} -**Cat** only when f, g are actually \mathcal{V} -functors.

16/67

2.9 V-Cat as a symmetric monoidal-closed category. Yoneda

$$X\otimes Y((x,y),(x',y'))=X(x,x')\otimes Y(y,y'),\quad E(*,*)=k$$

Enriched Universal Property: $[Z \otimes X, Y] \cong [Z, [X, Y]]$

$$[X, \mathcal{V}] \otimes X \xrightarrow{\varepsilon} \mathcal{V}$$

$$\mathbf{y}_{X^{\mathrm{op}} \otimes 1_{X}} \downarrow \qquad \qquad X^{\mathrm{op}} \otimes X$$

$$\mathbf{y}_X: X \longrightarrow \mathcal{P}_{\mathcal{V}}X = [X^{\mathrm{op}}, \mathcal{V}], y \longmapsto X(-, y), \quad \mathbf{y}_X^{\sharp}: X \longrightarrow \mathcal{P}_{\mathcal{V}}^{\sharp}X = [X, \mathcal{V}]^{\mathrm{op}}, x \longmapsto X(x, -)$$

$$\mathcal{P}_{\mathcal{V}}X(\mathbf{y}_Xy,\sigma) = \sigma y, \qquad \mathcal{P}_{\mathcal{V}}^{\sharp}X(\tau,\mathbf{y}_X^{\sharp}x) = \tau x$$

2.9 V-Cat as a symmetric monoidal-closed category, Yoneda

$$X\otimes Y((x,y),(x',y'))=X(x,x')\otimes Y(y,y'),\quad E(*,*)=k$$

Enriched Universal Property: $[Z \otimes X, Y] \cong [Z, [X, Y]]$

$$[X,Y] \otimes X \xrightarrow{\varepsilon} Y \qquad [X,\mathcal{V}] \otimes X \xrightarrow{\varepsilon} \mathcal{V}$$

$$f^{\sharp \otimes 1_{X} \mid} \qquad f \qquad Y_{X^{\mathrm{op}} \otimes 1_{X} \mid} \qquad X^{(-,-)}$$

$$Z \otimes X \qquad X^{\mathrm{op}} \otimes X$$

Yoneda V-functor:

$$\mathbf{y}_X:X\longrightarrow\mathcal{P}_\mathcal{V}X=[X^{\mathrm{op}},\mathcal{V}],y\longmapsto X(-,y),\quad \mathbf{y}_X^\sharp:X\longrightarrow\mathcal{P}_\mathcal{V}^\sharp X=[X,\mathcal{V}]^{\mathrm{op}},x\longmapsto X(x,-)$$

Yoneda Lemma

$$\mathcal{P}_{\mathcal{V}}X(\mathbf{y}_Xy,\sigma) = \sigma y, \qquad \mathcal{P}_{\mathcal{V}}^{\sharp}X(\tau,\mathbf{y}_X^{\sharp}x) = \tau x$$

2.9 V-Cat as a symmetric monoidal-closed category. Yoneda

$$X\otimes Y((x,y),(x',y'))=X(x,x')\otimes Y(y,y'),\quad E(*,*)=k$$

Enriched Universal Property: $[Z \otimes X, Y] \cong [Z, [X, Y]]$

$$[X, \mathcal{V}] \otimes X \xrightarrow{\varepsilon} \mathcal{V}$$

$$y_{X^{\mathrm{op}} \otimes 1_{X}} \downarrow \qquad \qquad X^{(-,-)}$$

$$X^{\mathrm{op}} \otimes X$$

Yoneda V-functor:

$$\mathbf{y}_X:X\longrightarrow \mathcal{P}_\mathcal{V}X=[X^\mathrm{op},\mathcal{V}],y\longmapsto X(-,y),\quad \mathbf{y}_X^\sharp:X\longrightarrow \mathcal{P}_\mathcal{V}^\sharp X=[X,\mathcal{V}]^\mathrm{op},x\longmapsto X(x,-)$$

Yoneda Lemma:

$$\mathcal{P}_{\mathcal{V}}X(\mathbf{y}_Xy,\sigma)=\sigma y, \qquad \mathcal{P}_{\mathcal{V}}^{\sharp}X(\tau,\mathbf{y}_X^{\sharp}x)=\tau x$$

Slogan: function/relation = functor/distributor

For $\mathcal{V} = [0, \infty]_+$, think of them as "compatible one-way metrics" between two spaces.

Generally

$$(X, a) \xrightarrow{\rho} (Y, b) \iff b \cdot \rho \cdot a \leq \rho$$

$$\iff X(x', x) \otimes \rho(x, y) \otimes Y(y, y') \leq \rho(x', y')$$

$$\iff X^{\text{op}}(x, x') \otimes Y(y, y') \leq [\rho(x, y), \rho(x', y')]$$

$$\iff \rho : X^{\text{op}} \otimes Y \to \mathcal{V} \text{ is a } \mathcal{V}\text{-functor}$$

V-distributors are closed under V-relational composition and under \bigwedge, \bigvee formed in V-Rel.

$$\mathcal{V}$$
-Dist: objects are \mathcal{V} -categories $X=(X,a)$; identity distributor on X : $1_X^*=(X\stackrel{a}{\longrightarrow}X)$

V-Dist is Sup-enriched (a quantaloid) AND also (V-Cat)-enriched:

$$\mathcal{V}\text{-Dist}(X,Y) = [X^{\mathrm{op}} \otimes Y, \mathcal{V}], \qquad \mathcal{V}\text{-Dist}(X,Y) \otimes \mathcal{V}\text{-Dist}(Y,Z) \longrightarrow \mathcal{V}\text{-Dist}(X,Z)$$

Slogan: function/relation = functor/distributor

For $\mathcal{V}=[0,\infty]_+$, think of them as "compatible one-way metrics" between two spaces.

Generally:

$$(X, a) \stackrel{\rho}{\longrightarrow} (Y, b) \iff b \cdot \rho \cdot a \leq \rho$$

$$\iff X(x', x) \otimes \rho(x, y) \otimes Y(y, y') \leq \rho(x', y')$$

$$\iff X^{\text{op}}(x, x') \otimes Y(y, y') \leq [\rho(x, y), \rho(x', y')]$$

$$\iff \rho : X^{\text{op}} \otimes Y \to \mathcal{V} \text{ is a } \mathcal{V}\text{-functor}$$

V-distributors are closed under V-relational composition and under \bigwedge, \bigvee formed in V-Rel.

$$\mathcal{V}$$
-Dist: objects are \mathcal{V} -categories $X=(X,a)$; identity distributor on X : $1_X^*=(X\stackrel{a}{\longrightarrow}X)$

V-Dist is Sup-enriched (a quantaloid) AND also (V-Cat)-enriched

$$\mathcal{V}\text{-Dist}(X,Y) = [X^{\mathrm{op}} \otimes Y, \mathcal{V}], \qquad \mathcal{V}\text{-Dist}(X,Y) \otimes \mathcal{V}\text{-Dist}(Y,Z) \longrightarrow \mathcal{V}\text{-Dist}(X,Z)$$

Slogan: function/relation = functor/distributor

For $\mathcal{V} = [0, \infty]_+$, think of them as "compatible one-way metrics" between two spaces.

Generally:

$$(X, a) \stackrel{\rho}{\longrightarrow} (Y, b) \iff b \cdot \rho \cdot a \leq \rho$$

$$\iff X(x', x) \otimes \rho(x, y) \otimes Y(y, y') \leq \rho(x', y')$$

$$\iff X^{\text{op}}(x, x') \otimes Y(y, y') \leq [\rho(x, y), \rho(x', y')]$$

$$\iff \rho : X^{\text{op}} \otimes Y \to \mathcal{V} \text{ is a } \mathcal{V}\text{-functor}$$

 \mathcal{V} -distributors are closed under \mathcal{V} -relational composition and under \bigwedge , \bigvee formed in \mathcal{V} -Rel.

$$\mathcal{V}$$
-**Dist**: objects are \mathcal{V} -categories $X=(X,a)$; identity distributor on X : $1_X^*=(X\stackrel{a}{\longrightarrow}X)$

V-Dist is Sup-enriched (a quantaloid) AND also (V-Cat)-enriched

$$\mathcal{V}\text{-Dist}(X,Y) = [X^{\mathrm{op}} \otimes Y, \mathcal{V}], \qquad \mathcal{V}\text{-Dist}(X,Y) \otimes \mathcal{V}\text{-Dist}(Y,Z) \longrightarrow \mathcal{V}\text{-Dist}(X,Z)$$

Slogan: function/relation = functor/distributor

For $\mathcal{V}=[0,\infty]_+$, think of them as "compatible one-way metrics" between two spaces.

Generally:

$$(X, a) \stackrel{\rho}{\longrightarrow} (Y, b) \iff b \cdot \rho \cdot a \leq \rho$$

$$\iff X(x', x) \otimes \rho(x, y) \otimes Y(y, y') \leq \rho(x', y')$$

$$\iff X^{\text{op}}(x, x') \otimes Y(y, y') \leq [\rho(x, y), \rho(x', y')]$$

$$\iff \rho : X^{\text{op}} \otimes Y \to \mathcal{V} \text{ is a } \mathcal{V}\text{-functor}$$

 \mathcal{V} -distributors are closed under \mathcal{V} -relational composition and under \bigwedge,\bigvee formed in \mathcal{V} -Rel.

$$\mathcal{V}$$
-Dist: objects are \mathcal{V} -categories $X=(X,a)$; identity distributor on X : $1_X^*=(X\stackrel{a}{\longrightarrow}X)$

V-**Dist** is **Sup**-enriched (a quantaloid) AND also (V-**Cat**)-enriched:

$$\mathcal{V} ext{-Dist}(X,Y) = [X^{\operatorname{op}} \otimes Y, \mathcal{V}], \qquad \mathcal{V} ext{-Dist}(X,Y) \otimes \mathcal{V} ext{-Dist}(Y,Z) \longrightarrow \mathcal{V} ext{-Dist}(X,Z)$$

$$(X,a) \xrightarrow{f} (Y,b) \implies X \xrightarrow{f_* = b \cdot f_o} Y, \quad Y \xrightarrow{f^* = f^o \cdot b} X, \quad f_* \dashv f^* \text{ in } \mathcal{V}\text{-Dist}^{co}$$

$$(-)_* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{co} \qquad (-)^* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{op}$$

$$f \dashv g \iff f_* = g^* \iff g^* \dashv f^* \iff g_* \dashv f_*$$

 \mathcal{V} -distributors are closed under the formation of extensions and liftings in \mathcal{V} -Rel:

$$V$$
-Dist $(Y, Z)(\sigma, [\rho, \tau]) = V$ -Dist $(X, Z)(\sigma \cdot \rho, \tau) = V$ -Dist $(X, Y)(\rho, [\sigma, \tau])$

 \mathcal{V} -**Dist** is symmetric monoidal: $\rho \otimes \varphi : X \otimes S \to Y \otimes T$

 $\rho\otimes\varphi\left((x,s),(y,t)\right)=\rho(x,y)\otimes\varphi(s,t),\quad \text{for all } s\in S_{2}$

$$(X,a) \xrightarrow{f} (Y,b) \implies X \xrightarrow{f_* = b \cdot f_o} Y, \quad Y \xrightarrow{f^* = f^o \cdot b} X, \qquad f_* \dashv f^* \text{ in } \mathcal{V}\text{-Dist}$$

$$(-)_* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{co} \qquad (-)^* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{op}$$

$$f \dashv g \iff f_* = g^* \iff g^* \dashv f^* \iff g_* \dashv f_*$$

V-distributors are closed under the formation of extensions and liftings in V-Rel:

$$V$$
-Dist $(Y, Z)(\sigma, [\rho, \tau]) = V$ -Dist $(X, Z)(\sigma \cdot \rho, \tau) = V$ -Dist $(X, Y)(\rho, [\sigma, \tau])$

 $\mathcal{V} ext{-}\mathbf{Dist}$ is symmetric monoidal: $ho\otimes \varphi:X\otimes S o Y\otimes T$

 $\rho\otimes\varphi\left((x,s),(y,t)\right)=\rho(x,y)\otimes\varphi(s,t),\quad\text{for all }s\in\mathbb{R}$

$$(X,a) \xrightarrow{f} (Y,b) \implies X \xrightarrow{f_* = b \cdot f_o} Y, \quad Y \xrightarrow{f^* = f^o \cdot b} X, \quad f_* \dashv f^* \text{ in } \mathcal{V}\text{-Dist}$$

$$(-)_* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{co} \qquad (-)^* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{op}$$

$$f\dashv g\iff f_*=g^*\iff g^*\dashv f^*\iff g_*\dashv f_*$$

V-distributors are closed under the formation of extensions and liftings in V-**Rel**:

"extension of τ along ρ " Z $Y \stackrel{\sigma}{\longrightarrow} Z$ "lifting of τ along σ " $X \stackrel{>}{\longrightarrow} Y$ $X \stackrel{>}{\longrightarrow} Y$

$$V$$
-Dist $(Y, Z)(\sigma, [\rho, \tau]) = V$ -Dist $(X, Z)(\sigma \cdot \rho, \tau) = V$ -Dist $(X, Y)(\rho, [\sigma, \tau])$

 $\mathcal{V}\text{-}\textbf{Dist} \text{ is symmetric monoidal: } \rho\otimes\varphi:X\otimes\mathcal{S}\to Y\otimes\mathcal{T}$

$$(X,a) \xrightarrow{f} (Y,b) \implies X \xrightarrow{f_* = b \cdot f_o} Y, \quad Y \xrightarrow{f^* = f^o \cdot b} X, \quad f_* \dashv f^* \text{ in } \mathcal{V}\text{-Dist}$$

$$(-)_* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{co} \qquad (-)^* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{op}$$

$$f \dashv g \iff f_* = g^* \iff g^* \dashv f^* \iff g_* \dashv f_*$$

 \mathcal{V} -distributors are closed under the formation of extensions and liftings in \mathcal{V} -**Rel**:

"extension of
$$\tau$$
 along ρ " Z $Y \stackrel{\sigma}{\longrightarrow} Z$ "lifting of τ along σ " $X \stackrel{}{\longrightarrow} Y$ $X \stackrel{}{\longrightarrow} Y$

$$\mathcal{V}$$
-Dist $(Y,Z)(\sigma,[\rho,\tau]) = \mathcal{V}$ -Dist $(X,Z)(\sigma \cdot \rho,\tau) = \mathcal{V}$ -Dist $(X,Y)(\rho,[\sigma,\tau])$

 $\mathcal{V}\text{-}\textbf{Dist} \text{ is symmetric monoidal: } \rho\otimes\varphi:X\otimes S\to Y\otimes T$

$$(X,a) \xrightarrow{f} (Y,b) \implies X \xrightarrow{f_* = b \cdot f_o} Y, \quad Y \xrightarrow{f^* = f^o \cdot b} X, \quad f_* \dashv f^* \text{ in } \mathcal{V}\text{-Dist}$$

$$(-)_* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{co} \qquad (-)^* : \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Dist}^{op}$$

 $f \dashv a \iff f_* = a^* \iff a^* \dashv f^* \iff a_* \dashv f_*$

 \mathcal{V} -distributors are closed under the formation of extensions and liftings in \mathcal{V} -**Rel**:

"extension of
$$\tau$$
 along ρ " Z $Y \stackrel{\sigma}{\longrightarrow} Z$ "lifting of τ along σ " $X \stackrel{>}{\longrightarrow} Y$ $X \stackrel{>}{\longrightarrow} Y$

$$\mathcal{V}$$
-Dist $(Y, Z)(\sigma, [\rho, \tau]) = \mathcal{V}$ -Dist $(X, Z)(\sigma \cdot \rho, \tau) = \mathcal{V}$ -Dist $(X, Y)(\rho, [\sigma, \tau])$

 \mathcal{V} -**Dist** is symmetric monoidal: $\rho \otimes \varphi : X \otimes S \rightarrow Y \otimes T$

$$\rho \otimes \varphi ((x,s),(y,t)) = \rho(x,y) \otimes \varphi(s,t)$$

$$\mathcal{V} ext{-Dist}(X,Y) = [X^{\operatorname{op}} \otimes Y, \mathcal{V}] \cong [Y, \mathcal{P}_{\mathcal{V}}X] \cong [X^{\operatorname{op}}, [Y, \mathcal{V}]] \cong [X, \mathcal{P}_{\mathcal{V}}^{\sharp}Y]^{\operatorname{op}}$$

$$\mathcal{P}_{\mathcal{V}}X \cong \mathcal{V}\text{-Dist}(X,E)$$
 $\mathcal{P}_{\mathcal{V}}^{\sharp}Y \cong (\mathcal{V}\text{-Dist}(E,Y))^{\operatorname{op}}$

The Fundamental Presheaf Adjunction: V-Dist $^{op} \stackrel{(-)^*}{=} V$ -Cat

For
$$X \stackrel{\rho}{\longrightarrow} Y$$
: $\mathcal{P}_{\mathcal{V}}\rho : \mathcal{P}_{\mathcal{V}}Y \longrightarrow \mathcal{P}_{\mathcal{V}}X$, $(Y \stackrel{\sigma}{\longrightarrow} E) \longmapsto (X \stackrel{\sigma \cdot \rho}{\longrightarrow} E)$
 $(\mathcal{P}_{\mathcal{V}}\rho)(\sigma)(x) = \bigvee_{y \in Y} \rho(x,y) \otimes \sigma(y)$

adjunction units: $\mathbf{y}_X: X \longrightarrow \mathcal{P}_{\mathcal{V}}X$, adjunction counits: $(\mathbf{y}_X)_*: X \longrightarrow \mathcal{P}_{\mathcal{V}}X$

$$\mathcal{V} ext{-Dist}(X,Y) = [X^{\operatorname{op}} \otimes Y, \mathcal{V}] \cong [Y, \mathcal{P}_{\mathcal{V}}X] \cong [X^{\operatorname{op}}, [Y, \mathcal{V}]] \cong [X, \mathcal{P}_{\mathcal{V}}^{\sharp}Y]^{\operatorname{op}}$$

$$\mathcal{P}_{\mathcal{V}}X\cong\mathcal{V} ext{-Dist}(X,E)\qquad \mathcal{P}_{\mathcal{V}}^{\sharp}Y\cong(\mathcal{V} ext{-Dist}(E,Y))^{\operatorname{op}}$$

The Fundamental Presheaf Adjunction: V-Distop \(\psi \) \(\psi \

For
$$X \stackrel{\rho}{\longrightarrow} Y$$
: $\mathcal{P}_{\mathcal{V}}\rho : \mathcal{P}_{\mathcal{V}}Y \longrightarrow \mathcal{P}_{\mathcal{V}}X$, $(Y \stackrel{\sigma}{\longrightarrow} E) \longmapsto (X \stackrel{\sigma \cdot \rho}{\longrightarrow} E)$
 $(\mathcal{P}_{\mathcal{V}}\rho)(\sigma)(x) = \bigvee_{y \in Y} \rho(x,y) \otimes \sigma(y)$

adjunction units: $\mathbf{y}_X: X \longrightarrow \mathcal{P}_{\mathcal{V}}X$, adjunction counits: $(\mathbf{y}_X)_*: X \longrightarrow \mathcal{P}_{\mathcal{V}}X$

$$\mathcal{V} ext{-Dist}(X,Y) = [X^{\operatorname{op}} \otimes Y, \mathcal{V}] \cong [Y, \mathcal{P}_{\mathcal{V}}X] \cong [X^{\operatorname{op}}, [Y, \mathcal{V}]] \cong [X, \mathcal{P}_{\mathcal{V}}^{\sharp}Y]^{\operatorname{op}}$$

$$\mathcal{P}_{\mathcal{V}}X \cong \mathcal{V}\text{-Dist}(X,E) \qquad \mathcal{P}_{\mathcal{V}}^{\sharp}Y \cong (\mathcal{V}\text{-Dist}(E,Y))^{\mathrm{op}}$$

The Fundamental Presheaf Adjunction: V-**Dist**^{op} $\stackrel{(-)^*}{=} V$ -**Cat** $\mathcal{P}_{\mathcal{V}} \cong \mathcal{V}\text{-Dist}(-.F)$

For
$$X \stackrel{\rho}{\longrightarrow} Y$$
: $\mathcal{P}_{\mathcal{V}} \rho : \mathcal{P}_{\mathcal{V}} Y \longrightarrow \mathcal{P}_{\mathcal{V}} X$, $(Y \stackrel{\sigma}{\longrightarrow} E) \longmapsto (X \stackrel{\sigma \cdot \rho}{\longrightarrow} E)$
 $(\mathcal{P}_{\mathcal{V}} \rho)(\sigma)(x) = \bigvee_{y \in Y} \rho(x, y) \otimes \sigma(y)$

adjunction units: $\mathbf{y}_X: X \longrightarrow \mathcal{P}_{\mathcal{V}}X$, adjunction counits: $(\mathbf{y}_X)_*: X \longrightarrow \mathcal{P}_{\mathcal{V}}X$

$$\mathcal{V} ext{-Dist}(X,Y) = [X^{\operatorname{op}} \otimes Y, \mathcal{V}] \cong [Y, \mathcal{P}_{\mathcal{V}}X] \cong [X^{\operatorname{op}}, [Y, \mathcal{V}]] \cong [X, \mathcal{P}_{\mathcal{V}}^{\sharp}Y]^{\operatorname{op}}$$

$$\mathcal{P}_{\mathcal{V}}X\cong\mathcal{V} ext{-Dist}(X,E)\qquad \mathcal{P}_{\mathcal{V}}^{\sharp}Y\cong(\mathcal{V} ext{-Dist}(E,Y))^{\operatorname{op}}$$

The Fundamental Presheaf Adjunction: \mathcal{V} -Dist $^{\mathrm{op}} \xrightarrow{(-)^*} \mathcal{V}$ -Cat \mathcal{V} -Dist $^{\mathrm{op}} \xrightarrow{\mathcal{V}}$ -Dist $^$

For
$$X \stackrel{\rho}{\longrightarrow} Y$$
: $\mathcal{P}_{\mathcal{V}}\rho : \mathcal{P}_{\mathcal{V}}Y \longrightarrow \mathcal{P}_{\mathcal{V}}X$, $(Y \stackrel{\sigma}{\longrightarrow} E) \longmapsto (X \stackrel{\sigma \cdot \rho}{\longrightarrow} E)$
 $(\mathcal{P}_{\mathcal{V}}\rho)(\sigma)(x) = \bigvee_{y \in Y} \rho(x,y) \otimes \sigma(y)$

adjunction units: $\mathbf{y}_X : X \longrightarrow \mathcal{P}_{\mathcal{V}} X$,

adjunction counits: $(\mathbf{y}_X)_* : X \longrightarrow \mathcal{P}_{\mathcal{V}} X$

$$\mathcal{P}: \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Cat}, \quad (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*)$$
$$(\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x$$

$$\mathbf{s}_X : \mathcal{PP}X \longrightarrow \mathcal{P}X$$
 $\mathbf{s}_X(\Sigma) = \Sigma \cdot (\mathbf{y}_X)_*, \quad \mathbf{s}_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\nu,X}} \Sigma(\sigma) \otimes \sigma(x)$

 $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \iff \mathcal{P}f \leq \mathcal{P}g)$

$$\mathcal{V}\text{-Dist}^{\mathrm{op}} \xrightarrow{\begin{subarray}{c} (-)^* \\ \bot \\ \mathcal{P}_{\mathcal{V}} \cong \mathcal{V}\text{-Dist}(-,E) \end{subarray}} \mathcal{V}\text{-Cat} \xrightarrow{\mathrm{d}(\mathrm{iscrete})} \mathbf{Set}$$

$$\begin{array}{ccc} \mathcal{P}_{\mathrm{d}} : \mathbf{Set} \longrightarrow \mathbf{Set} & (f: X \to Y) \longmapsto (\mathcal{P}_{\mathrm{d}} f: \mathcal{V}^X \to \mathcal{V}^Y, \ \sigma \mapsto \sigma \cdot f^{\circ}) \\ & (\mathcal{P}_{\mathrm{d}} f)(\sigma)(y) = \bigvee_{x \in f^{-1} y} \sigma(x) \\ & (\mathbf{y}_{\mathrm{d}})_X : X \longrightarrow \mathcal{P}_{\mathrm{d}} X & (\mathbf{y}_{\mathrm{d}})_X(y) = \mathbf{y}_{X_{\mathrm{d}}}(y) = \mathbf{1}_{Y}^{\circ}(-, y) \end{array}$$

$$(\mathbf{s}_{\mathrm{d}})_{X}: \mathcal{P}_{\mathrm{d}}\mathcal{P}_{\mathrm{d}}X \to \mathcal{P}_{\mathrm{d}}X \quad (\mathbf{s}_{\mathrm{d}})_{X}(\Sigma) = \Sigma \cdot (\mathbf{y}_{X_{\mathrm{d}}})_{*}, \quad (\mathbf{s}_{\mathrm{d}})_{X}(\Sigma)(X) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(X)$$

$$\mathcal{P}: \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Cat}, \quad (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*)$$
$$(\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x$$

$$\mathbf{s}_X : \mathcal{PPX} \longrightarrow \mathcal{PX}$$
 $\mathbf{s}_X(\Sigma) = \Sigma \cdot (\mathbf{y}_X)_*, \quad \mathbf{s}_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}}X} \Sigma(\sigma) \otimes \sigma(x)$

 $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \iff \mathcal{P}f \leq \mathcal{P}g)$

$$\mathcal{V}\text{-Dist}^{\mathrm{op}} \xrightarrow{\bot} \mathcal{V}\text{-Cat} \xrightarrow{\mathrm{d(iscrete)}} \mathbf{Set}$$

$$\mathcal{V}\text{-Dist}^{\mathrm{op}} \xrightarrow{\bot} \mathcal{V}\text{-Cat} \xrightarrow{\mathrm{d}} \mathbf{Set}$$

$$\begin{array}{ccc} \mathcal{P}_{d}: \textbf{Set} \longrightarrow \textbf{Set} & (f: X \to Y) \longmapsto (\mathcal{P}_{d}f: \mathcal{V}^{X} \to \mathcal{V}^{Y}, \ \sigma \mapsto \sigma \cdot f^{\circ}) \\ & (\mathcal{P}_{d}f)(\sigma)(y) = \bigvee_{x \in f^{-1}y} \sigma(x) \\ & (\textbf{v}_{d})_{X}: X \longrightarrow \mathcal{P}_{d}X & (\textbf{v}_{d})_{X}(y) = \textbf{v}_{X_{0}}(y) = \textbf{1}_{Y}^{\circ}(-, y) \end{array}$$

$$(\mathbf{s}_{\mathrm{d}})_{X} : \mathcal{P}_{\mathrm{d}}\mathcal{P}_{\mathrm{d}}X \to \mathcal{P}_{\mathrm{d}}X$$

$$(\mathbf{s}_{\mathrm{d}})_{X}(\Sigma) = \Sigma \cdot (\mathbf{y}_{X_{\mathrm{d}}})_{*},$$

$$(\mathbf{s}_{\mathrm{d}})_{X}(\Sigma)(X) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(X)$$

$$(\mathbf{s}_{\mathrm{d}})_{X}(\Sigma)(X) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(X)$$

$$\mathcal{P}: \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Cat}, \quad (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*)$$

$$(\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x$$

$$\mathbf{s}_X: \mathcal{PP}X \longrightarrow \mathcal{P}X$$
 $\mathbf{s}_X(\Sigma) = \Sigma \cdot (\mathbf{y}_X)_*, \quad \mathbf{s}_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}}X} \Sigma(\sigma) \otimes \sigma(x)$

 $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \iff \mathcal{P}f \leq \mathcal{P}g)$

$$\mathcal{V} ext{-Dist}^{\mathrm{op}} \xrightarrow{\begin{subarray}{c} (-)^* \\ \bot \\ \mathcal{P}_{\mathcal{V}} \cong \mathcal{V} ext{-Dist}(-,\mathcal{E}) \end{subarray}} \mathcal{V} ext{-Cat} \xrightarrow{\mathrm{d(iscrete)}} \mathbf{Set}$$

$$\begin{array}{ccc} \mathcal{P}_{d}: \textbf{Set} \longrightarrow \textbf{Set} & (f: X \to Y) \longmapsto (\mathcal{P}_{d}f: \mathcal{V}^{X} \to \mathcal{V}^{Y}, \ \sigma \mapsto \sigma \cdot f^{\circ}) \\ & (\mathcal{P}_{d}f)(\sigma)(y) = \bigvee_{x \in f^{-1}y} \sigma(x) \\ & (\textbf{v}_{d})_{X}: X \longrightarrow \mathcal{P}_{d}X & (\textbf{v}_{d})_{X}(y) = \textbf{v}_{X_{0}}(y) = \textbf{1}_{Y}^{\circ}(-, y) \end{array}$$

$$(\mathbf{s}_{\mathrm{d}})_{X} : \mathcal{P}_{\mathrm{d}}\mathcal{P}_{\mathrm{d}}X \to \mathcal{P}_{\mathrm{d}}X$$

$$(\mathbf{s}_{\mathrm{d}})_{X}(\Sigma) = \sum \cdot (\mathbf{y}_{X_{\mathrm{d}}})_{*},$$

$$(\mathbf{s}_{\mathrm{d}})_{X}(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{V}_{X}} \sum_{\sigma \in \mathcal{V}_{X}} (\sigma) \otimes \sigma(x)$$

$$\mathcal{P}: \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Cat}, \quad (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*)$$
$$(\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x$$

$$\mathbf{s}_X : \mathcal{PPX} \longrightarrow \mathcal{PX}$$
 $\mathbf{s}_X(\Sigma) = \Sigma \cdot (\mathbf{y}_X)_*, \quad \mathbf{s}_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}}X} \Sigma(\sigma) \otimes \sigma(x)$

 $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \iff \mathcal{P}f \leq \mathcal{P}g)$

$$\mathcal{V}\text{-Dist}^{\mathrm{op}} \underbrace{\overset{(-)^*}{\bot}}_{\mathcal{P}_{\mathcal{V}} \cong \mathcal{V}\text{-Dist}(-,E)} \mathcal{V}\text{-Cat} \underbrace{\overset{\mathrm{d}(\mathrm{iscrete})}{\bigcirc}}_{\mathrm{O}} \mathbf{Set}$$

$$\begin{array}{ll} \mathcal{P}_{d}: \textbf{Set} \longrightarrow \textbf{Set} & (f: X \rightarrow Y) \longmapsto (\mathcal{P}_{d}f: \mathcal{V}^{X} \rightarrow \mathcal{V}^{Y}, \ \sigma \mapsto \sigma \cdot f^{\circ}) \\ & (\mathcal{P}_{d}f)(\sigma)(y) = \bigvee_{x \in f^{-1}y} \sigma(x) \\ & (\textbf{y}_{d})_{X}: X \longrightarrow \mathcal{P}_{d}X & (\textbf{y}_{d})_{X}(y) = \textbf{y}_{X_{d}}(y) = \textbf{1}_{X}^{\circ}(-,y) \end{array}$$

$$(\mathbf{s}_{\mathrm{d}})_X: \mathcal{P}_{\mathrm{d}}\mathcal{P}_{\mathrm{d}}X \to \mathcal{P}_{\mathrm{d}}X \quad (\mathbf{s}_{\mathrm{d}})_X(\Sigma) = \Sigma \cdot (\mathbf{y}_{X_{\mathrm{d}}})_*, \quad (\mathbf{s}_{\mathrm{d}})_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{V}^X} \Sigma(\sigma) \otimes \sigma(x)$$

$$\mathcal{P}: \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Cat}, \quad (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*)$$
$$(\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x$$

$$\mathbf{s}_X : \mathcal{PP}X \longrightarrow \mathcal{P}X$$
 $\mathbf{s}_X(\Sigma) = \Sigma \cdot (\mathbf{y}_X)_*, \quad \mathbf{s}_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\Sigma}X} \Sigma(\sigma) \otimes \sigma(x)$

 $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \iff \mathcal{P}f \leq \mathcal{P}g)$

$$\mathcal{V}\text{-Dist}^{\mathrm{op}} \underbrace{\overset{(-)^*}{\bot}}_{\mathcal{P}_{\mathcal{V}} \cong \mathcal{V}\text{-Dist}(-,E)} \mathcal{V}\text{-Cat} \underbrace{\overset{\mathrm{d}(\mathrm{iscrete})}{\bigcirc}}_{\mathrm{O}} \mathbf{Set}$$

$$\mathcal{P}_{\mathrm{d}}: \mathbf{Set} \longrightarrow \mathbf{Set} \qquad (f: X \to Y) \longmapsto (\mathcal{P}_{\mathrm{d}}f: \mathcal{V}^{X} \to \mathcal{V}^{Y}, \ \sigma \mapsto \sigma \cdot f^{\circ}) \\ (\mathcal{P}_{\mathrm{d}}f)(\sigma)(y) = \bigvee_{x \in f^{-1}v} \sigma(x)$$

$$\mathcal{P}: \mathcal{V}\text{-Cat} \longrightarrow \mathcal{V}\text{-Cat}, \quad (f: X \to Y) \longmapsto (\mathcal{P}_{\mathcal{V}}f^*: \mathcal{P}_{\mathcal{V}}X \to \mathcal{P}_{\mathcal{V}}Y, \ \sigma \mapsto \sigma \cdot f^*)$$
$$(\mathcal{P}f)(\sigma)(y) = \bigvee_{x \in X} Y(y, fx) \otimes \sigma x$$

$$\mathbf{s}_X : \mathcal{PPX} \longrightarrow \mathcal{PX}$$
 $\mathbf{s}_X(\Sigma) = \Sigma \cdot (\mathbf{y}_X)_*, \quad \mathbf{s}_X(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{P}_{\mathcal{V}}X} \Sigma(\sigma) \otimes \sigma(x)$

 $(\mathcal{P}, \mathbf{s}, \mathbf{y})$ is a 2-monad, with \mathcal{P} locally fully faithful: $(f \leq g \iff \mathcal{P}f \leq \mathcal{P}g)$

$$\mathcal{V}\text{-Dist}^{\mathrm{op}} \xrightarrow[\mathcal{P}_{\mathcal{V}} \cong \mathcal{V}\text{-Dist}(-,E)]{} \mathcal{V}\text{-Cat} \xrightarrow[O]{\mathrm{d(iscrete)}} \mathsf{Set}$$

$$\mathcal{P}_{d} : \mathbf{Set} \longrightarrow \mathbf{Set} \qquad (f : X \to Y) \longmapsto (\mathcal{P}_{d}f : \mathcal{V}^{X} \to \mathcal{V}^{Y}, \ \sigma \mapsto \sigma \cdot f^{\circ})$$

$$(\mathcal{P}_{d}f)(\sigma)(y) = \bigvee_{x \in f^{-1}y} \sigma(x)$$

$$(\mathbf{v}_{d})_{x} : X \longrightarrow \mathcal{P}_{d}X \qquad (\mathbf{v}_{d})_{x}(y) = \mathbf{v}_{x}(y) = \mathbf{1}^{\circ}_{y}(-, y)$$

$$(\mathbf{s}_{\mathrm{d}})_{X}: \mathcal{P}_{\mathrm{d}}\mathcal{P}_{\mathrm{d}}X \to \mathcal{P}_{\mathrm{d}}X \quad (\mathbf{s}_{\mathrm{d}})_{X}(\Sigma) = \Sigma \cdot (\mathbf{y}_{X_{\mathrm{d}}})_{*}, \quad (\mathbf{s}_{\mathrm{d}})_{X}(\Sigma)(x) = \bigvee_{\sigma \in \mathcal{V}^{X}} \Sigma(\sigma) \otimes \sigma(x)$$

$$X \stackrel{\varphi}{\longrightarrow} Y \iff Y \stackrel{\varphi^{\sharp}}{\longrightarrow} \mathcal{P}X$$
$$X \stackrel{1_X^*}{\longrightarrow} X \iff X \stackrel{\mathbf{y}_X}{\longrightarrow} \mathcal{P}X$$

$$(X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z)^{\sharp} = (Z \xrightarrow{\psi^{\sharp}} \mathcal{P}Y \xrightarrow{\mathcal{P}\varphi^{\sharp}} \mathcal{P}X \xrightarrow{\mathbf{s}_{X}} \mathcal{P}X)$$

$$(\mathcal{V} ext{-}\mathbf{Dist})^{\mathrm{op}}\cong\mathrm{Kl}(\mathcal{P})$$

 $(\mathcal{V} ext{-}\mathbf{Rel})^{\mathrm{op}}\cong\mathrm{Kl}(\mathcal{P}_{\mathrm{d}})$

$$X \xrightarrow{\varphi} Y \iff Y \xrightarrow{\varphi^{\sharp}} \mathcal{P}X$$

$$X \xrightarrow{1_{X}^{*}} X \iff X \xrightarrow{\mathbf{y}_{X}} \mathcal{P}X$$

$$(X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z)^{\sharp} = (Z \xrightarrow{\psi^{\sharp}} \mathcal{P}Y \xrightarrow{\mathcal{P}\varphi^{\sharp}} \mathcal{P}\mathcal{P}X \xrightarrow{\mathbf{s}_{\chi}} \mathcal{P}X)$$

$$(\mathcal{V} ext{-}\mathsf{Dist})^\mathrm{op}\cong\mathrm{Kl}(\mathcal{P})$$
 $(\mathcal{V} ext{-}\mathsf{Rel})^\mathrm{op}\cong\mathrm{Kl}(\mathcal{P}_\mathrm{d})$

$$X \xrightarrow{\varphi} Y \iff Y \xrightarrow{\varphi^{\sharp}} \mathcal{P}X$$

$$X \xrightarrow{1_X^*} X \iff X \xrightarrow{y_X} \mathcal{P}X$$

$$(X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z)^{\sharp} = (Z \xrightarrow{\psi^{\sharp}} \mathcal{P}Y \xrightarrow{\mathcal{P}\varphi^{\sharp}} \mathcal{P}X \xrightarrow{\mathbf{s}_{X}} \mathcal{P}X)$$

$$(\mathcal{V} ext{-Dist})^{\operatorname{op}}\cong\operatorname{Kl}(\mathcal{P})$$

 $(\mathcal{V} ext{-Rel})^{\operatorname{op}}\cong\operatorname{Kl}(\mathcal{P}_{\operatorname{d}})$

$$X \xrightarrow{\varphi} Y \iff Y \xrightarrow{\varphi^{\sharp}} \mathcal{P}X$$

$$X \xrightarrow{1_{X}^{*}} X \iff X \xrightarrow{y_{X}} \mathcal{P}X$$

$$(X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z)^{\sharp} = (Z \xrightarrow{\psi^{\sharp}} \mathcal{P}Y \xrightarrow{\mathcal{P}\varphi^{\sharp}} \mathcal{P}X \xrightarrow{\mathbf{s}_{\chi}} \mathcal{P}X)$$

$$(\mathcal{V} ext{-Dist})^{\operatorname{op}}\cong\operatorname{Kl}(\mathcal{P})$$

 $(\mathcal{V} ext{-Rel})^{\operatorname{op}}\cong\operatorname{Kl}(\mathcal{P}_{\operatorname{d}})$

Q: What "is" $EM(\mathcal{P})$?

Consider $X \in \mathcal{V}$ -Cat with its induced order $(x \le y \iff k \le X(x,y))$. Then:

$$y \simeq \bigwedge_{i \in I} x_{i} \qquad \iff \forall z \ (k \leq X(z, y) \iff \forall i \in I : k \leq X(z, x_{i})) \\ \iff \forall z \ (X(z, y) = \bigwedge_{i \in I} X(z, x_{i})) \\ \iff y_{X}y = \bigwedge_{i \in I} y_{X}x_{i} \quad \text{in } \mathcal{P}_{\mathcal{V}}X = [X^{\mathrm{op}}, \mathcal{V}] \\ \iff X \text{ has all conical infima} \\ \iff X \text{ has all infima and } y_{X} \text{ preserves them} \\ \iff X \text{ is order-complete, } y_{X} \text{ is an inf-map}$$

$$y \simeq \bigvee_{i \in I} x_{i} \qquad \iff \forall z \ (k \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (x \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z))$$

$$\iff \mathbf{y}_X^\sharp y = \bigvee_{i \in I} \mathbf{y}_X^\sharp x_i \quad \text{in } \mathcal{P}_{\mathcal{V}}^\sharp X = [X, \mathcal{V}]^{\mathrm{op}}$$
 X conically cocompl.
$$\iff X \text{ has all conical suprema}$$

 $\iff X$ has all sups and \mathbf{y}_X^{\sharp} preserves them

 \iff X is order-complete, \mathbf{y}_X^{\sharp} is an sup-map

Consider $X \in \mathcal{V}$ -Cat with its induced order $(x < y \iff k < X(x, y))$. Then:

$$y \simeq \bigwedge_{i \in I} x_i \iff \forall z \ (k \leq X(z, y) \iff \forall i \in I : k \leq X(z, x_i)) \\ \iff \forall z \ (X(z, y) = \bigwedge_{i \in I} X(z, x_i)) \\ \iff \mathbf{y}_X y = \bigwedge_{i \in I} \mathbf{y}_X x_i \quad \text{in } \mathcal{P}_{\mathcal{V}} X = [X^{\text{op}}, \mathcal{V}]$$

 \iff X has all infima and \mathbf{v}_X preserves them

 \iff X is order-complete, \mathbf{v}_X is an inf-map

$$y \simeq \bigvee_{i \in I} x_i \qquad \iff \forall z \ (k \leq X(y, z) \iff \forall i \in I : k \leq X(x_i, z)) \\ \iff \forall z \ (X(y, z) = \bigwedge_{i \in I} X(x_i, z)) \qquad \iff : y \simeq \bigvee_{i \in I}^{\nabla} x_i \\ \iff \mathbf{y}_X^{\sharp} y = \bigvee_{i \in I} \mathbf{y}_X^{\sharp} x_i \quad \text{in } \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X, \mathcal{V}]^{\text{op}} \\ \iff X \text{ has all conical suprema}$$

X conically cocompl.

 \iff X has all sups and $\mathbf{y}_{\mathbf{x}}^{\sharp}$ preserves them

 $\iff X$ is order-complete, $\mathbf{y}^{\sharp}_{\mathsf{v}}$ is an sup-map

Consider $X \in \mathcal{V}$ -Cat with its induced order $(x < y \iff k < X(x, y))$. Then:

$$y \simeq \bigwedge_{i \in I} x_i \qquad \iff \forall z \ (k \leq X(z, y) \iff \forall i \in I : k \leq X(z, x_i)) \\ \iff \forall z \ (X(z, y) = \bigwedge_{i \in I} X(z, x_i)) \qquad \iff : y \simeq \bigwedge_{i \in I}^{\nabla} x_i \\ \iff \mathbf{y}_X y = \bigwedge_{i \in I} \mathbf{y}_X x_i \quad \text{in } \mathcal{P}_{\mathcal{V}} X = [X^{\text{op}}, \mathcal{V}]$$

X conically complete

 \iff X has all conical infima

 \iff X has all infima and \mathbf{v}_X preserves them

 \iff X is order-complete, \mathbf{v}_X is an inf-map

$$y \simeq \bigvee_{i \in I} x_i$$
 $\iff \forall z \ (k \leq X(y,z) \iff \forall i \in I : k \leq X(x_i,z))$ $\iff \forall z \ (X(y,z) = \bigwedge_{i \in I} X(x_i,z))$ $\iff : y \simeq \bigvee_{i \in I}^{\nabla} x_i$ $\iff \mathbf{y}_X^{\sharp} y = \bigvee_{i \in I} \mathbf{y}_X^{\sharp} x_i \text{ in } \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X,\mathcal{V}]^{\mathrm{op}}$ $\iff X \text{ has all conical suprema}$

 \iff X has all sups and $\mathbf{y}_{\mathbf{x}}^{\sharp}$ preserves them

 $\iff X$ is order-complete, $\mathbf{y}^{\sharp}_{\mathsf{v}}$ is an sup-map

Consider $X \in \mathcal{V}$ -Cat with its induced order $(x \le y \iff k \le X(x,y))$. Then:

$$y \simeq \bigwedge_{i \in I} x_i \qquad \iff \forall z \ (k \leq X(z, y) \iff \forall i \in I : k \leq X(z, x_i)) \\ \iff \forall z \ (X(z, y) = \bigwedge_{i \in I} X(z, x_i)) \\ \iff \mathbf{y}_X y = \bigwedge_{i \in I} \mathbf{y}_X x_i \quad \text{in } \mathcal{P}_{\mathcal{V}} X = [X^{\text{op}}, \mathcal{V}]$$

X conically complete

 \iff X has all conical infima

 \iff X has all infima and \mathbf{y}_X preserves them

 \iff X is order-complete, \mathbf{y}_X is an inf-map

$$y \simeq \bigvee_{i \in I} x_{i} \qquad \iff \forall z \ (k \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (X(y, z) = \bigwedge_{i \in I} X(x_{i}, z)) \qquad \iff : y \simeq \bigvee_{i \in I}^{\nabla} x_{i} \\ \iff \mathbf{y}_{X}^{\sharp} y = \bigvee_{i \in I} \mathbf{y}_{X}^{\sharp} x_{i} \text{ in } \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X, \mathcal{V}]^{\text{op}}$$

X conically cocompl.

 \iff X has all sups and \mathbf{y}_X^{\sharp} preserves them

 \iff X is order-complete, \mathbf{y}_X^{\sharp} is an sup-map

Consider $X \in \mathcal{V}$ -Cat with its induced order $(x \le y \iff k \le X(x,y))$. Then:

$$y \simeq \bigwedge_{i \in I} x_i \iff \forall z \ (k \leq X(z, y) \Longleftrightarrow \forall i \in I : k \leq X(z, x_i)) \\ \iff \forall z \ (X(z, y) = \bigwedge_{i \in I} X(z, x_i)) \iff : y \simeq \bigwedge_{i \in I}^{\triangledown} x_i \\ \iff \mathbf{y}_X y = \bigwedge_{i \in I} \mathbf{y}_X x_i \quad \text{in } \mathcal{P}_{\mathcal{V}} X = [X^{\text{op}}, \mathcal{V}]$$

X conically complete

$$\iff$$
 X has all conical infima

 \iff X has all infima and \mathbf{y}_X preserves them

 \iff X is order-complete, \mathbf{y}_X is an inf-map

$$y \simeq \bigvee_{i \in I} x_{i} \qquad \iff \forall z \ (k \leq X(y, z) \iff \forall i \in I : k \leq X(x_{i}, z)) \\ \iff \forall z \ (X(y, z) = \bigwedge_{i \in I} X(x_{i}, z)) \qquad \iff : y \simeq \bigvee_{i \in I}^{\nabla} x_{i} \\ \iff \mathbf{y}_{X}^{\sharp} y = \bigvee_{i \in I} \mathbf{y}_{X}^{\sharp} x_{i} \text{ in } \mathcal{P}_{\mathcal{V}}^{\sharp} X = [X, \mathcal{V}]^{\text{op}}$$

X conically cocompl.

$$\iff$$
 X has all conical suprema

 \iff X has all sups and \mathbf{y}_X^\sharp preserves them

 $\iff X$ is order-complete, \mathbf{y}_X^\sharp is an sup-map

In $X \in 2$ -**Cat** = **Ord**, every inf/sup is conical; hence: X conically (co)complete $\iff X$ order-complete

In $X \in [0, \infty]$ -Cat = Met, not even binary infs/sups have to be conical.

The order of $X \in \mathbf{Met}_{\mathrm{sym,sep}}$ is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V} \in \mathcal{V}$ -Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}}X$, for all $X \in \mathcal{V}$ -Cat.

For V non-integral (k < T), one finds $X \in V$ -Cat order-compl., but not conically (co)compl.

There is a subspace of $[0,\infty] \in [0,\infty]_+$ -Cat is conically complete category but fails to be conically cocomplete (Clementino).

We need:

a condition on a \mathcal{V} -category securing the implication (order-complete \Rightarrow conically compl.)!

In $X \in 2$ -Cat = Ord, every inf/sup is conical; hence:

X conically (co)complete $\iff X$ order-complete

In $X \in [0, \infty]$ -Cat = Met, not even binary infs/sups have to be conical.

The order of $X \in \mathbf{Met}_{\mathrm{sym,sep}}$ is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V} \in \mathcal{V}$ -Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}}X$, for all $X \in \mathcal{V}$ -Cat.

For V non-integral (k < T), one finds $X \in V$ -Cat order-compl., but not conically (co)compl

There is a subspace of $[0,\infty] \in [0,\infty]_+$ -Cat is conically complete category but fails to be conically cocomplete (Clementino).

We need

a condition on a \mathcal{V} -category securing the implication (order-complete \Rightarrow conically compl.)

In $X \in 2$ -Cat = Ord, every inf/sup is conical; hence:

X conically (co)complete $\iff X$ order-complete

In $X \in [0, \infty]$ -Cat = Met, not even binary infs/sups have to be conical.

The order of $X \in \mathbf{Met}_{\mathrm{sym,sep}}$ is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V} \in \mathcal{V}$ -Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}}X$, for all $X \in \mathcal{V}$ -Cat.

For V non-integral (k < T), one finds $X \in V$ -Cat order-compl., but not conically (co)compl.

There is a subspace of $[0,\infty] \in [0,\infty]_+$ -Cat is conically complete category but fails to be conically cocomplete (Clementino).

We need:

a condition on a \mathcal{V} -category securing the implication (order-complete \Rightarrow conically compl.)

In $X \in 2$ -Cat = Ord, every inf/sup is conical; hence:

X conically (co)complete $\iff X$ order-complete

In $X \in [0, \infty]$ -Cat = Met, not even binary infs/sups have to be conical.

The order of $X \in \mathbf{Met}_{\mathrm{sym,sep}}$ is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V} \in \mathcal{V}$ -Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}}X$, for all $X \in \mathcal{V}$ -Cat.

For V non-integral (k < T), one finds $X \in V$ -Cat order-compl., but not conically (co)compl.

There is a subspace of $[0,\infty] \in [0,\infty]_+$ -Cat is conically complete category but fails to be conically cocomplete (Clementino).

We need

a condition on a \mathcal{V} -category securing the implication (order-complete \Rightarrow conically compl.)

In $X \in 2$ -Cat = Ord, every inf/sup is conical; hence:

X conically (co)complete $\iff X$ order-complete

In $X \in [0, \infty]$ -Cat = Met, not even binary infs/sups have to be conical.

The order of $X \in \mathbf{Met}_{\mathrm{sym,sep}}$ is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V} \in \mathcal{V}$ -Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}}X$, for all $X \in \mathcal{V}$ -Cat.

For $\mathcal V$ non-integral $(k<\top)$, one finds $X\in\mathcal V$ -Cat order-compl., but not conically (co)compl.

There is a subspace of $[0,\infty] \in [0,\infty]_+$ -Cat is conically complete category but fails to be conically cocomplete (Clementino).

We need:

a condition on a V-category securing the implication (order-complete \Rightarrow conically compl.)

In $X \in 2$ -Cat = Ord, every inf/sup is conical; hence:

X conically (co)complete $\iff X$ order-complete

In $X \in [0, \infty]$ -Cat = Met, not even binary infs/sups have to be conical.

The order of $X \in \mathbf{Met}_{\mathrm{sym,sep}}$ is discrete, so that X is order-complete only when |X| = 1.

 $\mathcal{V} \in \mathcal{V}$ -Cat is always conically (co)complete, and so is $\mathcal{P}_{\mathcal{V}}X$, for all $X \in \mathcal{V}$ -Cat.

For $\mathcal V$ non-integral $(k<\top)$, one finds $X\in\mathcal V$ -Cat order-compl., but not conically (co)compl.

There is a subspace of $[0,\infty] \in [0,\infty]_+$ -Cat is conically complete category but fails to be conically cocomplete (Clementino).

We need:

a condition on a V-category securing the implication (order-complete \Rightarrow conically compl.)!

Recall:

X conically complete \iff *X* order complete and $(\forall x \in X : X(x, -) : X \to \mathcal{V} \text{ pres. infs})$

Definition

X tensored : $\iff \forall x \in X : X(x, -) : X \to \mathcal{V} \text{ has a left adjoint } - \odot x : \mathcal{V} \to X$

$$X(u \odot x, y) = [u, X(x, y)] \qquad (*)$$

X cotensored : $\iff \forall y \in X : X(-,y) : X^{\mathrm{op}} \to \mathcal{V}$ has a left adjoint $-\pitchfork y : \mathcal{V} \to X$

$$X(x, u \pitchfork y) = [u, X(x, y)]$$

Note:

Necessarily $u \odot x = \bigwedge \{ y \in X \mid u \le X(x, y) \},$

but the the existence of these infima does not guarantee (*)!

Recall:

X conically complete $\iff X$ order complete and $(\forall x \in X : X(x, -) : X \to \mathcal{V} \text{ pres. infs})$

Definition:

X tensored $:\iff \forall x\in X: X(x,-): X\to \mathcal{V}$ has a left adjoint $-\odot x: \mathcal{V}\to X$

$$X(u \odot x, y) = [u, X(x, y)] \qquad (*)$$

X cotensored : $\iff \forall y \in X : X(-,y) : X^{\mathrm{op}} \to \mathcal{V}$ has a left adjoint $-\pitchfork y : \mathcal{V} \to X$

$$X(x, u \pitchfork y) = [u, X(x, y)]$$

Note:

Necessarily $u \odot x = \bigwedge \{ y \in X \mid u \leq X(x, y) \},$

but the the existence of these infima does not guarantee (*)!

Recall:

X conically complete \iff *X* order complete and $(\forall x \in X : X(x, -) : X \to \mathcal{V} \text{ pres. infs})$

Definition:

X tensored $:\iff \forall x\in X: X(x,-): X\to \mathcal{V} \text{ has a left adjoint } -\odot x: \mathcal{V}\to X$

$$X(u \odot x, y) = [u, X(x, y)] \qquad (*)$$

X cotensored : $\iff \forall y \in X : X(-,y) : X^{\mathrm{op}} \to \mathcal{V}$ has a left adjoint $- \pitchfork y : \mathcal{V} \to X$

$$X(x,u \cap y) = [u,X(x,y)]$$

Note:

Necessarily $u \odot x = \bigwedge \{ y \in X \mid u \leq X(x, y) \},$

but the the existence of these infima does not guarantee (*)!

Recall:

X conically complete \iff *X* order complete and $(\forall x \in X : X(x, -) : X \to \mathcal{V} \text{ pres. infs})$

Definition:

X tensored $:\iff \forall x\in X: X(x,-): X\to \mathcal{V}$ has a left adjoint $-\odot x: \mathcal{V}\to X$

$$X(u \odot x, y) = [u, X(x, y)] \qquad (*)$$

X cotensored : $\iff \forall y \in X : X(-,y) : X^{\mathrm{op}} \to \mathcal{V}$ has a left adjoint $- \pitchfork y : \mathcal{V} \to X$

$$X(x,u \cap y) = [u,X(x,y)]$$

Note:

Necessarily $u \odot x = \bigwedge \{ y \in X \mid u \leq X(x, y) \}$,

but the the existence of these infima does not guarantee (*)!

Recall:

X conically complete \iff *X* order complete and $(\forall x \in X : X(x, -) : X \to \mathcal{V} \text{ pres. infs})$

Definition:

X tensored $:\iff \forall x\in X: X(x,-): X\to \mathcal{V}$ has a left adjoint $-\odot x: \mathcal{V}\to X$

$$X(u \odot x, y) = [u, X(x, y)] \qquad (*)$$

X cotensored : $\iff \forall y \in X : X(-,y) : X^{\mathrm{op}} \to \mathcal{V}$ has a left adjoint $- \pitchfork y : \mathcal{V} \to X$

$$X(x, u \pitchfork y) = [u, X(x, y)]$$

Note:

Necessarily $u \odot x = \bigwedge \{ y \in X \mid u \leq X(x, y) \}$,

but the the existence of these infima does not guarantee (*)!

 $\emptyset \neq X \in 2$ -Cat = Ord is tensored $\iff X$ has a least element.

 $\mathcal{V} \in \mathcal{V}$ -Cat is tensored and cotensored, with $u \odot x = u \otimes x$ and $u \pitchfork x = [u, x]$. More generally, $\mathcal{P}_{\mathcal{V}}X$ is (co-)tensored, for every \mathcal{V} -category X.

A full V-subcategory of $V \in V$ -Cat may fail to be tensored or cotensored.

 $[0,\infty]_{csym}$ (= $[0,\infty]$ with the Euclidean metric) fails to be tensored or cotensored in **Met**.

Products of (co)tensored V-categories are (co)tensored.

 $\emptyset \neq X \in 2$ -Cat = Ord is tensored $\iff X$ has a least element.

 $\mathcal{V} \in \mathcal{V}$ -Cat is tensored and cotensored, with $u \odot x = u \otimes x$ and $u \pitchfork x = [u, x]$. More generally, $\mathcal{P}_{\mathcal{V}}X$ is (co-)tensored, for every \mathcal{V} -category X.

A full \mathcal{V} -subcategory of $\mathcal{V} \in \mathcal{V}$ -Cat may fail to be tensored or cotensored.

 $[0,\infty]_{csym}~(=[0,\infty]$ with the Euclidean metric) fails to be tensored or cotensored in **Met**.

Products of (co)tensored V-categories are (co)tensored.

 $\emptyset \neq X \in 2$ -Cat = Ord is tensored $\iff X$ has a least element.

 $\mathcal{V} \in \mathcal{V}$ -Cat is tensored and cotensored, with $u \odot x = u \otimes x$ and $u \pitchfork x = [u, x]$. More generally, $\mathcal{P}_{\mathcal{V}}X$ is (co-)tensored, for every \mathcal{V} -category X.

A full \mathcal{V} -subcategory of $\mathcal{V} \in \mathcal{V}$ -Cat may fail to be tensored or cotensored.

 $[0,\infty]_{csym}$ (= $[0,\infty]$ with the Euclidean metric) fails to be tensored or cotensored in **Met**. Products of (co)tensored \mathcal{V} -categories are (co)tensored.

 $\emptyset \neq X \in 2$ -Cat = Ord is tensored $\iff X$ has a least element.

 $\mathcal{V} \in \mathcal{V}$ -Cat is tensored and cotensored, with $u \odot x = u \otimes x$ and $u \pitchfork x = [u, x]$. More generally, $\mathcal{P}_{\mathcal{V}}X$ is (co-)tensored, for every \mathcal{V} -category X.

A full \mathcal{V} -subcategory of $\mathcal{V} \in \mathcal{V}$ -Cat may fail to be tensored or cotensored.

 $[0,\infty]_{csym}$ (= $[0,\infty]$ with the Euclidean metric) fails to be tensored or cotensored in **Met**.

Products of (co)tensored V-categories are (co)tensored.

 $\emptyset \neq X \in 2$ -Cat = Ord is tensored $\iff X$ has a least element.

 $\mathcal{V} \in \mathcal{V}$ -Cat is tensored and cotensored, with $u \odot x = u \otimes x$ and $u \pitchfork x = [u, x]$. More generally, $\mathcal{P}_{\mathcal{V}}X$ is (co-)tensored, for every \mathcal{V} -category X.

A full \mathcal{V} -subcategory of $\mathcal{V} \in \mathcal{V}$ -Cat may fail to be tensored or cotensored.

 $[0,\infty]_{csym}$ (= $[0,\infty]$ with the Euclidean metric) fails to be tensored or cotensored in **Met**.

Products of (co)tensored V-categories are (co)tensored.

4.5.1 Presenting tensored V-categories via the action of V: prelims

Rules for the action of V on a tensored V-category X:

- $(1) k \odot x \simeq x$
- $(2) \qquad (u \otimes v) \odot x \simeq u \odot (v \odot x)$
- (3) $(\bigvee_{i \in I} u_i) \odot x \simeq \bigvee_{i \in I} (u_i \odot x)$ (with the RHS \bigvee existing in X, as part of the condition)
- $(4^{-}) x \le y \Longrightarrow u \odot x \le u \odot y$

Conversely

Let X be just a preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying $(1) - (4^-)$. Then, for every $x \in X$, the map $-\odot x: \mathcal{V} \longrightarrow X$ has a right adjoint X(x, -), defined by

$$X(x,y) = \bigvee \{u \mid u \odot x \le y\},\,$$

making X a V-category, whose underlying preorder is the given one and, by the given rules and adjunction, satisfies

$$X(u \odot x, y) = [u, X(x, y)],$$

making X a tensored V-category.

4.5.1 Presenting tensored V-categories via the action of V: prelims

Rules for the action of V on a tensored V-category X:

- $(1) k \odot x \simeq x$
- $(2) \qquad (u \otimes v) \odot x \simeq u \odot (v \odot x)$
- (3) $(\bigvee_{i \in I} u_i) \odot x \simeq \bigvee_{i \in I} (u_i \odot x)$ (with the RHS \bigvee existing in X, as part of the condition)
- $(4^{-}) x \le y \Longrightarrow u \odot x \le u \odot y$

Conversely:

Let X be just a preordered set equipped with a map $\odot : \mathcal{V} \times X \longrightarrow X$ satisfying $(1) - (4^-)$. Then, for every $x \in X$, the map $-\odot x : \mathcal{V} \longrightarrow X$ has a right adjoint X(x, -), defined by

$$X(x,y) = \bigvee \{u \mid u \odot x \leq y\},\$$

making X a V-category, whose underlying preorder is the given one and, by the given rules and adjunction, satisfies

$$X(u \odot x, y) = [u, X(x, y)],$$

making X a tensored V-category.

4.5.2 Presenting tensored V-categories via the action of V: theorem

Theorem (Martinelli 2021)

There is a 2-equivalence

$$\mathcal{V} ext{-}\mathbf{Cat}_{ ext{tensor}} \simeq \mathbf{Ord}_{rac{1}{2}\mathrm{cocts}}^{\mathcal{V}}$$

 \mathcal{V} -Cat_{tensor}:

small tensored $\mathcal V$ -categories, with tensor-preserving $\mathcal V$ -functors

$$\mathsf{Ord}^{\mathcal{V}}_{\frac{1}{2}\mathrm{cocts}}$$

preordered sets on which \mathcal{V} acts, satisfying conditions $(1),(2),(3),(4^-)$, with monotone and pseudo-equivariant maps.

4.6 Weighted colimits and limits: definitions

Given a "diagram" $Z \xrightarrow{h} X$ in X and "weights" $Z \xrightarrow{\omega} W$ and $W \xrightarrow{v} Z$. Then:

$$(W \xrightarrow{q} X) \simeq \operatorname{colim}^{\omega} h : \iff q_* = [\omega, h_*],$$

$$(W \xrightarrow{\rho} X) \simeq \lim^{v} h : \iff \rho^* =]v, h^*[$$

$$Z \xrightarrow{h_*} Q_* = [\omega, h_*]$$
 $Z \xrightarrow{\omega} W$

$$\begin{array}{c}
W \xrightarrow{v} Z \\
p^* =]v, h^* [\downarrow \\
X
\end{array}$$

$$X(qt,x) = \bigwedge_{z \in Z} [\omega(z,t), X(hz,x)] \qquad X(x,pt) = \bigwedge_{z \in Z} [\upsilon(t,z), X(x,hz)]$$

$$X(x, pt) = \bigwedge_{z \in Z} [v(t, z), X(x, hz)]$$

4.6 Weighted colimits and limits: definitions

Given a "diagram" $Z \xrightarrow{h} X$ in X and "weights" $Z \xrightarrow{\omega} W$ and $W \xrightarrow{v} Z$. Then:

$$(W \xrightarrow{q} X) \simeq \operatorname{colim}^{\omega} h : \iff q_* = [\omega, h_*], \qquad (W$$

$$(W \xrightarrow{p} X) \simeq \lim^{v} h : \iff p^* =]v, h^*[$$

$$Z \xrightarrow{h_*} Q_* = [\omega, h_*]$$

$$Z \xrightarrow{\omega} W$$

$$p^* =]v, h^*[$$

$$X$$

$$p^* =]v, h^*[$$

$$X$$

$$\begin{array}{c}
W \stackrel{v}{\longrightarrow} Z \\
\rho^* =]v, h^* [\begin{matrix} \uparrow \\ \downarrow \\ \downarrow \end{matrix} \\
X
\end{array}$$

$$X(qt,x) = \bigwedge_{z \in Z} [\omega(z,t), X(hz,x)]$$

$$X(x,pt) = \bigwedge_{z \in Z} [v(t,z), X(x,hz)]$$

for all $x \in X$, $t \in W$.

4.7 Tensors and conical sups as weighted colimits, and conversely

Let $(x \in X \iff x : E = (\{*\}, k) \to X)$ and $(f = (x_i)_{i \in I} \text{ in } X \iff f : I_d \cong \coprod_{i \in I} E \to X)$, let $\nabla : \coprod_{i \in I} E \to E$ be the "codiagonal". Then:

$$u \odot x \simeq \operatorname{colim}^{u} x, \quad \bigvee_{i \in I}^{\nabla} x_{i} \simeq \operatorname{colim}^{\nabla_{*}} f, \quad u \pitchfork x \simeq \lim^{u} x, \quad \bigwedge_{i \in I}^{\nabla} x_{i} \simeq \lim^{\nabla^{*}} f.$$

Theorem

Let $Z \stackrel{h}{\longrightarrow} X$ be a diagram in the tensored $\mathcal V$ -category X with weight $Z \stackrel{\omega}{\longrightarrow} W$. Then

$$(\operatorname{colim}^{\omega} h)(t) \simeq \bigvee_{z \in Z} {}^{\nabla} \omega(z, t) \odot h(z)$$

for all $t \in W$, with the colimit on the left existing precisely when the conical supremum on the right exists in X for all $t \in W$.

4.7 Tensors and conical sups as weighted colimits, and conversely

Let $(x \in X \iff x : E = (\{*\}, k) \to X)$ and $(f = (x_i)_{i \in I} \text{ in } X \iff f : I_d \cong \coprod_{i \in I} E \to X)$, let $\nabla : \coprod_{i \in I} E \to E$ be the "codiagonal". Then:

$$u \odot x \simeq \operatorname{colim}^{u} x, \quad \bigvee_{i \in I}^{\nabla} x_{i} \simeq \operatorname{colim}^{\nabla_{*}} f, \quad u \cap x \simeq \lim^{u} x, \quad \bigwedge_{i \in I}^{\nabla} x_{i} \simeq \lim^{\nabla^{*}} f.$$

Theorem

Let $Z \stackrel{h}{\longrightarrow} X$ be a diagram in the tensored $\mathcal V$ -category X with weight $Z \stackrel{\omega}{\longrightarrow} W$. Then

$$(\operatorname{colim}^{\omega} h)(t) \simeq \bigvee_{z \in Z} {}^{\nabla} \omega(z, t) \odot h(z)$$

for all $t \in W$, with the colimit on the left existing precisely when the conical supremum on the right exists in X for all $t \in W$.

4.7 Tensors and conical sups as weighted colimits, and conversely

Let $(x \in X \iff x : E = (\{*\}, k) \to X)$ and $(f = (x_i)_{i \in I} \text{ in } X \iff f : I_d \cong \coprod_{i \in I} E \to X)$, let $\nabla : \coprod_{i \in I} E \to E$ be the "codiagonal". Then:

$$u \odot x \simeq \operatorname{colim}^{u} x, \quad \bigvee_{i \in I}^{\nabla} x_{i} \simeq \operatorname{colim}^{\nabla_{*}} f, \quad u \pitchfork x \simeq \lim^{u} x, \quad \bigwedge_{i \in I}^{\nabla} x_{i} \simeq \lim^{\nabla^{*}} f.$$

Theorem

Let $Z \stackrel{h}{\longrightarrow} X$ be a diagram in the tensored $\mathcal V$ -category X with weight $Z \stackrel{\omega}{\longrightarrow} W$. Then

$$(\operatorname{colim}^{\omega} h)(t) \simeq \bigvee_{z \in Z} {}^{\triangledown} \omega(z, t) \odot h(z)$$

for all $t \in W$, with the colimit on the left existing precisely when the conical supremum on the right exists in X for all $t \in W$.

4.8 Hiding the diagram in the weight

Corollary

- \bigcirc X complete \iff X is cotensored and conically complete.
- \bigcirc X complete and cocomplete \iff X tensored, cotensored and order-complete.

Given a diagram
$$Z \stackrel{h}{\longrightarrow} X$$
 in X and weights $Z \stackrel{\omega}{\longrightarrow} W$ and $W \stackrel{v}{\longrightarrow} Z$. Then $\operatorname{colim}^{\omega} h \simeq \operatorname{colim}^{\omega \cdot h^*} 1_X$ and $\operatorname{lim}^{v} h \simeq \operatorname{lim}^{h_* \cdot v} 1_X$,

with the (co)limit on either side of \simeq existing when the (co)limit on the other side exists. In particular:

$$u\odot x\cong \mathrm{colim}^ux\cong \mathrm{colim}^{u\cdot x^*}\mathbf{1}_X=\mathrm{colim}^{u\cdot \mathbf{y}_Xx}\mathbf{1}_X \ \ \text{and} \ \ \bigvee_{i\in I}^{\triangledown}x_i\simeq \mathrm{colim}^{\omega}\mathbf{1}_X, \ \text{with} \ \omega=\bigvee_{i\in I}\mathbf{y}_Xx_i.$$

Hence: It suffices to let $Z=X, h=1_X$ and W=E; presheaves on X, suffice as $y = 1_X$ and Y=E; presheaves on Y, suffice as Y

4.8 Hiding the diagram in the weight

Corollary

- \bigcirc X complete \iff X is cotensored and conically complete.
- \bigcirc X complete and cocomplete \iff X tensored, cotensored and order-complete.

Given a diagram
$$Z \stackrel{h}{\longrightarrow} X$$
 in X and weights $Z \stackrel{\omega}{\longrightarrow} W$ and $W \stackrel{v}{\longrightarrow} Z$. Then $\operatorname{colim}^{\omega} h \simeq \operatorname{colim}^{\omega \cdot h^*} 1_X$ and $\operatorname{lim}^v h \simeq \operatorname{lim}^{h_* \cdot v} 1_X$,

with the (co)limit on either side of \simeq existing when the (co)limit on the other side exists. In particular:

$$u\odot x\cong \mathrm{colim}^ux\cong \mathrm{colim}^{u\cdot x^*}\mathbf{1}_X=\mathrm{colim}^{u\cdot \mathbf{y}_Xx}\mathbf{1}_X \ \ \text{and} \ \ \bigvee_{i\in I}^{\triangledown}x_i\simeq \mathrm{colim}^{\omega}\mathbf{1}_X, \ \text{with} \ \omega=\bigvee_{i\in I}\mathbf{y}_Xx_i.$$

Hence: It suffices to let $Z=X, h=1_X$ and W=E; presheaves on X, suffice as, weights $\mathbb{I}_{2,2,2}$

4.8 Hiding the diagram in the weight

Corollary

- \bigcirc X complete \iff X is cotensored and conically complete.
- \bigcirc X complete and cocomplete \iff X tensored, cotensored and order-complete.

Given a diagram
$$Z \stackrel{h}{\longrightarrow} X$$
 in X and weights $Z \stackrel{\omega}{\longrightarrow} W$ and $W \stackrel{v}{\longrightarrow} Z$. Then $\operatorname{colim}^{\omega} h \simeq \operatorname{colim}^{\omega \cdot h^*} 1_X$ and $\operatorname{lim}^v h \simeq \operatorname{lim}^{h_* \cdot v} 1_X$,

with the (co)limit on either side of \simeq existing when the (co)limit on the other side exists. In particular:

$$u \odot x \cong \operatorname{colim}^u x \cong \operatorname{colim}^{u \cdot x^*} \mathbf{1}_X = \operatorname{colim}^{u \cdot \mathbf{y}_X x} \mathbf{1}_X \text{ and } \bigvee_{i \in I} \nabla x_i \simeq \operatorname{colim}^\omega \mathbf{1}_X, \text{ with } \omega = \bigvee_{i \in I} \mathbf{y}_X x_i.$$

Hence: It suffices to let Z = X, $h = 1_X$ and W = E; presheaves on X suffice as weights!

4.9.1 Preservation of (co)limits: definition

Definition

Let $h: Z \to X$, $f: X \to Y$ be \mathcal{V} -functors and $Z \stackrel{\omega}{\longrightarrow} W \stackrel{v}{\longrightarrow} Z$ be \mathcal{V} -distributors.

• If $q \simeq \operatorname{colim}^{\omega} h$ exists in X, one says that $f: X \to Y$ preserves the colimit if the colimit $\operatorname{colim}^{\omega}(f \cdot h)$ exists in Y and is given by $f \cdot q$; equivalently, if one has the implication

$$q_* = [\omega, h_*] \implies (f \cdot q)_* = [\omega, (f \cdot h)_*].$$

② Dually, if $p \simeq \lim^{v} h$ exists in X, one says that $f: X \to Y$ preserves the limit if the limit $\lim^{v} (f \cdot h)$ exists in Y and is given by $f \cdot p$; equivalently, if one has the implication

$$p^* =]v, h^*[\implies (f \cdot p)^* =]v, (f \cdot h)^*[.$$

① The V-functor f is (co)continuous if it preserves all existing (co)limits in X.

4.9.1 Preservation of (co)limits: definition

Definition

Let $h: Z \to X$, $f: X \to Y$ be \mathcal{V} -functors and $Z \stackrel{\omega}{\longrightarrow} W \stackrel{v}{\longrightarrow} Z$ be \mathcal{V} -distributors.

• If $q \simeq \operatorname{colim}^{\omega} h$ exists in X, one says that $f: X \to Y$ preserves the colimit if the colimit $\operatorname{colim}^{\omega}(f \cdot h)$ exists in Y and is given by $f \cdot q$; equivalently, if one has the implication

$$q_* = [\omega, h_*] \implies (f \cdot q)_* = [\omega, (f \cdot h)_*].$$

2 Dually, if $p \simeq \lim^{v} h$ exists in X, one says that $f: X \to Y$ preserves the limit if the limit $\lim^{v} (f \cdot h)$ exists in Y and is given by $f \cdot p$; equivalently, if one has the implication

$$p^* =]v, h^*[\implies (f \cdot p)^* =]v, (f \cdot h)^*[.$$

1 The V-functor f is (co)continuous if it preserves all existing (co)limits in X.

Let $f: X \to Y, g: Y \to X, h: Z \to [X, Y]$ be \mathcal{V} -functors, $x \in X, Z \stackrel{\omega}{\longrightarrow} W$.

- If X is tensored: f is cocontinuous $\iff f$ preserves tensors and conical suprema.
- ② If X is cotensored: f is continuous \iff f preserves cotensors and conical infima.
- ③ $X(x,-): X \to \mathcal{V}$ is continuous, $X(-,x): X \to \mathcal{V}^{op}$ is cocontinuous.
- oclim^{ω} $(h: Z \to [X, Y])$ exists if $\operatorname{colim}^{\omega} \operatorname{ev}_{X} h$ exists in Y for all X, and it is then preserved by every $\operatorname{ev}_{X}: [X, Y] \to Y$.
- ⑤ $\mathbf{y}_X : X \to \mathcal{P}_{\mathcal{V}}X = [X^{\mathrm{op}}, \mathcal{V}]$ is continuous, $\mathbf{y}_X^{\sharp} : X \to \mathcal{P}_{\mathcal{V}}^{\sharp}X = [X, \mathcal{V}]^{\mathrm{op}}$ is cocontinuous.
- ⓐ If $f \dashv g$, then g is continuous and f is cocontinuous.

- ① Y complete: $g: Y \to X$ has a left adjoint V-functor \iff g is continuous.
- ② X cocomplete: $f: X \to Y$ has a right adjoint V-functor \iff f is cocontinuous.

Let $f: X \to Y, \ g: Y \to X, \ h: Z \to [X, Y]$ be \mathcal{V} -functors, $x \in X, \ Z \stackrel{\omega}{\longrightarrow} W$.

- If X is tensored: f is cocontinuous $\iff f$ preserves tensors and conical suprema.
- **3** If X is cotensored: f is continuous $\iff f$ preserves cotensors and conical infima.
- **③** $X(x,-): X \to \mathcal{V}$ is continuous, $X(-,x): X \to \mathcal{V}^{\text{op}}$ is cocontinuous.
- ocolim $^{\omega}(h: Z \to [X, Y])$ exists if $\operatorname{colim}^{\omega} \operatorname{ev}_{X} h$ exists in Y for all X, and it is then preserved by every $\operatorname{ev}_{X}: [X, Y] \to Y$.
- ⑤ $\mathbf{y}_X : X \to \mathcal{P}_{\mathcal{V}}X = [X^{\mathrm{op}}, \mathcal{V}]$ is continuous, $\mathbf{y}_X^{\sharp} : X \to \mathcal{P}_{\mathcal{V}}^{\sharp}X = [X, \mathcal{V}]^{\mathrm{op}}$ is cocontinuous.
- ⑤ If $f \dashv g$, then g is continuous and f is cocontinuous.

- ① Y complete: $g: Y \to X$ has a left adjoint V-functor \iff g is continuous.
- ② X cocomplete: $f: X \to Y$ has a right adjoint V-functor $\iff f$ is cocontinuous.

Let $f: X \to Y, g: Y \to X, h: Z \to [X, Y]$ be \mathcal{V} -functors, $x \in X, Z \stackrel{\omega}{\longrightarrow} W$.

- If X is tensored: f is cocontinuous $\iff f$ preserves tensors and conical suprema.
- **3** If *X* is cotensored: f is continuous $\iff f$ preserves cotensors and conical infima.
- **③** $X(x,-): X \to \mathcal{V}$ is continuous, $X(-,x): X \to \mathcal{V}^{\text{op}}$ is cocontinuous.
- olim^{ω} $(h: Z \to [X, Y])$ exists if $\operatorname{colim}^{\omega} \operatorname{ev}_{X} h$ exists in Y for all X, and it is then preserved by every $\operatorname{ev}_{X}: [X, Y] \to Y$.
- ⑤ $\mathbf{y}_X: X \to \mathcal{P}_{\mathcal{V}}X = [X^{\mathrm{op}}, \mathcal{V}]$ is continuous, $\mathbf{y}_X^{\sharp}: X \to \mathcal{P}_{\mathcal{V}}^{\sharp}X = [X, \mathcal{V}]^{\mathrm{op}}$ is cocontinuous.
- ⑤ If $f \dashv g$, then g is continuous and f is cocontinuous.

- ① Y complete: $g: Y \to X$ has a left adjoint V-functor \iff g is continuous.
- ② X cocomplete: $f: X \to Y$ has a right adjoint V-functor \iff f is cocontinuous.

Let $f: X \to Y, g: Y \to X, h: Z \to [X, Y]$ be \mathcal{V} -functors, $x \in X, Z \stackrel{\omega}{\longrightarrow} W$.

- If X is tensored: f is cocontinuous $\iff f$ preserves tensors and conical suprema.
- ② If X is cotensored: f is continuous $\iff f$ preserves cotensors and conical infima.
- **③** $X(x,-): X \to \mathcal{V}$ is continuous, $X(-,x): X \to \mathcal{V}^{\text{op}}$ is cocontinuous.
- oclim^{ω} $(h: Z \to [X, Y])$ exists if $\operatorname{colim}^{\omega} \operatorname{ev}_{x} h$ exists in Y for all x, and it is then preserved by every $\operatorname{ev}_{x}: [X, Y] \to Y$.
- ⑤ If $f \dashv g$, then g is continuous and f is cocontinuous.

- ① Y complete: $g: Y \to X$ has a left adjoint V-functor \iff g is continuous.
- ② X cocomplete: $f: X \to Y$ has a right adjoint V-functor \iff f is cocontinuous.

Let $f: X \to Y, g: Y \to X, h: Z \to [X, Y]$ be \mathcal{V} -functors, $x \in X, Z \stackrel{\omega}{\longrightarrow} W$.

- **1** If X is tensored: f is cocontinuous $\iff f$ preserves tensors and conical suprema.
- **3** If X is cotensored: f is continuous $\iff f$ preserves cotensors and conical infima.
- **③** $X(x,-): X \to \mathcal{V}$ is continuous, $X(-,x): X \to \mathcal{V}^{\text{op}}$ is cocontinuous.
- olim^{ω} $(h: Z \to [X, Y])$ exists if $\operatorname{colim}^{\omega} \operatorname{ev}_{X} h$ exists in Y for all X, and it is then preserved by every $\operatorname{ev}_{X}: [X, Y] \to Y$.
- **1** If $f \dashv g$, then g is continuous and f is cocontinuous.

Theorem (Adjoint Functor Theorem)

- **1** Y complete: $g: Y \to X$ has a left adjoint V-functor $\iff g$ is continuous.
- ② X cocomplete: $f: X \to Y$ has a right adjoint V-functor $\iff f$ is cocontinuous.

33/67

4.10 Completeness Theorem

Theorem

For every V-category X, the following statements are equivalent:

- (i) X is cocomplete;
- (ii) for every presheaf ω on X, the colimit of 1_X weighted by ω exists in X;
- (iii) $\mathbf{y}_X : X \to [X^{\mathrm{op}}, \mathcal{V}]$ has a left adjoint \mathcal{V} -functor;
- (iv) X is tensored, cotensored and order-complete;
 - (v) X is complete;
- (vi) for every copresheaf v on X, the limit of 1_X weighted by v exists in X;
- (vii) $\mathbf{y}_X^{\sharp}: X \to [X, \mathcal{V}]^{\mathrm{op}}$ has a right adjoint \mathcal{V} -functor.

4.10 Completeness Theorem

Theorem

For every V-category X, the following statements are equivalent:

- (i) X is cocomplete;
- (ii) for every presheaf ω on X, the colimit of 1_X weighted by ω exists in X;
- (iii) $\mathbf{y}_X : X \to [X^{\mathrm{op}}, \mathcal{V}]$ has a left adjoint \mathcal{V} -functor;
- (iv) X is tensored, cotensored and order-complete;
 - (v) X is complete,
- (vi) for every copresheaf v on X, the limit of 1_X weighted by v exists in X;
- (vii) $\mathbf{y}_X^{\sharp}: X \to [X, \mathcal{V}]^{\mathrm{op}}$ has a right adjoint \mathcal{V} -functor.

4.10 Completeness Theorem

Theorem

For every V-category X, the following statements are equivalent:

- (i) X is cocomplete;
- (ii) for every presheaf ω on X, the colimit of 1_X weighted by ω exists in X;
- (iii) $\mathbf{y}_X : X \to [X^{\mathrm{op}}, \mathcal{V}]$ has a left adjoint \mathcal{V} -functor;
- (iv) X is tensored, cotensored and order-complete;
- (v) X is complete,
- (vi) for every copresheaf v on X, the limit of 1_X weighted by v exists in X;
- (vii) $\mathbf{y}_X^{\sharp}: X \to [X, \mathcal{V}]^{\mathrm{op}}$ has a right adjoint \mathcal{V} -functor.

4.10 Completeness Theorem

Theorem

For every V-category X, the following statements are equivalent:

- (i) X is cocomplete;
- (ii) for every presheaf ω on X, the colimit of 1_X weighted by ω exists in X;
- (iii) $\mathbf{y}_X : X \to [X^{\mathrm{op}}, \mathcal{V}]$ has a left adjoint \mathcal{V} -functor;
- (iv) X is tensored, cotensored and order-complete;
- (v) X is complete;
- (vi) for every copresheaf v on X, the limit of 1_X weighted by v exists in X;
- (vii) $\mathbf{y}_X^{\sharp}: X \to [X, \mathcal{V}]^{\mathrm{op}}$ has a right adjoint \mathcal{V} -functor.

 $f: X \to Y$ fully faithful $\iff f^* \cdot f_* = 1_X^* \iff X(x, x') = Y(fx, fx')$ for all $x, x' \in X$

$$\psi_- = f_* \cdot \varphi$$
 and $\psi^- = [(f^*)^\circ, \varphi] = [(f^{\mathsf{op}})_*, \varphi]$

$$\psi_{-}y = \bigvee_{x \in X} Y(fx, y) \otimes \varphi x$$
 and $\psi^{-}y = \bigwedge_{x \in X} [Y(y, fx), \varphi x]$

 $f: X \to Y$ fully faithful $\iff f^* \cdot f_* = 1_X^* \iff X(x, x') = Y(fx, fx')$ for all $x, x' \in X$

$$\psi_- = f_* \cdot \varphi$$
 and $\psi^- = [(f^*)^\circ, \varphi] = [(f^{op})_*, \varphi]$

$$\psi_{-}y = \bigvee_{x \in X} Y(fx, y) \otimes \varphi x$$
 and $\psi^{-}y = \bigwedge_{x \in X} [Y(y, fx), \varphi x]$

 $f: X \to Y$ fully faithful $\iff f^* \cdot f_* = 1_X^* \iff X(x, x') = Y(fx, fx')$ for all $x, x' \in X$

$$\psi_- = \mathbf{f}_* \cdot \varphi \quad \text{and} \quad \psi^- = [(\mathbf{f}^*)^\circ, \varphi] = [(\mathbf{f}^{\mathsf{op}})_*, \varphi]$$

$$\psi_- y = \bigvee_{x \in X} Y(fx, y) \otimes \varphi x$$
 and $\psi^- y = \bigwedge_{x \in X} [Y(y, fx), \varphi x]$

 $f: X \to Y$ fully faithful $\iff f^* \cdot f_* = 1_X^* \iff X(x, x') = Y(fx, fx')$ for all $x, x' \in X$

$$\psi_- = f_* \cdot \varphi$$
 and $\psi^- = [(f^*)^\circ, \varphi] = [(f^{\mathsf{op}})_*, \varphi]$

$$\psi_- y = \bigvee_{x \in X} Y(fx, y) \otimes \varphi x$$
 and $\psi^- y = \bigwedge_{x \in X} [Y(y, fx), \varphi x]$

$$f \neq g: X \rightarrow Y, Y \text{ separated } \Longrightarrow \exists h: Y \rightarrow \mathcal{V}: hf \neq hg$$

$$\kappa_Y: Y \longrightarrow \mathcal{V}^{[Y,\mathcal{V}]} = \prod_{h \in [Y,\mathcal{V}]} \mathcal{V}, \quad y \longmapsto (hy)_{h \in [Y,\mathcal{V}]}$$

$$\pi_Y: \mathcal{V}^{[Y,\mathcal{V}]} \longrightarrow \mathcal{V}^Y, \quad (V_h)_{h \in [Y,\mathcal{V}]} \longmapsto (V_{\mathbf{y}_{YZ}^{\sharp}})_{z \in Y}$$

Theorem

 $\mathcal V$ is a regular cogenerator of the category $\mathcal V$ -Cat_{sep}, and it is injective with respect to fully faithful $\mathcal V$ -functors. Every separated $\mathcal V$ -category $\mathcal Y$ embeds fully into the $\mathcal Y$ -fold power $\mathcal V^{\mathcal Y}$ of $\mathcal V$, which is injective again.

$$f \neq g: X \rightarrow Y, Y \text{ separated } \Longrightarrow \exists h: Y \rightarrow \mathcal{V}: hf \neq hg$$

$$\kappa_{Y}: Y \longrightarrow \mathcal{V}^{[Y,\mathcal{V}]} = \prod_{h \in [Y,\mathcal{V}]} \mathcal{V}, \quad y \longmapsto (hy)_{h \in [Y,\mathcal{V}]}$$

$$\pi_Y: \mathcal{V}^{[Y,\mathcal{V}]} \longrightarrow \mathcal{V}^Y, \quad (V_h)_{h \in [Y,\mathcal{V}]} \longmapsto (V_{\mathbf{y}_{\mathcal{V}^Z}^{\sharp}})_{z \in Y}$$

Theorem

 ${\cal V}$ is a regular cogenerator of the category ${\cal V}\text{-}\mathbf{Cat}_{\rm sep}$, and it is injective with respect to fully faithful ${\cal V}$ -functors. Every separated ${\cal V}$ -category ${\cal Y}$ embeds fully into the ${\cal Y}$ -fold power ${\cal V}^{{\cal Y}}$ of ${\cal V}$, which is injective again.

$$f \neq g: X \rightarrow Y, Y \text{ separated } \Longrightarrow \exists h: Y \rightarrow \mathcal{V}: hf \neq hg$$

$$\kappa_{Y}: Y \longrightarrow \mathcal{V}^{[Y,\mathcal{V}]} = \prod_{h \in [Y,\mathcal{V}]} \mathcal{V}, \quad y \longmapsto (hy)_{h \in [Y,\mathcal{V}]}$$

$$\pi_Y: \mathcal{V}^{[Y,\mathcal{V}]} \longrightarrow \mathcal{V}^Y, \quad (v_h)_{h \in [Y,\mathcal{V}]} \longmapsto (v_{\mathbf{y}_Y^{\sharp} Z})_{Z \in Y}$$

Theorem

 ${\cal V}$ is a regular cogenerator of the category ${\cal V}\text{-}\mathbf{Cat}_{\rm sep}$, and it is injective with respect to fully faithful ${\cal V}$ -functors. Every separated ${\cal V}$ -category ${\cal Y}$ embeds fully into the ${\cal Y}$ -fold power ${\cal V}^{{\cal Y}}$ of ${\cal V}$, which is injective again.

$$f \neq g: X \rightarrow Y, Y \text{ separated } \Longrightarrow \exists h: Y \rightarrow \mathcal{V}: hf \neq hg$$

$$\kappa_{Y}: Y \longrightarrow \mathcal{V}^{[Y,\mathcal{V}]} = \prod_{h \in [Y,\mathcal{V}]} \mathcal{V}, \quad y \longmapsto (hy)_{h \in [Y,\mathcal{V}]}$$

$$\pi_{Y}: \mathcal{V}^{[Y,\mathcal{V}]} \longrightarrow \mathcal{V}^{Y}, \quad (v_{h})_{h \in [Y,\mathcal{V}]} \longmapsto (v_{\mathbf{y}_{\mathcal{V}}^{\sharp} \mathcal{Z}})_{z \in Y}$$

Theorem

 ${\cal V}$ is a regular cogenerator of the category ${\cal V}\text{-}\mathbf{Cat}_{\mathrm{sep}}$, and it is injective with respect to fully faithful ${\cal V}$ -functors. Every separated ${\cal V}$ -category ${\bf Y}$ embeds fully into the ${\bf Y}$ -fold power ${\cal V}^{{\bf Y}}$ of ${\cal V}$, which is injective again.

5.3.1 Colimit and limit completion of a \mathcal{V} -category

Every \mathcal{V} -presheaf ω on $X \in \mathcal{V}$ -Cat is a colimit of \mathbf{v}_X in $\mathcal{P}_{\mathcal{V}}X$ weighted by ω : $\omega \simeq \operatorname{colim}^{\omega}\mathbf{v}_X$.

$$E \xrightarrow{v} X$$

$$\uparrow \qquad \leq \qquad \downarrow$$

$$v^* \downarrow \qquad (\mathbf{y}_X^{\sharp})^*$$

$$\mathcal{P}_{\mathcal{V}}^{\sharp} X$$

Dually, every \mathcal{V} -copresheaf v on X is a limit of representables in $\mathcal{P}_{\mathcal{V}}^{\sharp}X$; that is: $v \simeq \lim^{v} \mathbf{y}_{\mathcal{V}}^{\sharp}$. Wanted for $f: X \to Y$, Y cocomplete/complete:

5.3.1 Colimit and limit completion of a \mathcal{V} -category

Every \mathcal{V} -presheaf ω on $X \in \mathcal{V}$ -Cat is a colimit of \mathbf{v}_X in $\mathcal{P}_{\mathcal{V}}X$ weighted by ω : $\omega \simeq \operatorname{colim}^{\omega}\mathbf{v}_X$.

$$\begin{array}{ccc}
E & \stackrel{\circ}{\longrightarrow} X \\
\uparrow & \leq & \\
v^* & \downarrow & (\mathbf{y}_X^{\sharp})^* \\
\mathcal{P}_{\mathcal{V}}^{\sharp} X
\end{array}$$

Dually, every \mathcal{V} -copresheaf v on X is a limit of representables in $\mathcal{P}_{\mathcal{V}}^{\sharp}X$; that is: $v \simeq \lim^{v} \mathbf{y}_{\mathbf{v}}^{\sharp}$. Wanted for $f: X \rightarrow Y$, Y cocomplete/complete:

Uniqueness:

$$\tilde{f}(\omega) \simeq \tilde{f}(\operatorname{colim}^{\omega} \mathbf{y}_{X}) \simeq \operatorname{colim}^{\omega}(\tilde{f}\mathbf{y}_{X}) \simeq \operatorname{colim}^{\omega} f$$

Existence

$$\tilde{f}(\omega) = \operatorname{colim}^{\omega} f \simeq \operatorname{colim}^{\omega \cdot f^*} \mathbf{1}_{Y}
\tilde{f} \simeq (\operatorname{colim}^{(-)} \mathbf{1}_{Y}) (\mathcal{P}_{\mathcal{V}} f^*)$$

$$\tilde{f}\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)(\mathcal{P}_V f^*)\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)\mathbf{y}_Y f \simeq f.$$

f is cocontinuous, as the composite of two left adjoints!

Uniqueness:

$$\tilde{f}(\omega) \simeq \tilde{f}(\operatorname{colim}^{\omega} \mathbf{y}_{X}) \simeq \operatorname{colim}^{\omega}(\tilde{f}\mathbf{y}_{X}) \simeq \operatorname{colim}^{\omega} f$$

Existence:

$$\tilde{f}(\omega) = \operatorname{colim}^{\omega} f \simeq \operatorname{colim}^{\omega \cdot f^*} 1_{Y}
\tilde{f} \simeq (\operatorname{colim}^{(-)} 1_{Y})(\mathcal{P}_{\mathcal{V}} f^*)$$

$$\tilde{f}\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)(\mathcal{P}_V f^*)\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)\mathbf{y}_Y f \simeq f.$$

 \tilde{f} is cocontinuous, as the composite of two left adjoints!

Uniqueness:

$$\tilde{f}(\omega) \simeq \tilde{f}(\operatorname{colim}^{\omega} \mathbf{y}_{X}) \simeq \operatorname{colim}^{\omega}(\tilde{f}\mathbf{y}_{X}) \simeq \operatorname{colim}^{\omega} f$$

Existence:

$$\tilde{f}(\omega) = \operatorname{colim}^{\omega} f \simeq \operatorname{colim}^{\omega \cdot f^*} 1_{Y}
\tilde{f} \simeq (\operatorname{colim}^{(-)} 1_{Y}) (\mathcal{P}_{\mathcal{V}} f^*)$$

$$\tilde{f}\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)(\mathcal{P}_V f^*)\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)\mathbf{y}_Y f \simeq f.$$

 \tilde{f} is cocontinuous, as the composite of two left adjoints!

Uniqueness:

$$\tilde{f}(\omega) \simeq \tilde{f}(\operatorname{colim}^{\omega} \mathbf{y}_{X}) \simeq \operatorname{colim}^{\omega}(\tilde{f}\mathbf{y}_{X}) \simeq \operatorname{colim}^{\omega} f$$

Existence:

$$\tilde{f}(\omega) = \operatorname{colim}^{\omega} f \simeq \operatorname{colim}^{\omega \cdot f^*} 1_{Y}
\tilde{f} \simeq (\operatorname{colim}^{(-)} 1_{Y}) (\mathcal{P}_{\mathcal{V}} f^*)$$

$$\tilde{f}\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)(\mathcal{P}_V f^*)\mathbf{y}_X \simeq (\operatorname{colim}^{(-)}\mathbf{1}_Y)\mathbf{y}_Y f \simeq f.$$

 \tilde{f} is cocontinuous, as the composite of two left adjoints!

5.4 Cocomplete V-categories as pseudo-algebras and as injectives

Theorem

The following properties for a V-category X are equivalent:

- (i) X is (co)complete;
- (ii) X carries the structure of a pseudo-algebra with respect to the presheaf monad on V-Cat;
- (iii) The Yoneda \mathcal{V} -functor \mathbf{y}_X has a pseudo-retraction; that is: there is a \mathcal{V} -functor $h: \mathcal{P}_{\mathcal{V}}X \to X$ with $h\mathbf{y}_X \simeq 1_X$;
- (iv) X is pseudo-injective in V-Cat with respect to fully faithful functors.

5.5.1 Cocomplete V-categories via cocontinuous action

Let X be a (co)complete preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying

- $(1) k \odot x \simeq x$
- $(2) \qquad (u \otimes v) \odot x \simeq u \odot (v \odot x)$
- $(3) \qquad (\bigvee_{i\in I} u_i) \odot x \simeq \bigvee_{i\in I} (u_i \odot x)$
- $(4) u \odot (\bigvee_{i \in I} x_i) \simeq \bigvee_{i \in I} (u \odot x_i)$

Condition (4) (= sup-preservation of every $u \odot - : X \longrightarrow X$) makes the (existing) sups in X conical colimits:

$$X(\bigvee_{i\in I}x_i,y)=\bigwedge_{i\in I}X(x_i,y).$$

Combine this with two fundamental enriched colimit formulae we have already seen:

$$(\operatorname{colim}^{\omega} h)(w) \simeq \bigvee_{z} \omega(z, w) \odot h(z) \qquad (h: Z \to X, \ \omega: Z^{\operatorname{op}} \otimes W \to V)$$

 $X(\operatorname{colim}^{\omega} 1_X, X) \simeq [X^{\operatorname{op}}, \mathcal{V}](\omega, \mathbf{y}_X X)$ $(\omega : X^{\operatorname{op}} \cong X^{\operatorname{op}} \otimes E \to \mathcal{V}), \text{ saying } \operatorname{colim}^{(-)} \dashv \mathbf{y}_X,$

Walter Tholen (York University)

5.5.1 Cocomplete V-categories via cocontinuous action

Let X be a (co)complete preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying

- $(1) k \odot x \simeq x$
- $(2) \qquad (u \otimes v) \odot x \simeq u \odot (v \odot x)$
- $(3) \qquad (\bigvee_{i\in I} u_i) \odot x \simeq \bigvee_{i\in I} (u_i \odot x)$
- $(4) u \odot (\bigvee_{i \in I} x_i) \simeq \bigvee_{i \in I} (u \odot x_i)$

Condition (4) (= sup-preservation of every $u \odot - : X \longrightarrow X$) makes the (existing) sups in X conical colimits:

$$X(\bigvee_{i\in I}x_i,y)=\bigwedge_{i\in I}X(x_i,y).$$

Combine this with two fundamental enriched colimit formulae we have already seen:

$$(\operatorname{colim}^{\omega} h)(w) \simeq \bigvee_{z} \omega(z, w) \odot h(z) \qquad (h: Z \to X, \ \omega: Z^{\operatorname{op}} \otimes W \to V)$$

 $X(\operatorname{colim}^{\omega} 1_X, X) \simeq [X^{\operatorname{op}}, \mathcal{V}](\omega, \mathbf{y}_X X) \qquad (\omega : X^{\operatorname{op}} \cong X^{\operatorname{op}} \otimes E \to \mathcal{V}), \text{ saying } \operatorname{colim}^{(-)} \dashv \mathbf{y}_X,$

to obtain.

Walter Tholen (York University)

5.5.1 Cocomplete V-categories via cocontinuous action

Let X be a (co)complete preordered set equipped with a map $\odot: \mathcal{V} \times X \longrightarrow X$ satisfying

- $(1) k \odot x \simeq x$
- $(2) \qquad (u \otimes v) \odot x \simeq u \odot (v \odot x)$
- $(3) \qquad (\bigvee_{i\in I} u_i) \odot x \simeq \bigvee_{i\in I} (u_i \odot x)$
- $(4) u \odot (\bigvee_{i \in I} x_i) \simeq \bigvee_{i \in I} (u \odot x_i)$

Condition (4) (= sup-preservation of every $u \odot - : X \longrightarrow X$) makes the (existing) sups in X conical colimits:

$$X(\bigvee_{i\in I}x_i,y)=\bigwedge_{i\in I}X(x_i,y).$$

Combine this with two fundamental enriched colimit formulae we have already seen:

$$(\operatorname{colim}^{\omega} h)(w) \simeq \bigvee_{z} \omega(z, w) \odot h(z) \qquad (h: Z \to X, \ \omega: Z^{\operatorname{op}} \otimes W \to V)$$

$$X(\operatorname{colim}^{\omega} \mathbf{1}_X, x) \simeq [X^{\operatorname{op}}, \mathcal{V}](\omega, \mathbf{y}_X x) \qquad (\omega : X^{\operatorname{op}} \cong X^{\operatorname{op}} \otimes E \to \mathcal{V}), \text{ saying } \operatorname{colim}^{(-)} \dashv \mathbf{y}_X,$$

to obtain:

5.5.2 Cocomplete V-categories via cocontinuous action: Theorem

Theorem (Folklore 19??)

There are 2-equivalences

$$\mathcal{V}\text{-Cat}^{\mathcal{P}_{\cong}} \simeq \mathcal{V}\text{-Cat}_{\operatorname{colim}} \simeq (\text{Ord}_{\sup})^{\mathcal{V}}$$

 \mathcal{V} -Cat $_{colim}$:

(co)complete $\mathcal V$ -categories, with cocontinuous $\mathcal V$ -functors

 $\mathsf{Ord}^{\mathcal{V}}_{\sup}$:

(co)complete preordered sets on which $\mathcal V$ acts satisfying conditions (1), (2), (3), (4), with sup-preserving and pseudo-equivariant maps

Corollary

There are 2-equivalences

$$(\mathcal{V} ext{-}\mathsf{Cat}_{ ext{sep}})^{\mathcal{P}}\simeq \mathcal{V} ext{-}\mathsf{Cat}_{ ext{sep, colim}}\simeq \mathsf{Sup}^{\mathcal{V}}$$

5.5.2 Cocomplete V-categories via cocontinuous action: Theorem

Theorem (Folklore 19??)

There are 2-equivalences

$$\mathcal{V} ext{-Cat}^{\mathcal{P}_{\simeq}}\simeq \mathcal{V} ext{-Cat}_{ ext{colim}}\simeq (\mathsf{Ord}_{ ext{sup}})^{\mathcal{V}}$$

 \mathcal{V} -Cat $_{colim}$:

(co)complete $\mathcal V$ -categories, with cocontinuous $\mathcal V$ -functors

 $\mathsf{Ord}^{\mathcal{V}}_{\mathsf{sup}}$:

(co)complete preordered sets on which V acts satisfying conditions (1), (2), (3), (4), with sup-preserving and pseudo-equivariant maps

Corollary

There are 2-equivalences

$$(\mathcal{V} ext{-}\mathsf{Cat}_{\operatorname{sep}})^{\mathcal{P}}\simeq \mathcal{V} ext{-}\mathsf{Cat}_{\operatorname{sep,\,colim}}\simeq \mathsf{Sup}^{\mathcal{V}}$$

5.6.1 Presenting conically cocomplete V-categories algebraically?

Consider moving from the presheaf-monad \mathcal{P} on \mathcal{V} -Cat:

$$\mathcal{P}: \mathcal{V} ext{-Cat} \longrightarrow \mathcal{V} ext{-Cat}, \quad X \longmapsto [X^{\operatorname{op}}, \mathcal{V}], \quad \mathcal{P}X(\sigma, \tau) = \bigwedge_{z \in X} [\sigma z, \tau z]$$

to the Hausdorff submonad ${\cal H}$ via

$$j_X: \mathcal{H}X = \{A \mid A \subseteq X\} \longrightarrow \mathcal{P}X, \quad A \longmapsto (z \mapsto X(z,A) = \bigvee_{x \in A} X(z,x)).$$

where $\mathcal{H}X$ carries the initial (= cartesian) structure inherited from $\mathcal{P}X$ via j_X :

$$\mathcal{H}X(A,B) = \bigwedge_{z \in X} \left[\bigvee_{x \in A} X(z,x), \bigvee_{y \in B} X(z,y) \right] = \dots = \bigwedge_{x \in A} \bigvee_{y \in B} X(x,y).$$

5.6.1 Presenting conically cocomplete V-categories algebraically?

Consider moving from the presheaf-monad P on V-Cat:

$$\mathcal{P}: \mathcal{V} ext{-Cat} \longrightarrow \mathcal{V} ext{-Cat}, \quad X \longmapsto [X^{\operatorname{op}}, \mathcal{V}], \quad \mathcal{P}X(\sigma, \tau) = \bigwedge_{z \in X} [\sigma z, \tau z]$$

to the Hausdorff submonad ${\cal H}$ via

$$j_X: \mathcal{H}X = \{A \mid A \subseteq X\} \longrightarrow \mathcal{P}X, \quad A \longmapsto (z \mapsto X(z,A) = \bigvee_{x \in A} X(z,x)).$$

where $\mathcal{H}X$ carries the initial (= cartesian) structure inherited from $\mathcal{P}X$ via j_X :

$$\mathcal{H}X(A,B) = \bigwedge_{z \in X} \left[\bigvee_{x \in A} X(z,x), \bigvee_{y \in B} X(z,y) \right] = \dots = \bigwedge_{x \in A} \bigvee_{y \in B} X(x,y).$$

5.6.2 Algebraic presentation of conically cocomplete V-categories

Theorem (Akhvlediani-Clementino-T 2009, Stubbe 2009)

Just like \mathcal{P} , also \mathcal{H} becomes a lax-idempotent monad of the 2-category \mathcal{V} -Cat, lifting the power-set monad of Set, and making $j:\mathcal{H}\longrightarrow\mathcal{P}$ a monad morphism, which induces the forgetful functor

$$(\mathcal{V}\text{-Cat})^{\mathcal{P}_{\cong}} \simeq \mathcal{V}\text{-Cat}_{\operatorname{colim}} \longrightarrow \mathcal{V}\text{-Cat}_{\operatorname{consup}} \simeq (\mathcal{V}\text{-Cat})^{\mathcal{H}_{\cong}},$$

 \mathcal{V} -Cat $_{\mathrm{colim}}$:

(co)complete (= all weighted (co)limts exist) $\mathcal V$ -categories, with cocontinous $\mathcal V$ -functors;

 $\mathcal{V} ext{-} extbf{Cat}_{consup}:$

 $\textit{conically cocomplete (= sups \ exist, \ Yoneda \ preserves)} \ \mathcal{V}\textit{-cats, with sup-preserving} \ \mathcal{V}\textit{-funs}$

• Monadicity:

Self-duality:

$$V$$
-Cat_{sep,colim} \longrightarrow $(V$ -Cat_{sep,colim})^{op}

$$egin{array}{ccccc} X & & \longmapsto & & X^{\mathrm{op}} \\ \downarrow f \dashv & f_* & & & & & \uparrow (f_*)^{\mathrm{op}} \\ Y & & \longmapsto & & Y^{\mathrm{op}} \end{array}$$

Monadicity:

Self-duality:

$$\mathcal{V}\text{-Cat}_{sep,colim} \xrightarrow{\cong} (\mathcal{V}\text{-Cat}_{sep,colim})^{op}$$

$$X \longrightarrow X^{\mathrm{op}}$$
 $\downarrow f - \downarrow f_* \qquad \qquad \downarrow (f_*)^{\mathrm{op}}$
 Y^{op}

Monadicity:

Self-duality:

$$\mathcal{V}$$
-Cat_{sep,colim} $\xrightarrow{\cong}$ $(\mathcal{V}$ -Cat_{sep,colim})^{op}

Monadicity:

Self-duality:

$$\mathcal{V}$$
-Cat_{sep,colim} $\xrightarrow{\cong}$ $(\mathcal{V}$ -Cat_{sep,colim})^{op}

5.8 V-Cat_{sep,colim} is symmetric monoidal closed

Having an equational presentation of separated cocomplete V-categories, we construct the tensor product classifying "bimorphisms" in a standard manner:

Given objects X, Y, form the free object $\mathcal{P}_d(X \times Y)$ (with the \mathcal{V} -powerset monad of **Set**) and then put

$$X \boxtimes Y = \mathcal{P}_{d}(X \times Y) / \sim$$

with the least congruence relation \sim making the Yoneda map $\mathbf{y}: X \times Y \longrightarrow \mathcal{P}_d(X \times Y)/\sim$ a bimorphism; so, \sim is generated by:

$$\mathbf{y}(u \odot x, y) \sim u \odot \mathbf{y}(x, y) \sim \mathbf{y}(x, u \odot y),$$

$$\mathbf{y}(\bigvee_{i \in I} x_i, y) \sim \bigvee_{i \in I} \mathbf{y}(x_i, y), \qquad \mathbf{y}(x, \bigvee_{i \in I} y_i) \sim \bigvee_{i \in I} \mathbf{y}(x, y_i)$$

5.8 V-Cat_{sep,colim} is symmetric monoidal closed

Having an equational presentation of separated cocomplete \mathcal{V} -categories, we construct the tensor product classifying "bimorphisms" in a standard manner:

Given objects X, Y, form the free object $\mathcal{P}_d(X \times Y)$ (with the \mathcal{V} -powerset monad of **Set**) and then put

$$X \boxtimes Y = \mathcal{P}_{d}(X \times Y) / \sim$$

with the least congruence relation \sim making the Yoneda map $\mathbf{y}: X \times Y \longrightarrow \mathcal{P}_d(X \times Y)/\sim$ a bimorphism; so, \sim is generated by:

$$\mathbf{y}(u \odot x, y) \sim u \odot \mathbf{y}(x, y) \sim \mathbf{y}(x, u \odot y),$$

$$\mathbf{y}(\bigvee_{i \in I} x_i, y) \sim \bigvee_{i \in I} \mathbf{y}(x_i, y), \qquad \mathbf{y}(x, \bigvee_{i \in I} y_i) \sim \bigvee_{i \in I} \mathbf{y}(x, y_i)$$

5.8 V-Cat_{sep,colim} is symmetric monoidal closed

Having an equational presentation of separated cocomplete \mathcal{V} -categories, we construct the tensor product classifying "bimorphisms" in a standard manner:

Given objects X, Y, form the free object $\mathcal{P}_d(X \times Y)$ (with the \mathcal{V} -powerset monad of **Set**) and then put

$$X \boxtimes Y = \mathcal{P}_{d}(X \times Y) / \sim$$

with the least congruence relation \sim making the Yoneda map $\mathbf{y}: X \times Y \longrightarrow \mathcal{P}_d(X \times Y)/\sim$ a bimorphism; so, \sim is generated by:

$$\mathbf{y}(u \odot x, y) \sim u \odot \mathbf{y}(x, y) \sim \mathbf{y}(x, u \odot y),$$

$$\mathbf{y}(\bigvee_{i \in I} x_i, y) \sim \bigvee_{i \in I} \mathbf{y}(x_i, y), \qquad \mathbf{y}(x, \bigvee_{i \in I} y_i) \sim \bigvee_{i \in I} \mathbf{y}(x, y_i)$$

$$s=(x_n)_{n\in\mathbb{N}}$$
 sequence in $X\in\mathcal{V} ext{-}\mathbf{Cat}, x\in X$

Cauchy(
$$s$$
) := $\bigvee_{N \in \mathbb{N}} \bigwedge_{m,n \geq N} X(x_m, x_n)$
 s is Cauchy : \iff k \leq Cauchy(s)

$$\lambda_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_n, x)$$
 ("left-convergence value of $s \rightsquigarrow x$ ") $\rho_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x, x_n)$ ("right-convergence value of $s \rightsquigarrow x$ ")

Facts:

$$E \stackrel{\lambda_s}{\longrightarrow} X$$
, $X \stackrel{\rho_s}{\longrightarrow} E$, with $\lambda_s \cdot \rho_s \leq 1_X^*$
s Cauchy $\iff 1_E^* \leq \rho_s \cdot \lambda_s \iff \lambda_s \dashv \rho_s$

Definitions

$$s \rightsquigarrow x : \iff k \le \bigvee_{N \in \mathbb{N}} (\bigwedge_{m \ge N} X(x_m, x) \otimes \bigwedge_{n \ge N} X(x, x_n)) \iff k \le \lambda_s(x) \otimes \rho_s(x)$$

$$s = (x_n)_{n \in \mathbb{N}}$$
 sequence in $X \in \mathcal{V}$ -Cat, $x \in X$

$$\begin{aligned} \operatorname{Cauchy}(s) &:= \bigvee_{N \in \mathbb{N}} \bigwedge_{m,n \geq N} X(x_m, x_n) \\ s &\text{ is Cauchy} :\iff \mathsf{k} \leq \operatorname{Cauchy}(s) \end{aligned}$$

$$\lambda_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_n, x)$$
 ("left-convergence value of $s \rightsquigarrow x$ ") $\rho_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x, x_n)$ ("right-convergence value of $s \rightsquigarrow x$ ")

Facts:

$$E \stackrel{\lambda_s}{\longrightarrow} X$$
, $X \stackrel{\rho_s}{\longrightarrow} E$, with $\lambda_s \cdot \rho_s \leq 1_X^*$
 s Cauchy $\iff 1_E^* \leq \rho_s \cdot \lambda_s \iff \lambda_s \dashv \rho_s$

Definitions

$$s \rightsquigarrow x : \iff k \le \bigvee_{N \in \mathbb{N}} (\bigwedge_{m \ge N} X(x_m, x) \otimes \bigwedge_{n \ge N} X(x, x_n)) \iff k \le \lambda_s(x) \otimes \rho_s(x)$$

$$s = (x_n)_{n \in \mathbb{N}}$$
 sequence in $X \in \mathcal{V}$ -Cat, $x \in X$

Cauchy(
$$s$$
) := $\bigvee_{N \in \mathbb{N}} \bigwedge_{m,n \geq N} X(x_m, x_n)$
 s is Cauchy : \iff k \leq Cauchy(s)

$$\lambda_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_n, x)$$
 ("left-convergence value of $s \rightsquigarrow x$ ") $\rho_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x, x_n)$ ("right-convergence value of $s \rightsquigarrow x$ ")

Facts:

$$E \stackrel{\lambda_s}{\longrightarrow} X$$
, $X \stackrel{\rho_s}{\longrightarrow} E$, with $\lambda_s \cdot \rho_s \leq 1_X^*$
 s Cauchy $\iff 1_E^* \leq \rho_s \cdot \lambda_s \iff \lambda_s \dashv \rho_s$

Definitions

$$s \rightsquigarrow x : \iff k \leq \bigvee_{N \in \mathbb{N}} (\bigwedge_{m \geq N} X(x_m, x) \otimes \bigwedge_{n \geq N} X(x, x_n)) \iff k \leq \lambda_s(x) \otimes \rho_s(x)$$

$$s=(x_n)_{n\in\mathbb{N}}$$
 sequence in $X\in\mathcal{V}$ -Cat, $x\in X$

Cauchy(
$$s$$
) := $\bigvee_{N \in \mathbb{N}} \bigwedge_{m,n \geq N} X(x_m, x_n)$
 s is Cauchy : \iff k \leq Cauchy(s)

$$\lambda_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_n, x)$$
 ("left-convergence value of $s \rightsquigarrow x$ ") $\rho_s(x) := \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x, x_n)$ ("right-convergence value of $s \rightsquigarrow x$ ")

Facts:

$$E \stackrel{\lambda_s}{\longrightarrow} X$$
, $X \stackrel{\rho_s}{\longrightarrow} E$, with $\lambda_s \cdot \rho_s \leq 1_X^*$
 s Cauchy $\iff 1_F^* \leq \rho_s \cdot \lambda_s \iff \lambda_s \dashv \rho_s$

Definitions:

$$s \rightsquigarrow x : \iff k \leq \bigvee_{N \in \mathbb{N}} (\bigwedge_{m \geq N} X(x_m, x) \otimes \bigwedge_{n \geq N} X(x, x_n)) \iff k \leq \lambda_s(x) \otimes \rho_s(x)$$

$$\textbf{\textit{X} Lawvere-complete}: \quad \Longleftrightarrow \quad \forall \; \varphi \; \dashv \psi: \; \textbf{\textit{X}} -\!\!\!\! \leadsto \textbf{\textit{W}} \; \; \exists \; f: \textbf{\textit{W}} \longrightarrow \textbf{\textit{X}}: \varphi = f_*, \; \psi = f^*$$

$$\iff \ \forall \ \varphi \dashv \psi: \ \textit{$X - \!\!\!\! - \!\!\!\! > \!\!\!\! E} \ \exists \ \textit{$x \in X : \varphi = \textit{x_*}, \ \psi = \textit{x^*}}$$

→ X Cauchy-complete

Conversely'

Auxiliary conditions on ${\mathcal V}$

$$\mathcal V$$
 integral $(k=\top)$ and $\exists (\varepsilon_n)_{n\in\mathbb N}$ in $\mathcal V$: 1. $\varepsilon_n\leq \varepsilon_{n+1},\ 2.\ \varepsilon_n\ll k,\ 3.\ \bigvee_{n\in\mathbb N}\varepsilon_n=k$

Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X : \varphi = \lambda_s, \ \psi = \rho_s$

Theorem (Hofmann-Reis 2018)

$${\it X}$$
 Lawvere-complete : $\iff \forall \ \varphi \ \exists \ {\it Y} : {\it X} \longrightarrow {\it W} \ \exists \ {\it f} : {\it W} \longrightarrow {\it X} : \varphi = {\it f}_*, \ \psi = {\it f}^*$

$$\iff \forall \varphi \dashv \psi : X \longrightarrow E \exists x \in X : \varphi = X_*, \psi = X^*$$

 \implies X Cauchy-complete

Conversely'

Auxiliary conditions on ${\mathcal V}$

$$\mathcal{V}$$
 integral $(k = \top)$ and $\exists (\varepsilon_n)_{n \in \mathbb{N}}$ in $\mathcal{V} : 1$. $\varepsilon_n \le \varepsilon_{n+1}$, $z \in \mathbb{N}$ 2. $\varepsilon_n \ll k$, $z \in \mathbb{N}$ 3. $\forall k \in \mathbb{N}$

Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X : \varphi = \lambda_s, \ \psi = \rho_s$

Theorem (Hofmann-Reis 2018)

$$X$$
 Lawvere-complete : $\iff \forall \varphi \dashv \psi : X \longrightarrow W \exists f : W \longrightarrow X : \varphi = f_*, \psi = f^*$

 $\iff \ \forall \ \varphi \ \neg \psi: \ \textit{\textbf{X}} - \!\!\!\! \leadsto \textit{\textbf{E}} \ \exists \ \textit{\textbf{x}} \in \textit{\textbf{X}}: \varphi = \textit{\textbf{x}}_*, \ \psi = \textit{\textbf{x}}^*$

 \implies X Cauchy-complete

Conversely?

Auxiliary conditions on ${\mathcal V}$

$$\mathcal V$$
 integral $(k=\top)$ and $\exists (\varepsilon_n)_{n\in\mathbb N}$ in $\mathcal V$: 1. $\varepsilon_n\leq \varepsilon_{n+1},\ 2.\ \varepsilon_n\ll k,\ 3.\ \bigvee_{n\in\mathbb N}\varepsilon_n=k$

Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X : \varphi = \lambda_s, \ \psi = \rho_s$

Theorem (Hofmann-Reis 2018)

$$X$$
 Lawvere-complete : $\iff \forall \varphi \dashv \psi: X \longrightarrow W \exists f: W \longrightarrow X: \varphi = f_*, \psi = f^* \Leftrightarrow \forall \varphi \dashv \psi: X \longrightarrow E \exists x \in X: \varphi = x_*, \psi = x^*$ $\Longrightarrow X$ Cauchy-complete

Conversely?

Auxiliary conditions on V:

$$\mathcal V$$
 integral $(\mathbf k=\top)$ and $\exists \ (\varepsilon_n)_{n\in\mathbb N} \ \text{in} \ \mathcal V: 1. \ \varepsilon_n\leq \varepsilon_{n+1}, \ 2. \ \varepsilon_n\ll \mathbf k, \ 3. \ \bigvee_{n\in\mathbb N} \varepsilon_n=\mathbf k$

Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X : \varphi = \lambda_s, \ \psi = \rho_s$

Theorem (Hofmann-Reis 2018)

$$X$$
 Lawvere-complete : $\iff \forall \ \varphi \dashv \psi : \ X \longrightarrow W \ \exists \ f : W \longrightarrow X : \varphi = f_*, \ \psi = f^* \\ \iff \forall \ \varphi \dashv \psi : \ X \longrightarrow E \ \exists \ x \in X : \varphi = x_*, \ \psi = x^* \\ \implies X \text{ Cauchy-complete}$

Conversely?

Auxiliary conditions on V:

$$\mathcal V$$
 integral $(\mathbf k=\top)$ and $\exists \ (\varepsilon_n)_{n\in\mathbb N} \ \text{in} \ \mathcal V: 1. \ \varepsilon_n\leq \varepsilon_{n+1}, \ 2. \ \varepsilon_n\ll \mathbf k, \ 3. \ \bigvee_{n\in\mathbb N} \varepsilon_n=\mathbf k$

Then:
$$\forall \varphi \dashv \psi \exists s$$
 Cauchy in $X : \varphi = \lambda_s, \ \psi = \rho_s$

Theorem (Hofmann-Reis 2018)

$$X$$
 Lawvere-complete : $\iff \forall \varphi \dashv \psi : X \longrightarrow W \exists f : W \longrightarrow X : \varphi = f_*, \ \psi = f^* \Leftrightarrow \forall \varphi \dashv \psi : X \longrightarrow E \exists x \in X : \varphi = x_*, \ \psi = x^*$ $\Longrightarrow X$ Cauchy-complete

Conversely?

Auxiliary conditions on V:

$$\mathcal V$$
 integral $(\mathbf k=\top)$ and $\exists \ (\varepsilon_n)_{n\in\mathbb N} \ \text{in} \ \mathcal V: 1. \ \varepsilon_n\leq \varepsilon_{n+1}, \ 2. \ \varepsilon_n\ll \mathbf k, \ 3. \ \bigvee_{n\in\mathbb N} \varepsilon_n=\mathbf k$

Then: $\forall \varphi \dashv \psi \exists s$ Cauchy in $X : \varphi = \lambda_s, \ \psi = \rho_s$

Theorem (Hofmann-Reis 2018)

W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;

W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;

W3 if $Y \stackrel{\psi}{\longrightarrow} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;

W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all V-distributors; trivially, it is monadic.

Least cocompletion class: $\{f^* \mid f \ \mathcal{V}\text{-functor}\}$; it may obviously fail to be monadic.

Lawvere cocompletion class: $\{\psi \mid \psi \text{ right adjoint}\}$; it fails to be monadic already for $\mathcal{V}=2$

 $X \in \mathcal{V}$ -Cat is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;

W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;

W3 if $Y \stackrel{\psi}{\longrightarrow} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;

W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all V-distributors; trivially, it is monadic.

Least cocompletion class: $\{f^* \mid f \ \mathcal{V}\text{-functor}\}$; it may obviously fail to be monadic.

Lawvere cocompletion class: $\{\psi \mid \psi \text{ right adjoint}\}$; it fails to be monadic already for $\mathcal{V}=2$

 $X \in \mathcal{V}$ -Cat is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;

W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;

W3 if $Y \xrightarrow{\psi} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;

W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all \mathcal{V} -distributors; trivially, it is monadic.

Least cocompletion class: $\{f^* \mid f \ \mathcal{V}\text{-functor}\}$; it may obviously fail to be monadic.

Lawvere cocompletion class: $\{\psi \mid \psi \text{ right adjoint}\}$; it fails to be monadic already for $\mathcal{V}=2$

 $X \in \mathcal{V}$ -Cat is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

- W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;
- W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;
- W3 if $Y \xrightarrow{\psi} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
- W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.
- Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.
- Largest cocompletion class: all V-distributors; trivially, it is monadic.
- Least cocompletion class: $\{f^* \mid f \ \mathcal{V}\text{-functor}\}$; it may obviously fail to be monadic.
- Lawvere cocompletion class: $\{\psi \mid \psi \text{ right adjoint}\}$; it fails to be monadic already for $\mathcal{V}=2$
- $X \in \mathcal{V}$ -Cat is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.
- $f: X \to Y$ is Φ -cocontinuous: \iff f preserves Φ -weighted colimits of X.

```
W1 f^* \in \Phi, for every \mathcal{V}-functor f;
```

W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;

W3 if $Y \stackrel{\psi}{\longrightarrow} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;

W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all V-distributors; trivially, it is monadic.

Lawvere cocompletion class: $\{T \mid T \ V$ -functor $\}$; it may obviously fall to be monadic. Lawvere cocompletion class: $\{\psi \mid \psi \text{ right adjoint}\}$; it fails to be monadic already for $\mathcal{V}=2$

 $X \in \mathcal{V}$ -Cat is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

```
W1 f^* \in \Phi, for every \mathcal{V}-functor f;
```

W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;

W3 if $Y \stackrel{\psi}{\longrightarrow} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;

W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 $\Phi \ \ \textit{cocompletion class} : \iff \text{(W1-3) hold;} \ \ \Phi \ \ \textit{monadic cocompl. class} : \iff \text{(W1-4) hold.}$

Largest cocompletion class: all \mathcal{V} -distributors; trivially, it is monadic.

Least cocompletion class: $\{f^* \mid f \ \mathcal{V}\text{-functor}\}$; it may obviously fail to be monadic.

Lawvere cocompletion class: $\{\psi \mid \psi \text{ right adjoint}\}$; it fails to be monadic already for $\mathcal{V}=2$

 $X \in \mathcal{V}$ -Cat is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

```
W1 f^* \in \Phi, for every \mathcal{V}-functor f;
```

W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;

W3 if $Y \stackrel{\psi}{\longrightarrow} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;

W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all V-distributors; trivially, it is monadic.

Least cocompletion class: $\{f^* \mid f \ \mathcal{V}\text{-functor}\}$; it may obviously fail to be monadic.

Lawvere cocompletion class: $\{\psi \mid \psi \text{ right adjoint}\}$; it fails to be monadic already for $\mathcal{V}=2$.

 $X \in \mathcal{V}$ -Cat is Φ -cocomplete $:\iff$ all colimits of diagrams in X with weights in Φ exist.

```
W1 f^* \in \Phi, for every \mathcal{V}-functor f;
```

W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;

W3 if $Y \stackrel{\psi}{\longrightarrow} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;

W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.

 Φ cocompletion class : \iff (W1-3) hold; Φ monadic cocompl. class : \iff (W1-4) hold.

Largest cocompletion class: all V-distributors; trivially, it is monadic.

Least cocompletion class: $\{f^* \mid f \ \mathcal{V}\text{-functor}\}$; it may obviously fail to be monadic.

Lawvere cocompletion class: $\{\psi \mid \psi \text{ right adjoint}\}$; it fails to be monadic already for $\mathcal{V}=2$.

 $X \in \mathcal{V}$ -Cat is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.

- W1 $f^* \in \Phi$, for every \mathcal{V} -functor f;
- W2 $f^* \cdot \psi$, $\psi \cdot g^*$, $\psi \cdot h_* \in \Phi$, for all $\psi \in \Phi$ and \mathcal{V} -functors f, g, h with $h_* \in \Phi$, provided that the composites are defined;
- W3 if $Y \stackrel{\psi}{\longrightarrow} X$ satisfies $x^* \cdot \psi \in \Phi$ for all $x \in X$, then $\psi \in \Phi$;
- W4 $f_* \in \Phi$, for every surjective \mathcal{V} -functor f.
- $\Phi \ \ \textit{cocompletion class} : \iff \text{(W1-3) hold;} \ \ \Phi \ \ \textit{monadic cocompl. class} : \iff \text{(W1-4) hold.}$
- Largest cocompletion class: all V-distributors; trivially, it is monadic.
- Least cocompletion class: $\{f^* \mid f \ \mathcal{V}\text{-functor}\}$; it may obviously fail to be monadic.
- Lawvere cocompletion class: $\{\psi \mid \psi \text{ right adjoint}\}$; it fails to be monadic already for $\mathcal{V}=2$.
- $X \in \mathcal{V}$ -Cat is Φ -cocomplete : \iff all colimits of diagrams in X with weights in Φ exist.
- $f: X \to Y$ is Φ -cocontinuous: $\iff f$ preserves Φ -weighted colimits of X.

For a cocompletion class Φ call

 $f: X \to Y \Phi$ -dense $: \iff f_* \in \Phi$;

X pseudo-Φ-injective : \iff X pseudo-injective wrt fully faithful Φ-dense V-functors;

Pu

$$X \xrightarrow{\mathbf{y}_{X}^{\Phi}} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_{X}^{\Phi}} \mathcal{P}X$$

- f has a right adjoint $\Longrightarrow f$ Φ -dense;
- f and $g: Y \to Z$ Φ -dense $\Longrightarrow g \cdot f$ Φ -dense;
- $g \cdot f$ Φ -dense and $f_* \cdot f^* = 1_V^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f$ Φ -dense and g fully faithful $\Longrightarrow f$ Φ -dense;
- \mathbf{y}_{X}^{Φ} is Φ -dense;
- $(Y \stackrel{\psi}{\longrightarrow} X) \in \Phi \iff \text{the mate } \psi^{\sharp}: X \to \mathcal{P}Y \text{ factors through } \inf_{X \to \emptyset} X.$

For a cocompletion class Φ call

 $f: X \to Y \Phi$ -dense $: \iff f_* \in \Phi$;

X pseudo-Φ-*injective* : \iff *X* pseudo-injective wrt fully faithful Φ-dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_{X}^{\Phi}} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_{X}^{\Phi}} \mathcal{P}X$$

- f has a right adjoint $\Longrightarrow f$ Φ -dense;
- f and $g: Y \to Z$ Φ -dense $\Longrightarrow g \cdot f$ Φ -dense;
- $g \cdot f$ Φ -dense and $f_* \cdot f^* = 1_V^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f$ Φ -dense and g fully faithful $\Longrightarrow f$ Φ -dense;
- \mathbf{y}_{X}^{Φ} is Φ -dense;
- $(Y \stackrel{\psi}{\longrightarrow} X) \in \Phi \iff \text{the mate } \psi^{\sharp}: X \to \mathcal{P}Y \text{ factors through inc} \chi^{\bullet}$.

For a cocompletion class Φ call

$$f: X \to Y \Phi$$
-dense $: \iff f_* \in \Phi$;

X pseudo-Φ-injective : \iff X pseudo-injective wrt fully faithful Φ-dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_{X}^{\Phi}} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_{X}^{\Phi}} \mathcal{P}X$$

- f has a right adjoint $\Longrightarrow f$ Φ -dense;
- f and $g: Y \to Z$ Φ -dense $\Longrightarrow g \cdot f$ Φ -dense;
- $g \cdot f$ Φ -dense and $f_* \cdot f^* = 1_V^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f$ Φ -dense and g fully faithful $\Longrightarrow f$ Φ -dense;
- \mathbf{y}_{X}^{Φ} is Φ -dense;
- $(Y \stackrel{\psi}{\longrightarrow} X) \in \Phi \iff \text{the mate } \psi^{\sharp}: X \to \mathcal{P}Y \text{ factors through inc} \Phi$.

For a cocompletion class Φ call

$$f: X \to Y \Phi$$
-dense $: \iff f_* \in \Phi$;

X pseudo-Φ-injective : \iff X pseudo-injective wrt fully faithful Φ-dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_{X}^{\Phi}} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_{X}^{\Phi}} \mathcal{P}X$$

- f has a right adjoint $\Longrightarrow f$ Φ -dense;
- f and $g: Y \to Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f$ Φ -dense and $f_* \cdot f^* = 1^*_V \Longrightarrow g \Phi$ -dense;
- $g \cdot f$ Φ -dense and g fully faithful $\Longrightarrow f$ Φ -dense;
- \mathbf{y}_{X}^{Φ} is Φ -dense;
- $(Y \stackrel{\psi}{\longrightarrow} X) \in \Phi \iff \text{the mate } \psi^{\sharp}: X \to \mathcal{P}Y \text{ factors through inc} X$.

For a cocompletion class Φ call

$$f: X \to Y \Phi$$
-dense $: \iff f_* \in \Phi$;

X pseudo-Φ-injective : \iff X pseudo-injective wrt fully faithful Φ-dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_{X}^{\Phi}} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_{X}^{\Phi}} \mathcal{P}X$$

- f has a right adjoint $\Longrightarrow f$ Φ -dense;
- f and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f \Phi$ -dense and $f_* \cdot f^* = 1_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f$ Φ -dense and g fully faithful $\Longrightarrow f$ Φ -dense;
- \mathbf{y}_{X}^{Φ} is Φ -dense;
- $(Y \stackrel{\psi}{\longrightarrow} X) \in \Phi \iff \text{the mate } \psi^{\sharp}: X \to \mathcal{P}Y \text{ factors through } \operatorname{inc}_{X}^{\Phi}.$

For a cocompletion class Φ call

$$f: X \to Y \Phi$$
-dense $: \iff f_* \in \Phi$;

X pseudo-Φ-injective : \iff X pseudo-injective wrt fully faithful Φ-dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_{X}^{\Phi}} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_{X}^{\Phi}} \mathcal{P}X$$

- f has a right adjoint $\Longrightarrow f$ Φ -dense;
- f and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f$ Φ -dense and $f_* \cdot f^* = 1_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f$ Φ -dense and g fully faithful $\Longrightarrow f$ Φ -dense;
- \mathbf{y}_{X}^{Φ} is Φ -dense;
- $(Y \stackrel{\psi}{\longrightarrow} X) \in \Phi \iff \text{the mate } \psi^{\sharp}: X \to \mathcal{P}Y \text{ factors through inc} X$.

For a cocompletion class Φ call

$$f: X \to Y \Phi$$
-dense $: \iff f_* \in \Phi$;

X pseudo-Φ-injective : \iff X pseudo-injective wrt fully faithful Φ-dense V-functors;

Put

$$X \xrightarrow{\mathbf{y}_{X}^{\Phi}} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_{X}^{\Phi}} \mathcal{P}X$$

- f has a right adjoint $\Longrightarrow f$ Φ -dense;
- f and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f \Phi$ -dense and $f_* \cdot f^* = 1_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f$ Φ -dense and g fully faithful $\Longrightarrow f$ Φ -dense;
- y_X^Φ is Φ-dense;
- $(Y \stackrel{\psi}{\longrightarrow} X) \in \Phi \iff \text{the mate } \psi^{\sharp} : X \to \mathcal{P}Y \text{ factors through } \inf_{A \in \mathcal{A}} \Phi^{\bullet}.$

For a cocompletion class Φ call

$$f: X \to Y \Phi$$
-dense $: \iff f_* \in \Phi$;

X pseudo-Φ-injective : \iff X pseudo-injective wrt fully faithful Φ-dense \mathcal{V} -functors;

Put

$$X \xrightarrow{\mathbf{y}_{X}^{\bullet}} \Phi X := \{ \psi \in \mathcal{P}X \mid \psi \in \Phi \} \xrightarrow{\operatorname{inc}_{X}^{\bullet}} \mathcal{P}X$$

- f has a right adjoint $\Longrightarrow f$ Φ -dense;
- f and $g: Y \rightarrow Z \Phi$ -dense $\Longrightarrow g \cdot f \Phi$ -dense;
- $g \cdot f \Phi$ -dense and $f_* \cdot f^* = 1_Y^* \Longrightarrow g \Phi$ -dense;
- $g \cdot f$ Φ -dense and g fully faithful $\Longrightarrow f$ Φ -dense;
- y_X^Φ is Φ-dense;
- $(Y \stackrel{\psi}{\longrightarrow} X) \in \Phi \iff \text{the mate } \psi^{\sharp} : X \to \mathcal{P}Y \text{ factors through inc}_{X}^{\Phi}.$

Theorem (Clementino-Hofmann 2009)

- The following properties for a V-category X are equivalent:
 - (i) X is Φ -cocomplete, i.e. X has all colimits with weights in Φ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ -presheaf monad $(\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi})$ on V-Cat;
 - (iii) the Yoneda V-functor \mathbf{y}_X^{Φ} has a pseudo-retraction; that is: there is a V-functor $h: \mathcal{P}^{\Phi}X \to X$ with $h\mathbf{y}_{\bullet}^{\Phi} \simeq 1_X$;
 - (iv) X is pseudo- Φ -injective in V-Cat.
- $\bullet \ \ \varphi \dashv (\mathcal{V}\text{-Cat}_{sep,\Phi\text{-colim}} \longrightarrow \mathcal{V}\text{-Cat}).$
- If Φ is monadic, then V-Cat_{sep, Φ -colim} is monadic over Set.

Theorem (Clementino-Hofmann 2009)

- The following properties for a V-category X are equivalent:
 - (i) X is Φ -cocomplete, i.e. X has all colimits with weights in Φ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ -presheaf monad $(\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi})$ on V-Cat;
 - (iii) the Yoneda V-functor \mathbf{y}_X^{Φ} has a pseudo-retraction; that is: there is a V-functor $h: \mathcal{P}^{\Phi}X \to X$ with $h\mathbf{y}_Y^{\Phi} \simeq 1_X$;
 - (iv) X is pseudo- Φ -injective in V-Cat.
- $\Phi \dashv (\mathcal{V}\text{-Cat}_{\text{sep},\Phi\text{-colim}} \longrightarrow \mathcal{V}\text{-Cat}).$
- If Φ is monadic, then V-Cat_{sep, Φ -colim} is monadic over Set.

Theorem (Clementino-Hofmann 2009)

- The following properties for a V-category X are equivalent:
 - (i) X is Φ -cocomplete, i.e. X has all colimits with weights in Φ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ -presheaf monad $(\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi})$ on V-Cat;
 - (iii) the Yoneda \mathcal{V} -functor \mathbf{y}_X^{Φ} has a pseudo-retraction; that is: there is a \mathcal{V} -functor $h: \mathcal{P}^{\Phi}X \to X$ with $h\mathbf{y}_X^{\Phi} \simeq 1_X$;
 - (iv) X is pseudo- Φ -injective in V-Cat.
- $\bullet \ \ \varphi \dashv (\mathcal{V}\text{-Cat}_{sep,\Phi\text{-colim}} \longrightarrow \mathcal{V}\text{-Cat}).$
- If Φ is monadic, then V-Cat_{sep, Φ -colim} is monadic over Set.

Theorem (Clementino-Hofmann 2009)

- The following properties for a V-category X are equivalent:
 - (i) X is Φ -cocomplete, i.e. X has all colimits with weights in Φ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ -presheaf monad $(\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi})$ on V-Cat;
 - (iii) the Yoneda \mathcal{V} -functor \mathbf{y}_X^{Φ} has a pseudo-retraction; that is: there is a \mathcal{V} -functor $h: \mathcal{P}^{\Phi}X \to X$ with $h\mathbf{y}_X^{\Phi} \simeq 1_X$;
 - (iv) X is pseudo- Φ -injective in \mathcal{V} -Cat.
- $\bullet \ \ \varphi \dashv (\mathcal{V}\text{-Cat}_{sep,\Phi\text{-colim}} \longrightarrow \mathcal{V}\text{-Cat}).$
- If Φ is monadic, then V-Cat_{sep, Φ -colim} is monadic over Set.

Theorem (Clementino-Hofmann 2009)

- The following properties for a V-category X are equivalent:
 - (i) X is Φ -cocomplete, i.e. X has all colimits with weights in Φ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ -presheaf monad $(\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi})$ on V-Cat;
 - (iii) the Yoneda \mathcal{V} -functor \mathbf{y}_X^{Φ} has a pseudo-retraction; that is: there is a \mathcal{V} -functor $h: \mathcal{P}^{\Phi}X \to X$ with $h\mathbf{y}_X^{\Phi} \simeq 1_X$;
 - (iv) X is pseudo- Φ -injective in V-Cat.
- ullet $\Phi \dashv (\mathcal{V}\text{-Cat}_{sep,\Phi\text{-colim}} \longrightarrow \mathcal{V}\text{-Cat}).$
- If Φ is monadic, then V-Cat_{sep, Φ -colim} is monadic over Set.

Theorem (Clementino-Hofmann 2009)

- The following properties for a V-category X are equivalent:
 - (i) X is Φ -cocomplete, i.e. X has all colimits with weights in Φ ;
 - (ii) X carries the structure of a pseudo-algebra with respect to the Φ -presheaf monad $(\Phi, \mathbf{s}^{\Phi}, \mathbf{y}^{\Phi})$ on V-Cat;
 - (iii) the Yoneda \mathcal{V} -functor \mathbf{y}_X^{Φ} has a pseudo-retraction; that is: there is a \mathcal{V} -functor $h: \mathcal{P}^{\Phi}X \to X$ with $h\mathbf{y}_X^{\Phi} \simeq 1_X$;
 - (iv) X is pseudo- Φ -injective in V-Cat.
- $\Phi \dashv (\mathcal{V}\text{-Cat}_{\text{sep},\Phi\text{-colim}} \longrightarrow \mathcal{V}\text{-Cat}).$
- If Φ is monadic, then V-Cat_{sep, Φ -colim} is monadic over Set.

6.6 Cauchy completion of a V-category à la Lawvere

Let $\mathcal V$ satisfy $\mathbf k=\top$ and $\exists \ (\varepsilon_n)_{n\in\mathbb N}$ in $\mathcal V$: 1. $\varepsilon_n\leq \varepsilon_{n+1},\ 2.\ \varepsilon_n\ll \mathbf k,\ 3.\ \bigvee_{n\in\mathbb N}\varepsilon_n=\mathbf k;$ Consider $\Phi:=\{\psi\mid \psi \text{ right adjoint }\mathcal V\text{-distributor}\}$, and let $X\in\mathcal V\text{-Cat}$. Then

$$\Phi X = \{ \psi \in \mathcal{P}_{\mathcal{V}} X \mid \psi \text{ right adjoint} \} = \{ \rho_s \mid s = (x_n)_n \text{ Cauchy sequence in } X \}$$
with $\rho_s(x) = V_{\mathcal{V}} = X$, $\lambda \in \mathcal{X}(x, x_n)$, $(x \in X)$, and

- with $\rho_s(x) = \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x, x_n) \ (x \in X)$, and
 - (trivially) $(s \sim s' \iff \rho_s = \rho_{s'})$ is an equivalence relation on the set of all Cauchy sequences in X, with projection $s \mapsto \rho_s$;
 - ΦX is Cauchy complete;
 - the restricted Yoneda \mathcal{V} -functor $X \to \Phi X$, $y \mapsto \rho_{(y)_n}$, is a reflection of X into the full subcategory of Cauchy complete \mathcal{V} -categories.

7.1 The category **Set**// $\mathcal{V} = \mathcal{V}$ -**wSet** of \mathcal{V} -weighted or -normed sets

• Defining $\mathbf{Set}/\!/\mathcal{V}$:

$$A \xrightarrow{\varphi} B \iff \forall a \in A : |a|_A \leq |\varphi a|_B$$

• **Set**// \mathcal{V} is topological over **Set**:

$$(A \xrightarrow{\varphi_i} B_i)_{i \in I} \quad \text{initial} \iff |a| = \bigwedge_{i \in I} |\varphi_i a|$$

• **Set**//*V* is symmetric monoidal-closed:

$$A \otimes B = (A \times B, |(a,b)| = |a| \otimes |b|), \quad E = (1 = \{*\}, |*| = k)$$

$$[A,B] = (\text{Set}(A,B), |\varphi| = \bigwedge_{a \in A} [|a|, |\varphi a|])$$

7.2 The category $Cat//\mathcal{V} = \mathcal{V}$ -wCat of (small) \mathcal{V} -weighted categories

Objects of $\textbf{Cat}/\!/\mathcal{V}$ are (small) categories \mathbb{X} enriched in $\textbf{Set}/\!/\mathcal{V}$; this means (neglecting \forall):

$$\mathbb{X}(x,y)\otimes\mathbb{X}(y,z)\longrightarrow\mathbb{X}(x,z)$$
 and $E\longrightarrow\mathbb{X}(x,x)$ live in **Set**// \mathcal{V}

$$\iff$$
 $|f| \otimes |g| = |(f,g)| \le |g \cdot f|$ and $k \le |1_x|$

$$\iff$$
 $|-|: \mathbb{X} \longrightarrow (\mathcal{V}, \otimes, \mathbf{k})$ is a lax functor

For a functor $F: \mathbb{X} \longrightarrow \mathbb{Y}$ to be enriched in $\mathbf{Set}/\!/\mathcal{V}$ means (without universal quantifiers):

$$\mathbb{X}(x,y) \longrightarrow \mathbb{Y}(Fx,Fy)$$
 lives in **Set**// \mathcal{V}

$$\iff$$
 $|f| \leq |Ff|$

7.2 The category $Cat//\mathcal{V} = \mathcal{V}$ -wCat of (small) \mathcal{V} -weighted categories

Objects of $\textbf{Cat}/\!/\mathcal{V}$ are (small) categories \mathbb{X} enriched in $\textbf{Set}/\!/\mathcal{V}$; this means (neglecting \forall):

$$\mathbb{X}(x,y)\otimes\mathbb{X}(y,z)\longrightarrow\mathbb{X}(x,z)$$
 and $E\longrightarrow\mathbb{X}(x,x)$ live in **Set**// \mathcal{V}

$$\iff$$
 $|f| \otimes |g| = |(f,g)| \le |g \cdot f|$ and $k \le |1_x|$

$$\iff$$
 $|-|: \mathbb{X} \longrightarrow (\mathcal{V}, \otimes, \mathbf{k})$ is a lax functor

For a functor $F : \mathbb{X} \longrightarrow \mathbb{Y}$ to be enriched in $\mathbf{Set} / / \mathcal{V}$ means (without universal quantifiers):

$$\mathbb{X}(x,y) \longrightarrow \mathbb{Y}(Fx,Fy)$$
 lives in **Set**// \mathcal{V} \iff $|f| < |Ff|$

7.3 The adjunction $s \dashv i$, monoidal-closed structure, preserved by i, s

$$\mathcal{V}$$
-Cat

$$X, \quad X(x,y) \otimes X(y,z) \leq X(x,z)$$

 $k \leq X(x,x)$

$$sX = obX$$
, $sX(x, y) = \bigvee\{|f| \mid f : x \to y\}$

$$X \otimes Y = X \times Y \text{ (as a set)}$$

 $(X \otimes Y)((x, y), (x', y')) = X(x, x') \otimes Y(y, y')$

$$[X, Y] = \mathcal{V}$$
-Cat (X, Y) (as a set)
 $[X, Y](f, g) = \bigwedge_{x \in X} Y(fx, gx)$

Cat $//\mathcal{V}$

$$\stackrel{i}{\longmapsto} iX, ob(iX) = X$$
$$x \xrightarrow{(x,y)} y, |(x,y)| = X(x,y)$$

$$\stackrel{s}{\longleftarrow} \quad \mathbb{X}, \quad |f| \otimes |g| \leq |g \cdot f|$$

$$k < |1|$$

$$\mathbb{X} \otimes \mathbb{Y} = \mathbb{X} \times \mathbb{Y}$$
 (as a category) $|(f,g)| = |f| \otimes |g|$

$$[\mathbb{X}, \mathbb{Y}] = (\mathbf{Cat}//\mathcal{V})(\mathbb{X}, \mathbb{Y}) \text{ (as a cat)}$$

$$|F \xrightarrow{\alpha} G| = \bigwedge_{x \in \mathrm{ob}\mathbb{X}} |\alpha_x|$$

7.4.1 Example: $(V, <, \otimes, k) = (2, \bot < \top, \land, \top)$

$$2$$
-Cat = Ord

$$\mathbf{s}\mathbb{X} = \mathbf{ob}\mathbb{X}, \quad \mathbf{x} \leq \mathbf{y} \Longleftrightarrow \exists (\mathbf{f}: \mathbf{x} \rightarrow \mathbf{y}) \in \mathcal{S} \qquad \overset{\mathbf{s}}{\longleftarrow} \qquad \mathbb{X}, \, \mathcal{S}, \quad \mathbf{f}, \mathbf{g} \in \mathcal{S} \Longrightarrow \mathbf{g} \cdot \mathbf{f} \in \mathcal{S}$$

$$X \otimes Y = X \times Y$$

 $(x, y) \leq (x', y') \iff x \leq x' \land y \leq y'$

$$[X, Y] = \mathbf{Ord}(X, Y)$$

 $f \le g \iff \forall x \in X : fx \le gx$

Cat//2 = sCat

$$\stackrel{i}{\longmapsto} iX, ob(iX) = X$$

$$(x \xrightarrow{(x,y)} y) \in \mathcal{S} \iff x \leq y$$

$$\mathbb{X}, \mathcal{S}, \quad f, g \in \mathcal{S} \Longrightarrow g \cdot f \in \mathcal{S}$$
 $\top \Longrightarrow 1_{\mathcal{X}} \in \mathcal{S}$

$$\mathbb{X}\otimes\mathbb{Y}=\mathbb{X}\times\mathbb{Y}$$
 (as a category) $\mathcal{S}_{\mathbb{X}\otimes\mathbb{Y}}=\mathcal{S}_{\mathbb{X}}\times\mathcal{S}_{\mathbb{Y}}$

$$[\mathbb{X}, \mathbb{Y}] = \mathbf{sCat}(\mathbb{X}, \mathbb{Y}) \text{ (as a cat)}$$

 $\alpha \in \mathcal{S}_{[\mathbb{X}, \mathbb{Y}]} \iff \forall \mathbf{x} \in \text{ob}\mathbb{X} : \alpha_{\mathbf{x}} \in \mathcal{S}_{\mathbb{Y}}$

7.4.2 Example: $(V, \leq, \otimes, k) = ([0, \infty], \geq, +, 0)$

$$[0,\infty]$$
-Cat = Met

$$X$$
, $d(x,y) + d(y,z) \ge d(x,z)$
 $0 \ge d(x,x)$

$$sX = obX, \quad d(x, y) = \inf_{f: x \to y} |f|$$

$$X \otimes Y = X \times Y$$

 $d((x,y),(x',y')) = d(x,y) + d(y,y')$

$$[X, Y] = \mathbf{Met}(X, Y)$$
$$d(f, g) = \sup_{x \in X} d(fx, gx)$$

$$\operatorname{Cat}/\!/[0,\infty] = \operatorname{wCat}$$

$$\stackrel{\mathrm{s}}{\longleftarrow}$$
 \mathbb{X} , $|f|+|g|\geq |g\cdot f|$

$$\mathbb{X} \otimes \mathbb{Y} = \mathbb{X} \times \mathbb{Y}$$
 (as a category) $|(f, g)| = |f| + |g|$

 $0 > |1_x|$

$$[\mathbb{X}, \mathbb{Y}] = \mathbf{wCat}(\mathbb{X}, \mathbb{Y}) \text{ (as a cat)}$$

 $|F \xrightarrow{\alpha} G| = \sup_{\mathbf{x} \in \mathrm{ob}\mathbb{X}} |\alpha_{\mathbf{x}}|$

7.5.1 Some elementary examples of weighted categories, I

We saw:

 \mathcal{V} -categories (and their functors) are \mathcal{V} -weighted categories (and their functors); in fact, they are precisely the \mathcal{V} weighted categories with indiscrete underlying category.

Question: May **Set** be "naturally" $[0, \infty]$ -weighted?

Goal 1: Let |f| measure the degree to which a map $f: X \to Y$ fails to be surjective.

Simply put
$$|f| := \#(Y \setminus f(X)) \in \mathbb{N} \cup \{\infty\} \subseteq [0, \infty].$$

Then: $0 \ge |\mathrm{id}_X|$, and with $g: Y \to Z$ we have $|f| + |g| \ge |g \cdot f|$

since (assuming Choice and $Y \cap Z = \emptyset$) there is an injective map

$$Z \setminus (g(f(X))) \longrightarrow (Y \setminus f(X)) + (Z \setminus g(Y)).$$

Note: f surjective $\iff |f| = 0$.

7.5.1 Some elementary examples of weighted categories, I

We saw:

 \mathcal{V} -categories (and their functors) are \mathcal{V} -weighted categories (and their functors); in fact, they are precisely the \mathcal{V} weighted categories with indiscrete underlying category.

Question: May **Set** be "naturally" $[0, \infty]$ -weighted?

Goal 1: Let |f| measure the degree to which a map $f: X \to Y$ fails to be surjective.

Simply put
$$|f| := \#(Y \setminus f(X)) \in \mathbb{N} \cup \{\infty\} \subseteq [0, \infty].$$

Then: $0 \ge |\mathrm{id}_X|$, and with $g: Y \to Z$ we have $|f| + |g| \ge |g \cdot f|$

since (assuming Choice and $Y \cap Z = \emptyset$) there is an injective map

$$Z \setminus (g(f(X))) \longrightarrow (Y \setminus f(X)) + (Z \setminus g(Y)).$$

Note: f surjective \iff |f| = 0.

7.5.1 Some elementary examples of weighted categories, I

We saw:

 \mathcal{V} -categories (and their functors) are \mathcal{V} -weighted categories (and their functors); in fact, they are precisely the \mathcal{V} weighted categories with indiscrete underlying category.

Question: May **Set** be "naturally" $[0, \infty]$ -weighted?

Goal 1: Let |f| measure the degree to which a map $f: X \to Y$ fails to be surjective.

Simply put
$$|f| := \#(Y \setminus f(X)) \in \mathbb{N} \cup \{\infty\} \subseteq [0, \infty].$$

Then: $0 \ge |\mathrm{id}_X|$, and with $g: Y \to Z$ we have $|f| + |g| \ge |g \cdot f|$

since (assuming Choice and $Y \cap Z = \emptyset$) there is an injective map

$$Z \setminus (g(f(X))) \longrightarrow (Y \setminus f(X)) + (Z \setminus g(Y)).$$

Note: f surjective \iff |f| = 0.

7.5.2 Some elementary examples of weighted categories, II

Question: May something similar be done for injectivity? That is:

Goal 2: Let |f| measure the degree to which a map $f: X \to Y$ fails to be injective.

First consider $\#f := \sup_{y \in Y} \#f^{-1}y$; then, with $g : Y \to Z$, we have:

$$\#g \cdot \#f = (\sup_{z \in Z} \#g^{-1}z) \cdot (\sup_{y \in Y} \#f^{-1}y) \ge \sup_{z \in Z} \#(\bigcup_{y \in g^{-1}z} f^{-1}y) = \#(g \cdot f), \quad 1 \ge \#\mathrm{id}_X$$

Not what we wanted! But $([1,\infty],\geq,\cdot,1)$ $\xrightarrow{\cong}$ $([0,\infty],\geq,+,0)$ comes to the rescue:

Put $|f| := \max\{0, \log \# f\}$; then: $|g| + |f| \ge |g \cdot |f|$. $0 \ge |\operatorname{id}_X|$.

Note: f injective $\iff |f| = 0$.

7.5.2 Some elementary examples of weighted categories, II

Question: May something similar be done for injectivity? That is:

Goal 2: Let |f| measure the degree to which a map $f: X \to Y$ fails to be injective.

First consider $\#f := \sup_{y \in Y} \#f^{-1}y$; then, with $g : Y \to Z$, we have:

$$\#g \cdot \#f = (\sup_{z \in Z} \#g^{-1}z) \cdot (\sup_{y \in Y} \#f^{-1}y) \ge \sup_{z \in Z} \#(\bigcup_{y \in g^{-1}z} f^{-1}y) = \#(g \cdot f), \quad 1 \ge \#\mathrm{id}_X$$

Not what we wanted! But $([1,\infty],\geq,\cdot,1)$ $\xrightarrow{\cong}$ $([0,\infty],\geq,+,0)$ comes to the rescue:

$$\operatorname{Put}|f|:=\max\{0,\log\#f\}; \text{then:} \quad |g|+|f|\geq |g\cdot|f|. \ \ 0\geq |\operatorname{id}_X|.$$

Note: f injective \iff |f| = 0.

ob Lip = ob Met, Lip(X, Y) =Set(X, Y); why call this category Lip??

Recall: $f: X \to Y \text{ is } K(\geq 0)$ -Lipschitz $\iff \forall x \neq x' : d(fx, fx') \leq K d(x, x')$

In particular: $f: X \to Y$ is a morphism in **Met** \iff f is 1-Lipschitz

Question: How far is an arbitrary map f away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant $K \ge 1$ for f (admitting $K = \infty$

That is: $\operatorname{Lip}(f) = \max\{1, \sup_{x \neq x'} \frac{d(fx, fx')}{d(x, x')}\}$ (assuming temporarily that X be separated)

Then: $\operatorname{Lip}(g) \cdot \operatorname{Lip}(f) \ge \operatorname{Lip}(g \cdot f), \quad 1 \ge \operatorname{Lip}(\operatorname{id}_X)$

No problem

$$([1,\infty],\geq,\cdot,1) \xrightarrow{\cong} ([0,\infty],\geq,+,0) \;, \quad |f| = \max\{0, \sup_{x,x'} (\log d(fx,fx') - \log d(x,x'))\}$$

Then: $|g|+|f|\geq |g\cdot f|, \quad 0\geq |\operatorname{id}_X|, \quad (f \text{ 1-Lipschitz} \Longleftrightarrow |f|=0)$

ob Lip = ob Met, Lip(X, Y) =Set(X, Y); why call this category Lip??

Recall: $f: X \to Y \text{ is } K(\geq 0)$ -Lipschitz $\iff \forall x \neq x' : d(fx, fx') \leq K d(x, x')$

In particular: $f: X \to Y$ is a morphism in **Met** \iff f is 1-Lipschitz

Question: How far is an arbitrary map *f* away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant $K \ge 1$ for f (admitting $K = \infty$

That is: $\operatorname{Lip}(f) = \max\{1, \sup_{x \neq x'} \frac{d(fx, fx')}{d(x, x')}\}$ (assuming temporarily that X be separated)

Then: $\operatorname{Lip}(g) \cdot \operatorname{Lip}(f) \ge \operatorname{Lip}(g \cdot f), \quad 1 \ge \operatorname{Lip}(\operatorname{id}_X)$

No problem

$$([1,\infty],\geq,\cdot,1) \xrightarrow{\cong} ([0,\infty],\geq,+,0) , \quad |f| = \max\{0, \sup_{x,x'} (\log d(fx,fx') - \log d(x,x'))\}$$

Then: $|g|+|f|\geq |g\cdot f|, \quad 0\geq |\mathrm{id}_X|, \qquad (f \text{ 1-Lipschitz} \iff |f|=0), \quad 0 \leq |f|=0$

ob Lip = ob Met, Lip(X, Y) =Set(X, Y); why call this category Lip??

Recall: $f: X \to Y \text{ is } K(\geq 0)$ -Lipschitz $\iff \forall x \neq x': d(fx, fx') \leq K d(x, x')$

In particular: $f: X \to Y$ is a morphism in **Met** \iff f is 1-Lipschitz

Question: How far is an arbitrary map *f* away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant $K \ge 1$ for f (admitting $K = \infty$)

That is: $\operatorname{Lip}(f) = \max\{1, \sup_{x \neq x'} \frac{d(fx, fx')}{d(x, x')}\}$ (assuming temporarily that X be separated)

Then: $\operatorname{Lip}(g) \cdot \operatorname{Lip}(f) \geq \operatorname{Lip}(g \cdot f), \quad 1 \geq \operatorname{Lip}(\operatorname{id}_X)$

No problem

$$([1,\infty],\geq,\cdot,1) \xrightarrow{\cong} ([0,\infty],\geq,+,0) \;, \quad |f| = \max\{0, \; \sup_{x,x'} (\log d(fx,fx') - \log d(x,x'))\}$$

Then: $|g|+|f|\geq |g\cdot f|, \quad 0\geq |\mathrm{id}_X|, \qquad (f \text{ 1-Lipschitz} \iff |f|=0), \quad 0 \leq |f| = 0$

ob Lip = ob Met, Lip(X, Y) =Set(X, Y); why call this category Lip??

Recall: $f: X \to Y \text{ is } K(\geq 0)$ -Lipschitz $\iff \forall x \neq x': d(fx, fx') \leq K d(x, x')$

In particular: $f: X \to Y$ is a morphism in **Met** \iff f is 1-Lipschitz

Question: How far is an arbitrary map f away from being 1-Lipschitz?

Answer: Find the least Lipschitz constant $K \ge 1$ for f (admitting $K = \infty$)

That is: $\operatorname{Lip}(f) = \max\{1, \sup_{x \neq x'} \frac{d(fx, fx')}{d(x, x')}\}$ (assuming temporarily that X be separated)

Then: $\operatorname{Lip}(g) \cdot \operatorname{Lip}(f) \geq \operatorname{Lip}(g \cdot f), \quad 1 \geq \operatorname{Lip}(\operatorname{id}_X)$

No problem:

$$([1,\infty],\geq,\cdot,1) \xrightarrow{\cong} ([0,\infty],\geq,+,0) \;, \quad |f| = \max\{0, \; \sup_{x,x'} (\log d(fx,fx') - \log d(x,x'))\}$$

Then: $|g|+|f|\geq |g\cdot f|, \quad 0\geq |\mathrm{id}_X|, \qquad (f \text{ 1-Lipschitz} \Longleftrightarrow |f|=0)$

7.6 On the axiomatics for weighted/normed categories

The category \mathbb{X} is \mathcal{V} -weighted by $|-|: \mathbb{X} \longrightarrow \mathcal{V}$ if

$$\begin{aligned} k &\leq |\mathbf{1}_{x}| \\ |g| \otimes |f| &\leq |g \cdot f| \end{aligned} &\iff |f| &\leq \bigwedge_{g}[|g|, |g \cdot f|] \\ &\iff |g| &\leq \bigwedge_{f}[|f|, |g \cdot f|] \end{aligned} &\iff |g| &= \bigwedge_{g}[|f|, |g \cdot f|]$$

The V-weighted category X is *right/left cancellable* if

$$|f| \otimes |g \cdot f| \leq |g| \qquad \iff |f| \leq \bigwedge_g [|g \cdot f|, |g|] =: |f|^R \qquad \text{(right cancellable)}$$

$$|g| \otimes |g \cdot f| \leq |f| \qquad \iff |g| \leq \bigwedge_f [|g \cdot f|, |f|] =: |g|^L \qquad \text{(left cancellable; Kubiś: "norm"}$$

Facts (Insall-Luckhardt for $\mathcal{V} = [0, \infty]$): \mathbb{X} weighted by $|-| \Longrightarrow \mathbb{X}$ weighted by $|-|^R$ and $|-|^L$, and $|f| < |f|^{RR}$, $|f| < |f|^{LL}$.

7.6 On the axiomatics for weighted/normed categories

The category \mathbb{X} is \mathcal{V} -weighted by $|-|: \mathbb{X} \longrightarrow \mathcal{V}$ if

$$\begin{aligned} \mathbf{k} &\leq |\mathbf{1}_{x}| \\ |g| \otimes |f| &\leq |g \cdot f| \end{aligned} \iff |f| &\leq \bigwedge_{g} [|g|, |g \cdot f|] \\ &\iff |g| &\leq \bigwedge_{f} [|f|, |g \cdot f|] \end{aligned} \iff |g| &= \bigwedge_{g} [|f|, |g \cdot f|]$$

The V-weighted category X is right/left cancellable if

$$\begin{split} |f|\otimes|g\cdot f| &\leq |g| &\iff |f| \leq \bigwedge_g[|g\cdot f|,|g|] =: |f|^{\mathbb{R}} & \text{ (right cancellable)} \\ |g|\otimes|g\cdot f| &\leq |f| &\iff |g| \leq \bigwedge_f[|g\cdot f|,|f|] =: |g|^{\mathbb{L}} & \text{ (left cancellable; Kubiś: "norm")} \end{split}$$

Facts (Insall-Luckhardt for $\mathcal{V}=[0,\infty]$): \mathbb{X} weighted by $|-|\Longrightarrow\mathbb{X}$ weighted by $|-|^{\mathrm{R}}$ and $|-|^{\mathrm{L}}$, and $|f|\le |f|^{\mathrm{RR}},\ |f|\le |f|^{\mathrm{LL}}$.

7.6 On the axiomatics for weighted/normed categories

The category \mathbb{X} is \mathcal{V} -weighted by $|-|: \mathbb{X} \longrightarrow \mathcal{V}$ if

$$\begin{aligned} k &\leq |\mathbf{1}_{x}| \\ |g| \otimes |f| &\leq |g \cdot f| \end{aligned} &\iff |f| &\leq \bigwedge_{g} [|g|, |g \cdot f|] \\ &\iff |g| &\leq \bigwedge_{f} [|f|, |g \cdot f|] \end{aligned} &\iff |g| &= \bigwedge_{g} [|f|, |g \cdot f|]$$

The V-weighted category X is *right/left cancellable* if

$$\begin{split} |f|\otimes|g\cdot f| &\leq |g| &\iff |f| \leq \bigwedge_g[|g\cdot f|,|g|] =: |f|^{\mathbb{R}} & \text{ (right cancellable)} \\ |g|\otimes|g\cdot f| &\leq |f| &\iff |g| \leq \bigwedge_f[|g\cdot f|,|f|] =: |g|^{\mathbb{L}} & \text{ (left cancellable; Kubiś: "norm")} \end{split}$$

Facts (Insall-Luckhardt for $\mathcal{V}=[0,\infty]$): \mathbb{X} weighted by $|\cdot|\Longrightarrow\mathbb{X}$ weighted by $|\cdot|^R$ and $|\cdot|^L$, and $|f|\le |f|^{RR},\ |f|\le |f|^{LL}.$

7.7 The underlying ordinary category \mathbb{X}_0 of a \mathcal{V} -weighted category \mathbb{X}

Note:

An isomorphism f in \mathbb{X} may not satisfy $k \leq |f|$, and even when it does, we may not have $k \leq |f^{-1}|$ (unless the weight is left/right cancellable). Still, in many of the examples with $\mathcal{V} = [0, \infty]$ considered in the literature, morphisms f, and especially isomorphisms, of norm 0 play an important role. They are called "modulators" by Insall-Luckhardt.

Question:

What is the "enriched significance" of considering morphisms f with $k \le |f|$?

Answer:

These are precisely the morphisms of the underlying ordinary category \mathbb{X}_0 of the $(\mathbf{Set}/\!/\mathcal{V})$ -enriched category \mathbb{X} .

7.7 The underlying ordinary category \mathbb{X}_0 of a \mathcal{V} -weighted category \mathbb{X}

Note:

An isomorphism f in $\mathbb X$ may not satisfy $k \leq |f|$, and even when it does, we may not have $k \leq |f^{-1}|$ (unless the weight is left/right cancellable). Still, in many of the examples with $\mathcal V = [0,\infty]$ considered in the literature, morphisms f, and especially isomorphisms, of norm 0 play an important role. They are called "modulators" by Insall-Luckhardt.

Question:

What is the "enriched significance" of considering morphisms f with $k \le |f|$?

Answer:

These are precisely the morphisms of the underlying ordinary category \mathbb{X}_0 of the $(\mathbf{Set}/\!/\mathcal{V})$ -enriched category \mathbb{X} .

7.8.1 V-weighted cats vs. V-metrically enriched cats: syntax prep

Recall: groups (X, -, 0) in subtractive notation:

$$x - 0 = x$$
, $x - x = 0$, $(x - y) - (z - y) = x - z$

Write \mathcal{V} -Met for \mathcal{V} -Cat_{sym}: " \mathcal{V} -metric spaces" = \mathcal{V} -categories X with X(x,y)=X(y,x)

Form the category V-MetGrp of "V-metric groups":

objects are V-metric spaces X with a group structure that makes distances invariant under translations:

$$X(x,y) = X(x-z, y-z);$$

morphisms are V-contractive homomorphisms.

V-MetGrp inherits its symmetric monoidal structure from V-Cat and the cartesian cat Grp.

7.8.1 V-weighted cats vs. V-metrically enriched cats: syntax prep

Recall: groups (X, -, 0) in subtractive notation:

$$x-0=x, x-x=0, (x-y)-(z-y)=x-z$$

Write V-Met for V-Cat_{sym}: "V-metric spaces" = V-categories X with X(x,y) = X(y,x)

Form the category V-MetGrp of "V-metric groups":

objects are V-metric spaces X with a group structure that makes distances invariant under translations:

$$X(x,y) = X(x-z,y-z);$$

morphisms are V-contractive homomorphisms.

 $\mathcal{V} ext{-MetGrp}$ inherits its symmetric monoidal structure from $\mathcal{V} ext{-Cat}$ and the cartesian cat $ext{Grp}$.

7.8.2 V-metric groups as V-weighted groups

The category $\mathbf{Grp}/\!/\mathcal{V}$ has as

objects: \mathcal{V} -weighted sets (X, |-|) with a group structure such that

$$k \leq |0|, \quad |x| \otimes |y| \leq |x-y|;$$

morphisms live in both, $\mathbf{Set}//\mathcal{V}$ and \mathbf{Grp} .

Obtain

$$Grp//\mathcal{V} \longleftrightarrow \mathcal{V}$$
-MetGrp

$$X \longmapsto X(x,y) = |x-y|$$

$$|X| = X(x,0) \leftarrow X$$

7.8.2 V-metric groups as V-weighted groups

The category $Grp//\mathcal{V}$ has as

objects: \mathcal{V} -weighted sets (X, |-|) with a group structure such that

$$k \leq |0|, \quad |x| \otimes |y| \leq |x-y|;$$

morphisms live in both, $\mathbf{Set}//\mathcal{V}$ and \mathbf{Grp} .

Obtain:

$$Grp//\mathcal{V} \longleftrightarrow \cong \mathcal{V}$$
-MetGrp

$$X \longmapsto X(x,y) = |x-y|$$

$$|x| = X(x,0) \leftarrow X$$

7.9 V-weighted cats vs V-metrically enriched cats vs V-metagories

$$(\mathsf{Grp}/\!/\mathcal{V})\text{-}\mathsf{Cat} \overset{\cong}{\longrightarrow} (\mathcal{V}\text{-}\mathsf{MetGrp})\text{-}\mathsf{Cat}$$

$$\downarrow \qquad \qquad \downarrow \\ \mathcal{V}\text{-}\mathsf{Cat} \overset{i}{\longmapsto} (\mathsf{Set}/\!/\mathcal{V})\text{-}\mathsf{Cat} = \mathsf{Cat}/\!/\mathcal{V} \qquad (\mathcal{V}\text{-}\mathsf{Met})\text{-}\mathsf{Cat} \overset{\cong}{\longrightarrow} \mathcal{V}\text{-}\mathsf{Metag}$$

7.9 V-weighted cats vs V-metrically enriched cats vs V-metagories

$$(\mathsf{Grp}/\!/\mathcal{V})\text{-}\mathsf{Cat} \overset{\cong}{\longrightarrow} (\mathcal{V}\text{-}\mathsf{MetGrp})\text{-}\mathsf{Cat}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{V}\text{-}\mathsf{Cat} \overset{i}{\longrightarrow} (\mathsf{Set}/\!/\mathcal{V})\text{-}\mathsf{Cat} = \mathsf{Cat}/\!/\mathcal{V}$$

$$(\mathcal{V}\text{-}\mathsf{Met})\text{-}\mathsf{Cat} \longrightarrow \mathcal{V}\text{-}\mathsf{Metag}$$

7.10.1 Principal references, I

F. W. Lawvere: Metric spaces, generalized logic, and closed categories

Rendiconti del Seminario Matematico e Fisico di Milano 43:135–166, 1973.

Republished in Reprints in Theory and Applications of Categories 1, 2002.

(This paper not only introduces metric spaces as small categories enriched in the extended real half-line, considered as a symmetric monoidal-closed category under addition, but it is also the birthplace of *normed categories*, introduced as categories enriched in a certain symmetric monoidal category of *normed sets*.)

D. Hofmann, G.J. Seal, W.T. (eds.): *Monoidal Topology–A Categorical Approach to Order, Metric and Topology*, Cambridge University Press, 2014.

(This book studies the category (\mathbb{T},\mathcal{V}) -Cat, for a Set-monad \mathbb{T} which is assumed to interact with the \mathcal{V} -presheaf monad $\mathcal{P}_{\mathcal{V}}$ via a lax distributive law; for \mathbb{T} the identity monad on Set, one obtains the category \mathcal{V} -Cat as considered in these lectures.)

7.10.2 Principal references, II

- A. Akhvlediani, M.M. Clementino, W. Tholen: On the categorical meaning of Hausdorff and Gromov distances I, Topology and its Applications, 2010
- M.M. Clementino, D. Hofmann, W. Tholen: One setting for all: metric, topology, uniformity, approach structure, Applied Categorical Structures, 2004
- M.M. Clementino, W. Tholen: Metric, topology and multicategory—a common approach, Journal of Pure and Applied Algebra, 2003
- D. Hofmann: Topological theories and closed objects, Advances in Math., 2007
- D. Hofmann, C. Reis: Convergence and quantale-enriched categories, CAGSA, 2018
- A. Joyal, M. Tierney: An extension of the Galois theory of Grothendieck, AMS, 1984
- E. Martinelli: Actions, injectives and injective hulls in quantale-enriched categories, PhD thesis, Universidade de Aveiro, 2021
- I. Stubbe: "Hausdorff distance" via conical cocompletion, Cahiers de Topologie et Géom. Diff. Catégoriques, 2010

7.10.3 Selected other references (related to weighted/normed cats)

- A. Aliouche and C. Simpson: Fixed points and lines in 2-metric spaces, Advances in Mathematics, 2012
- P. Bubenik, V. de Silva, J. Scott: Interleaving and Gromov-Hausdorff distance, arXiv, 2017
- M. Grandis: Directed Algebraic Topology, Cambridge University Press, 2009
- M. Insall, D. Luckhardt: Norms on categories and analogs of the Schröder-Bernstein Theorem, arXiv, 2021
- W. Kubiś: Categories with norms, arXiv, 2018
- A. Neeman: Metrics on triangulated categories, arXiv, 2019.
- P. Perrone: Lifting couples in Wasserstein spaces, arXiv, 2021
- W. Tholen: Remarks on weighted categories and the non-symmetric Pompeiu-Hausdorff-Gromov metric, Talk at CT 2018 (Ponta Delgada)
- W. Tholen, J. Wang: Metagories, Topology and its Applications, 2020