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Overview

Preliminaries on small categories
From preordered sets to metric spaces to small quantale-enriched categories
A step-by-step approach to the ultrafilter convergence axiomatization of a topology
Small (monad,quantale)-enriched categories
A fundamental adjunction
Equationally defined topological properties for objects and morphisms
Trading convergence relations for closure operations
Comparison with the internal-category approach
Problems, projects, references
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Monoids vs (Pre)Orders

Monoids: (Pre)Orders:

(A, i ,m) A ⊆ X × X (write x ≤ y for (x , y) ∈ A)

i : 1 −→ A x ≤ x
m : A× A −→ A x ≤ y & y ≤ z =⇒ x ≤ z

subject to two unity axioms subject to NO further conditions
and the associativity axiom

Both types of structures are (extreme) examples of small categories:

obA = 1 = {∗} obA = X

morA = A homA(x , y) =

{
1 if x ≤ y
∅ else
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Two presentations of the notion of (small) category

A
(d ,c) // X × X ⇐⇒ X × X

homA // Set

A ∼=
∐

x ,y∈X homA(x , y) ⇐⇒ homA(x , y) = (d , c)−1(x , y)

A×X A
d ′

{{

c′

##
A

d

}}

c

##

A
d

{{

c

!!
X X X

X i // A ⇐⇒ 1 ix // homA(x , x)

A×X A m // A ⇐⇒ homA(x , y)× homA(y , z)
mx,y,z // homA(x , z)
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A glimpse at Internal Category Theory vs Enriched Category Theory

A (with X ,d , c, i ,m) category A (with homA = A(−,−), i ,m) category

internal to a category C enriched in a category (V,⊗, k) that is

with pullbacks, (symmetric) monoidal (closed),

rather than just C = Set rather than just V = (Set,×,1)

With the internal/enriched notions of functor we obtain the categories

Cat(C) V-Cat .

We may in particular talk about monoid- or group-objects in C, as special category objects
in C, such as group objects in Top, a.k.a. topological groups: Grp(Top) = TopGrp.

On the enriched side, we have in particular the one-object V-enriched categories, i.e, V-
monoids. For instance, for V = (AbGrp,⊗Z,Z), we obtain (unital ) rings: V-Mon = Rng .
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Lawvere 1973: From ordered sets to metric spaces

Ord a : X × X → 2 = ({⊥,>},⇒,&,>) > ⇒ a(x , x)
a(x , y & a(y , z)⇒ a(x , z)

f : (X ,a)→ (Y ,b) a(x , x ′)⇒ b(fx , fx ′)

Met d : X × X → [0,∞] = ([0,∞],≥,+,0) 0 ≥ d(x , x)
d(x , y) + d(y , z) ≥ d(x , z)

f : (X ,d)→ (Y ,e) d(x , x ′) ≥ e(fx , fx ′)

Note: (2,&,>) ∈ CMon(Ord) Actually: (2,&,>) ∈ CMon(Sup)
([0,∞],+,0) ∈ CMon(Ord) ([0,∞],+,0) ∈ CMon(Sup)

where Sup is the monoidal category of complete lattices and
∨

-preserving maps,
since the above structure maps a and d actually preserve

∨
in each variable.
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Quantales – half of the syntax needed for Monoidal Topology

V unital and (for convenience) commutative quantale

= complete lattice with a commutative monoid structure, V = (V,⊗, k), such that

u ⊗
∨
i∈I

vi =
∨
i∈I

u ⊗ vi

= a commutative monoid in the cocomplete symmetric monoidal-closed category Sup

Some examples:
V = 2 with u ⊗ v = u & v , k = > (Boolean 2-chain)
V = [0,∞] with u ⊗ v = u + v , k = 0 (Lawvere quantale)
V any frame with u ⊗ v = u ∧ v , k = > (a cartesian quantale)
V = 2M , for any commutative monoid M (free quantale over M),
with A⊗ B = {α · β | α ∈ A, β ∈ B}, k = {η}, η with neutral in M
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One more quantale: {distance distribution functions}

[0,∞] = ([0,∞],≥,+,0) ∼= ([0,1],≤, ·,1) = [0,1]

∆ 3 ϕ : [0,∞]→ [0,1] ϕ(β) = sup
α<β

ϕ(α)

(ϕ⊗ ψ)(γ) = sup
α+β=γ

ϕ(α) · ψ(β) κ(α) =

{
0 if α = 0,
1 if α > 0.

The two interval quantales are fully embedded into the quantale ∆, via

[0,∞]
σ−−−−→ ∆

τ←−−−− [0,1]

σ(α)(γ) =

{
0 if γ ≤ α,
1 if γ > α,

τ(u)(γ) =

{
0 if γ = 0,
u if γ > 0.

ϕ = sup
α
σ(α)⊗ τ(ϕ(α)) : ∆ as a coproduct in Qnt !
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Quantale-enriched categories

(V,⊗, k) (commutative) quantale

V-relation r : X→7 Y r : X × Y → V
s · r : X→7 Z s ·r(x ,z)=

∨
y

r(x ,y)⊗s(y ,z) (s : Y→7 Z )

r◦ : Y→7 X r◦(y , x) = r(x , y)

V-graph f◦ : X→7 Y f◦(x , y) =

{
k if f (x) = y
⊥ else

f ◦ : Y→7 X f ◦(y , x) = f◦(x , y)

V-category (X ,a :X→7 X ) k ≤ a(x , x) 1◦X ≤ a
a(x , y)⊗ a(y , z) ≤ a(x , z) a · a ≤ a

V-functor (X ,a)
f−→(Y ,b) a(x , y) ≤ b(fx , fy) a ≤ f ◦ ·b · f◦
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Some examples

V = 1 V-Cat = Set objects = sets X

2 Ord (pre)ordered sets (X ,≤)

[0,∞] Met (generalized) metric spaces (X ,d)
∼= [0,1] ∼= ProbOrd probabilistic (pre)ordered sets (X ,p : X × X → [0,1])

(think p(x , y) = probability of x ≤ y , with ≤ a random order on X )

2M M-Ord M-scaled (pre)ordered sets (X , (≤α)α∈M)
x ≤η x (η neutral in M); x ≤α y , y ≤β z ⇒ x ≤α·β z

∆ ProbMet probabilistic (geneneralized) metric spaces (X , (pα)α≥0)
(think pα(x , y) = prob’ty of d(x , y) < α, with d a random metric)
p0(x , x) = 0, (α>0 =⇒ pα(x , x) = 1)
α+β ≤ γ =⇒ pα(x , y)·pβ(y , z) ≤ pγ(x , z)
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Another type of generalized preordered sets: MultiOrd

LX = {x = (x1, ..., xn) | n ≥ 0, xi ∈ X} = { lists of elements in X }

A multi-orderd set X comes with a relation ≤: LX→7 X satisfying

(R) for all x ∈ X : (x) ≤ x

(T) for all X = (x1, ..., xm) ∈ LLX , y = (y1, ..., ym) ∈ LX , z ∈ X :

x1 ≤ y1

xm ≤ ym

X ≤ y & y ≤ z =⇒ ΣX = (x1,1, x1,2, ..., xm,1, ..., xm,nm ) ≤ z

f : X → Y monotone: x = (x1, ..., xn) ≤ y =⇒ f (x) = (fx1, ..., fxn) ≤ fy
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Yet another type of generalized preordered sets: Cls

PX = powerset of X : Trade (finite) lists of elements of X for subsets of X

Then we consider a (“support”) relation `: PX→7 X satisfying

(R) for all x ∈ X : {x} ` x

(T) for all A ∈ PPX ,B ∈ PX , z ∈ X :

∀ y ∈ B ∃ A ∈ A : A ` y︸ ︷︷ ︸
A ` B & B ` z =⇒

⋃
A ` z

Transcribing A ` y as y ∈ cA, these conditions become equivalent to

(R’) for all A ∈ PX : A ⊆ cA

(T’) for all A,B ∈ PX : B ⊆ cA =⇒ cB ⊆ cA

f : X → Y continuous: f (cA) ⊆ c f (A)
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Topological spaces as generalized (pre)ordered sets?

UX = { ultrafilters on X }: Consider a relation : UX→7 X satisfying

(R) for all x ∈ X : ẋ  x

(T) for all X ∈ UUX , y ∈ UX , z ∈ X :

∀A ∈ X,B ∈ y ∃ x ∈ A, y ∈ B : x y︸ ︷︷ ︸ A ∈ ΣX⇐⇒ {x | A ∈ x} ∈ X︸ ︷︷ ︸
X y & y z =⇒ ΣX z

Pictured as sequences:

x1 = (x1,1, ...)  y1

xn = (xn,1, ...)  yn

X = (x1, .....)  y  z ⇒ ΣX = (x1,1, .., xn,n, ...)  z
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Yes: Manes 1967→ Barr 1970→Wyler 1995

f : X → Y continuous : x x =⇒ f [x] fx where ( B ∈ f [x]⇐⇒ f−1B ∈ x )

Retrieving the topology from the two ultrafilter convergence axioms: define

x ∈ cA ⇐⇒ ∃ x ∈ UA ⊆ UX : x x

Then:

(R’) A ⊆ cA

(T’) B ⊆ cA =⇒ cB ⊆ cA

(FA) c∅ ⊆ ∅ and c(A ∪ B) ⊆ cA ∪ cB
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Monads–the other half needed for the syntax of Monoidal Topology

(L, (−),Σ), (P, {−},
⋃

), (U, −̇,Σ) are examples of monads (T, η, µ) on Set:

A monad (on Set) is a monoid in the monoidal category ([Set,Set], ◦, IdSet), that is:

T : Set→ Set functor with natural transform’s η : IdSet → T and µ : TT→ T satisfying

T
Tη //

ηT
��

TT

µ
��

TTT
Tµ //

µT
��

TT

µ
��

TT µ
// T TT µ

// T

Every adjunction F a G : A −→ Set with unit η : IdSet → GF , counit ε : FG→ IdA induces
(GF , η,GεF ).

Every monad T is induced by a “largest” adjunction: A = SetT Eilenberg-Moore cat. of T.

SetL = Mon SetP = Sup SetU = CompHaus
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Plus:the quantale V and the monad T must be linked

The Ord-enriched category V-Rel: same objects as Set; hom-sets ordered pointwise:

(r : X→7 Y ) ≤ (r ′ : X→7 Y )⇐⇒ ∀x ∈ X , y ∈ Y : r(x , y) ≤ r ′(x , y)

Set
(−)◦ // V-Rel Setop(−)op

oo

T comes with a lax extension T̂ from maps to V-relations (r : X→7 Y ) 7−→ (T̂r : TX→7 TY ):
T̂ : V-Rel→ V-Rel coincides with T on objects
T̂ may enlarge V-graphs of maps: (Tf )◦ ≤ T̂(f◦) and (Tf )◦ ≤ T̂(f ◦)
T̂ : V-Rel→ V-Rel is a lax functor: T̂s · T̂r ≤ T̂(s · r)

η◦ : Id→ T̂, µ◦ : T̂T̂→ T̂ are oplax: (ηY )◦ · r ≤ T̂r · (ηX )◦ and (µY )◦ · T̂T̂r ≤ T̂r · (µX )◦

With V = 2 we used: x (L̂r) y ⇔ ∀i : xi r yi ; A (P̂r)B ⇔ ∀y ∈ B ∃x ∈ A : x r y ;

x (Ûr) y⇐⇒ ∀A ∈ x,B ∈ y ∃x ∈ A, y ∈ B : x r y
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(T,V)-categories

(T,V)-Cat (X ,a : TX→7 X ) k ≤ a(ηX (x), x) (x , z ∈ X )

T̂a(X, y)⊗ a(y, z) ≤ a(µX (X), z) (X ∈ TTX , y ∈ TX )

(X ,a)
f−→ (Y ,b) a(x, x) ≤ b(Tf (x), fx) (x ∈ TX )

TTX

(µX )◦ ≥
��

T̂a // TX

a ≥
��

X
(ηX )◦oo

1◦X}}

TX
(Tf )◦ //

a ≤
��

TY

b
��

TX a
// X X

f◦
// Y

Equivalently: η◦X ≤ a
a ◦ a ≤ a (Kleisli convolution)

a ≤ f ◦ · b · (Tf )◦

Kleisli convolution for r : TX→7 Y , s : TY→7 Z : s ◦ r := s · T̂r ·m◦X : TX→7 Z
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Examples for (T,V)-Cat

(Id,V)-Cat = V-Cat

T (T,2)-Cat (T, [0,∞])-Cat (T,∆)-Cat

Id Ord Met ProbMet
L MultiOrd ? .
P Cls ?? ..
U Top ??? ...

Let’s clarify ?, ?? , ??? and leave ., .., ... to the audience (sorry!)
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Trading 2 for [0,∞]

T Reflexivity Transitivity = ∇-Inequality (T, [0,∞])-Cat

L 0 ≥ d((x), x) d(X , y)︸ ︷︷ ︸+d(y , z) ≥ d(ΣX , z) MultiMet

L̂d(X , y) = d(x1, y1) + ...+ d(xn, yn)

P 0 ≥ d({x}, x) d(A,B)︸ ︷︷ ︸+d(B, z) ≥ d(
⋃

A, z) PrApp

P̂d(A,B) = supy∈B infA∈A d(A, y)

⇔ 0 ≥ d(A, x) if x ∈ A supy∈B d(A, y) + d(B, z) ≥ d(A, z) Hausdorff distance

U 0 ≥ d(ẋ , x) d(X, y)︸ ︷︷ ︸+d(y, z) ≥ d(ΣX, z) ∼= App

Ûd(X, y) = supA∈X,B∈y infx∈A,y∈B d(x, y) Clem.-Hofm. 2003
⇔ Pre-approach + d(∅, x) ≥ ∞ Lowen 1989

finite additivity d(A ∪ B, x) ≥ min{d(A, x),d(B, x)}

Walter Tholen (York University) Spaces as Categories Algebra, Topology 19 / 45



Some properties and results

(T,V)-Cat −→ Set is topological and, hence, has both adjoints; the initial structure a
on X of a family (fi : X → (Yi ,bi))∈I is given by a(x, x) =

∧
i∈I b(T̂fi(x), fix) ;

(T,V)-Cat is complete and cocomplete, with limits (colimits) of diagrams formed by
initial (final) lifting of the limits (colimits) of the underlying Set-diagrams ;
the formation of (T,V)-Cat is functorial in T (contra-) and V (co-variantly); example:

Top ∼= (U,2)-Cat ⊥
⊥

//

a
��

(U, [0,∞])-Cat ∼= App

a
��

rr

ll

Ord ∼= (Id,2)-Cat ⊥
⊥

//

FF

(Id, [0,∞])-Cat ∼= Met
ll

rr

FF

Theorem (Lowen-Vroegrijk 2008, Hofmann 2014)
For every Set-monad T, laxly extended to V-Rel, one can find a monad Π (encoding both,
T and V) , laxly extended to Rel = 2-Rel, such that (T,V)-Cat ∼= (Π,2)-Cat.
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A fundamental adjunction

The Set-monad T with its lax extension T̂ to V-Rel may be considered as a (KZ-)monad
on V-Cat (T 2009): T(X ,a0 : X→7 X ) = (TX , T̂a0 : TX→7 TX )

If the Kleisli convolution is associative, then (Clementino-Hofmann 2009):

(X ,a0, ξ : TX → X ) � // (X ,a0 · ξ◦ : TX→7 X )

(V-Cat)T

K
,,

> (T,V)-Cat

M

ll

(TX , T̂a · µ◦X︸ ︷︷ ︸, µX ) (X ,a : TX→7 X )�oo

=: â : TX→7 TX

In particular (Hofmann 2007): If the V-category (V, hom) has a good T-structure ξ, then K
makes V a (T,V)-category, enables dualization, Yoneda embedding, ...
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M a K is a factor of the Eilenberg-Moore adjunction

(X ,a) � // (X ,a · (ηX )◦)

(V-Cat)T

K
,,

> (T,V)-Cat

M

kk

A◦
++

> V-Cat

A◦
ll

(X , η◦X · T̂a0) (X ,a0)�oo

T = U, V = 2:

OrdCompHaus
++

> Topll

**
> Ordkk

K topologizes (X ,≤, ξ) by (x y ⇐⇒ ξ(x) ≤ y); A◦ puts (dual of) specialization order

M orders UX by (x ≤ y⇐⇒ ∀A ∈ x closed in X : A ∈ y); A◦ puts Alexandroff topology
Walter Tholen (York University) Spaces as Categories Algebra, Topology 22 / 45
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The greater picture (when T is flat and V integral)

(V-Cat)T
K --

π0





`

!!

> (T,V)-Cat
M

ll

A◦
,,> V-Cat

A◦
mm

`

""

π0





` `

SetT

d

JJ

`c

99

--> Set

d

JJ

`c

99

nn
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The greater picture (when T = U and V = 2)

OrdCompHaus
,,

π0





`

""

> Topnn
,,

β

vv

> Ordll

π0





`

""

` `

CompHaus ..

`c

99

d

JJ

>
incl

66

> Setnn

`c

88

d

II

Note:
Up to now, we are able to justify the name “π0” only when X ∈ Top is normal;
that is: when X is normal, βX is homeomorphic to the space of connected components
w.r.t. the order that is imposed on the space UX by the functor M.
(An elaborate) Exercise:
Trade 2 for [0,∞]!
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PART 2
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Replacing inequalities by equalities: T1-sep’tion, core compactness

Recall the two defining inequalities for a (T,V)-category (X ,a : TX→7 X ):

(R) 1X ≤ a · (ηX )◦ T1 : 1X ≥ a · (ηX )◦

T = U,V = 2 : (ẋ  y ⇒ x = y)

(T) a · T̂a ≤ a · (mX )◦ core compact: a · T̂a ≥ a · (µX )◦

Pisani 1999: T = U,V = 2 : ΣX z ⇒ ∃ y (X y z)
⇐⇒ ∀x ∈ B ⊆ X open

∃A ⊆ X open (x ∈ A� B)
⇐⇒ X exponentiable in Top

Note:
If we express (R) and (T) equivalently as η◦X ≤ a and a ◦ a ≤ a resp., and “strictify”
these inequalities, different properties will emerge: discrete and no condition at all!
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Replacing inequalities by equalities: proper maps, open maps

Recall (two forms of) the defining inequality for a (T,V)-functor f : (X ,a)→ (Y ,b):

f◦ ·a ≤ b ·(Tf )◦ proper: f◦ ·a ≥ b ·(Tf )◦
∨

x∈f−1y

a(x, x) ≥ b(Tf (x), y))

Manes 1974: T = U,V = 2 : x // x

Tf(x) // y

a·(Tf )◦ ≤ f ◦ ·b open: a·(Tf )◦ ≥ f ◦ ·b
∨

x∈(Tf )−1y

a(x, x) ≥ b(y, f (x))

Möbus 1981: T = U,V = 2 : x // x

y // f (x)
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Some stability properties for proper and open maps

Isomorphisms are proper/open
Proper/open maps are closed under composition
g · f proper/open, g injective =⇒ f proper/open
g · f proper/open, f surjective =⇒ g proper/open
f proper/open =⇒ every pullback of f is proper/open

Theorem (Tychonoff-Frolı́k-Bourbaki Theorem)
Let V be completely distributive. Then:

fi : Xi → Yi proper (i ∈ I) =⇒
∏
i∈I

fi :
∏
i∈I

Xi →
∏
i∈I

Yi proper

Note that, by contrast (not by categorical dualization!), one has:

fi : Xi → Yi open (i ∈ I) =⇒
∐
i∈I

fi :
∐
i∈I

Xi →
∐
i∈I

Yi open
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The adjunction of structures: Hausdorff separation and compactness

NOTE: Graphs of maps are Lawverian maps in V-Rel; that is: f◦ · f ◦ ≤ 1◦ and 1 ≤ f ◦ · f◦.
Conversely, under some light assumptions on V (excluding 2M , but none of the other
quantales mentioned), one has: if r a s in V-Rel, then r = f◦, s = f ◦, for a unique map f .

(X ,a) Hausdorff: a · a◦ ≤ 1X ⊥ < a(z, x)⊗ a(z, y) =⇒ x = y (x , y ∈ X , z ∈ TX )

(X ,a) compact: 1TX ≤ a◦ · a k ≤
∨

x∈X a(z, x) (z ∈ TX )

Note: (X ,a)→ (1,>) proper ⇐⇒ (X ,a) compact

Theorem (Manes, Lawvere, Clementino-Hofmann, T)

SetT = (T,V)-CatComp ∩ (T ,V )-CatHaus

Proof:
(a · a◦ ≤ 1X and 1TX ≤ a◦ · a)⇐⇒ a a a◦ ⇐⇒ a is a map
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Compact + Hausdorff = Eilenberg-Moore
T V (T,V)-CatComp (T,V)-CatHaus

Id 2 Ord Set ∼= {discretely ordered sets}
Id [0,∞] Met Set ∼= {discrete (gen’ed) metric spaces}
U 2 Comp Haus
U [0,∞] App0-Comp {approach spaces whose induced

pseudotopology is Hausdorff}

Theorem (Tychonoff)
Let the quantale V be completely distributive. Then, if all (T,V)-categories
Xi = (Xi ,ai) (i ∈ I) are compact, then also (X ,a) =

∏
i∈I Xi is compact.

Proof (Schubert 2005): For all z ∈ TX :∨
x∈X

a(z, x) =
∨

x∈X

∧
i∈I

ai(Tpi(z),pi(x)) =
∧
i∈I

∨
xi∈Xi

ai(Tpi(z), xi) ≥ k
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Kuratowski-Mrówka Theorem

Under mild hypotheses on T and V:

Theorem (Clementino-T 2007)

f : (X ,a)→ (Y ,b) proper⇐⇒ • f has compact fibres
• Tf : (X , â)→ (Y , b̂) proper

(in Top, App, ...) ⇐⇒ • f has compact fibres
• f is closed

⇐⇒ f is stably closed

Corollary

X compact ⇐⇒ ∀Z : X × Z → Z closed (equ’ly: proper)

(X f−→ Y ) proper ⇐⇒ ∀(Z → Y ) : (X ×Y Z → Z ) closed (proper)
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Normality and extremal disconnectedness

Reminder:

X ∈ Top normal⇐⇒ disjoint closed sets have disjoint nbhds in X

X extremally disconnected⇐⇒ closures of open sets are open in X

How do these properties fare in our setting? Recall:

(T,V)-Cat M−→ V-CatT → V-Cat, (X ,a) 7→ (TX , â, µX ) 7→ (TX , â),

with â = (TX
µ◦X−→ TTX T̂ a−−→ TX )

For T = U, V = 2 and X ∈ Top, the functor provides UX with the order

x ≤ y⇐⇒ ∀A ⊆ X closed : (A ∈ x⇒ A ∈ y)
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Normality and extremal disconnectedness are dual to each other!

X ∈ Top normal X extremally disconnected
w

x y

z

w

x y

z

(X ,a) ∈ (T,V)-Cat normal (X ,a) extremally disconnected
â · â◦ ≤ â◦ · â â◦ · â ≤ â · â◦
⇔ ⇔

(TX , â) normal in V-Cat (TX , â◦) normal in V-Cat
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Monoidal topology without convergence relations?

Cls c : PX → 2X (R) A ⊆ cA
(T) B ⊆ cA⇒ cB ⊆ cA

Top c finitely additive: (FA) c(A ∪ B) ⊆ cA ∪ cB
c(∅) ⊆ ∅

(C) f (cX A) ⊆ cY (fA)

[Seal 2009]

V-Cls c : PX → VX (R) ∀x ∈ A : k ≤ (cA)(x)

= (P,V)-Cat (T) (
∧
y∈B

(cA)(y))⊗ (cB)(x) ≤ (cA)(x)

[Lai-T 2016]
V-Top c finitely additive: (FA) c(A ∪ B)(x) ≤ (cA)(x) ∨ (cB)(x)

(c∅)(x) ≤ ⊥
(C) (cX A)(x) ≤ cY (fA)(fx)

[0,∞]-Top =: App [Lowen 1989] ∆-Top =: ProbApp [Jäger 2015]
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How to reconcile closure and ultrafilter convergence?

For V completely distributive:

P and U interact via the V-relation εX : PX→7 UX via εX (A, x) =

{
k if A ∈ x

⊥ else

Aε : (U,V)-Cat→ (P,V)-Cat, (X ,a) 7→ (X , ca = a ◦ εX )

(caA)(y) =
∨
x3A

a(x, y)

Aε has a right adjoint (X , c) 7→ (X ,ac), with ac(x, y) =
∧
A∈x

(cA)(y)
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(U,V)-Cat ∼= V-Top

Theorem (Lai-T 2016)

Let V be completely distributive. Then:

Aε : (U,V)-Cat ↪→ (P,V)-Cat = V-Cls

is a full coreflective embedding; its image is V-Top ∼= (U,V)-Cat.

Corollary (Clementino-Hofmann 2003)

App ∼= (U, [0,∞])-Cat

ProbApp ∼= (∆, [0,∞]-Cat
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Burroni 1971: How to internalize multicategories ...

C a category with pullbacks, T = (T, η, µ) any monad on C. Define the category

Cat(T)

Objects are (small) T-categories which are monoids in a bicategory of T-spans in C;
explicitly, they have an “object of objects” X and an “object of arrows” A, plus

X
ηX

vv
i
��

1X

((TX Adoo c // X

TA

µX ·Td

OO

TA×TX Ad ′oo

m

OO

c′ // A

c

OO

subject to (somewhat cumbersome) unity and associativity laws.
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... and multifunctors

Morphisms are T-functors which are more than morphisms of such monoids; rather:

TA×TX A
µX ·Td ·d ′

yy

mA

$$

Tf×Tfo f

��

X
iA

��

1X

��

fo
��

TX

Tfo

��

Adoo c //

f

��

X

fo

��

TB ×TY B

µY ·Td ·d ′
yy

mB

$$

Y
iB

��

1Y

��
TY Bdoo c // Y

One may, however, set up a double category of T-spans in C such that T-functors are
precisely homomorphisms of monoids.

Walter Tholen (York University) Spaces as Categories Algebra, Topology 38 / 45



... and multifunctors

Morphisms are T-functors which are more than morphisms of such monoids; rather:

TA×TX A
µX ·Td ·d ′

yy

mA

$$

Tf×Tfo f

��

X
iA

��

1X

��

fo
��

TX

Tfo

��

Adoo c //

f

��

X

fo

��

TB ×TY B

µY ·Td ·d ′
yy

mB

$$

Y
iB

��

1Y

��
TY Bdoo c // Y

One may, however, set up a double category of T-spans in C such that T-functors are
precisely homomorphisms of monoids.

Walter Tholen (York University) Spaces as Categories Algebra, Topology 38 / 45



Making things easier: “Spaces” as simplified T-categories

Definition
A T-category (X ,A,d , c, i ,m) is a T-order in C if (d , c) is a monic pair in C.

In that case, i and m are uniquely determined by (X ,A,d , c), and their existence
becomes a property of (X ,A,d , c): reflexivity and transitivity. The unity and associativity
laws now come for free! For a T-functor (fo, f ) : (X ,A) −→ (Y ,B), the arrow part f is
determined by its object part fo, and its existence becomes a property of fo: monotonicity.

Some properties of the full subcategory Ord(T) of Cat(T):
Ord(T) −→ C is topological ( = fibration + cofibration + fibres are large-complete ),
provided that C is complete and wellpowered.
If C is also cocomplete, so is Ord(T).
Every Eilenberg-Moore T-algebra (X ,a : TX → X ) gives the T-order (X ,TX ,1TX ,a);
in fact:
T-algebras are precisely those T-categories with domain map an identity.
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Aspirational inclusions: Algebra ⊂ Topology ⊂ Category Theory

CT = EM(T) // //

��

Ord(T) // //

��

Cat(T)

��
C // // Ord(C) // // Cat(C) // C

Role models: T = L (list monad) and T = U (ultrafilter monad) on Set

Mon // //

��

MultiOrd // //

��

MultiCat

��
Set // // Ord // // Cat // Set

CompHaus // //

OO

Top // //

OO

UltraCatinternal

OO
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More properties, a glimpse at the “topological potential” of Ord(T)

Ord(T) // // Cat(T ) is reflective, provided that C is finitely complete, has a stable
(strong epi, mono)-factorization system, and that T preserves strong epimorphisms
(which is no restriction on T in case C = Set, under Choice).
EM(T) // // Ord(T ) is reflective, under the additional provision that C is complete
and weakly cowellpowered (by Freyd’s GAFT): Stone-Čech if T = U.

In this case, define a T-order X = (X ,A,d , c) to be
Hausdorff if the reflection βX : X → βX is monic;
completely regular if βX is cartesian (= initial) over C;
Tychonoff if X is Hausdorff and completely regular.

Haus(T)
&&

&&
EM(T) // // Tych(T) // //

88

88

CReg(T) // // Ord(T) // // Cat(T)
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Ord(T) // // Cat(T ) is reflective, provided that C is finitely complete, has a stable
(strong epi, mono)-factorization system, and that T preserves strong epimorphisms
(which is no restriction on T in case C = Set, under Choice).
EM(T) // // Ord(T ) is reflective, under the additional provision that C is complete
and weakly cowellpowered (by Freyd’s GAFT): Stone-Čech if T = U.

In this case, define a T-order X = (X ,A,d , c) to be
Hausdorff if the reflection βX : X → βX is monic;
completely regular if βX is cartesian (= initial) over C;
Tychonoff if X is Hausdorff and completely regular.
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An example of category theory embracing topology

Let f : X = (X ,A) −→ Y = (Y ,B) be in Tych(T). Then:

TX

Tf pullback in C
��

A

f
��

doo

TY B
d

oo

⇒ X //

f pb in Ord(T)
��

βX

βf
��

Y // βY

discrete cofibration in Cat(T) ⇒ perfect (as in [T 1999])

Consequently:

Comprehensive factorization of f means (antiperfect, perfect)-factorization of f ,
a.k.a. the fibrewise Stone-Čech compactification of f .
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Comparison with (T,V)-Cat

Burroni 1971:

C = Set, T laxly extended to Rel á la Barr. Then:

Ord(T) ∼= (T,2)-Cat

In particular: Ord(U) ∼= Top

But what about arbitray quantales V, rather than 2?
For example: Is V-Cat of the form Ord(T), for some T? ...

Recall:
While for every T, laxly extended to V-Rel, one can find a monad Π laxly extendable to
Rel (encoding both, T and V) such that (Lowen-Vroegrijk 2008, Hofmann 2014)

(T,V)-Cat ∼= (Π,2)-Cat,

the lax extension of Π is not á la Barr, and (almost always, I bet) (Π,2)-Cat � Ord(Π).
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To-Do list

Pursue monoidal topology (enriched) in the (internal) context ...
... and conversely!
To which extent are (T,V)-categories covered by an internal setting?
Apply the emerging theory in particular in topological algebra.
Apply (T,V)-category theory to “probabilistic” quantales or monads.
Dualization, Yoneda, (monoidal) closedness, 2-categorical structure, ...
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