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Abstract

For locally ranked categories A, which include all locally pre-
sentable categories and the category Top of topological spaces, we
prove that, given any set H of morphisms of A, the full subcategory
of all H-injective objects is weakly reflective in A. Moreover, weak
reflections can be chosen to be H-cellular morphisms, i.e., to be trans-
finite compositions of pushouts of H-morphisms. This generalizes the
well-known Small-Object Argument used in algebraic homotopy the-
ory.

I. Introduction

One of the classical questions of category theory is the “orthogonal subcate-
gory problem”: given a class H of morphisms of a category A, when is the
full subcategory H* of all objects orthogonal to H reflective? In algebraic
homotopy theory an equally important problem is the following “injective
subcategory problem”. Given a class H of morphisms in A, we can form the
full subcategory

H-Inj

of all objects A injective w.r.t. # (i.e., such that hom(A4,—) : A — Set
maps members of H to epimorphisms). Typically, this subcategory is not
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reflective, but we can ask about the existence of weak reflections (defined
like reflections, except that factorizations are not required to be unique).
Furthermore, if weak reflections exist, they are not unique, since we may ask
about the “quality” of the weak reflection morphisms. Homotopy theorists
need weak reflections to be H-cellular, i.e., to belong to the closure of H
under isomorphisms, pushouts and transfinite composition (or, equivalently,
under multiple pushouts). The “injective subcategory problem”, then, is the
question of whether, for a given class H of morphisms of A, every object of
A has an H-cellular weak reflection in H-1Inj.

We present a solution which generalizes the well-known Small Object
Argument of D. Quillen [Q]. In that argument, an object A is called small
w.r.t. H provided that there exists an infinite cardinal A such that hom(A, —)
preserves colimits of A-chains of H-cellular morphisms. Suppose that A is
cocomplete and H is a set of morphisms such that every object is small w.r.t.
A; then the injective subcategory problem has an affirmative answer. Thus,
in locally presentable categories we conclude that the answer is affirmative for
all sets of morphisms. But what about such basic categories as the category
Top of topological spaces? We introduce here the concept of locally ranked
category: it is a cocomplete and cowellpowered category such that every
object A has rank, i.e. there exists an infinite cardinal A such that hom(A4, —)
preserves unions of A-chains of strong momomorphisms. Since A-presentable
objects have that property, we have

locally presentable = locally ranked.

But also Top and other topological categories are locally ranked. Our main
result is the following

Generalized Small-Object Argument. For every set of morphisms in a
locally ranked category, the injective subcategory problem has an affirmative
answer.

What about the orthogonal subcategory problem in locally ranked cate-
gories? G. M. Kelly proved [K, Theorem 10.2] that the answer is affirmative
not only for sets of morphisms, but also for those proper classes such that all
members but a subset are epimorphisms. It is not known to us whether our
result above holds for such classes too. However, we do know that for each
such class ‘H the subcategory H-Inj is almost reflective, i.e., every object
has a weak reflection into H-Inj, and H-Inj is closed under retracts. More-
over, H-Inj is naturally almost reflective in the sence of [AHRT], i.e., there



exists an endofunctor R : A — A together with a natural transformation
o: Id — R such that for every object K of A

(%) ok : K — RK is a weak reflection of K in H-Inj.

What we do not know is whether one can choose the weak reflection to be
‘H-cellular.

Our proof, for sets H of morphisms in locally ranked categories uses sub-
stantionally a technique developed in the disseration of J. Reiterman [R] and
published in [KR]. A weak reflection of an object K into H-Inj is constructed
iteratively; the first step of iteration is presented by a pointed endofunctor,
i.e., an endofunctor C' : A — A together with a natural transformation
n: Id — C. That is, we start from 7, : K — C(K) and then iterate:

o2 ()
N

(1) K2 oK) 2% o*(K)

using chain-colimits on limit steps. We prove that there exists an ordinal ¢
such that C*(K) is H-injective, and then K — C*(K) is an H-cellular weak
reflection. However, the pointed functor we use does not in general satisfy
the equation nC' = 3DCn. Hence, there is an alternative “obvious” iteration,
viz.,

2) K 5 O(K) % 0 (k)

This leads to natural weak reflections (not only for sets H, but also for the
above-mentioned classes); however, these weak reflections are probably not
‘H-cellular. This brings us to the following:

Open Problem. Given a set H of morphisms of a locally ranked category,
does there exist a pointed endofunctor p : Id — R satisfying (*) and such
that each pg is H-cellular?

In the last section we apply the Generalized Small-Object Argument to
extend D. Quillen’s theorem on weak factorization systems constructed from
a given set of morphisms from locally presentable categories to locally ranked
ones. This has been formulated earlier for locally presentable categories by
T. Beke, see [B].

II. Generalized Small-Object Argument

IT.1 Convention. All categories throughout our paper are supposed to be
locally small, i.e., hom-sets are (small) sets.
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I1.2 Definition. Given a class H of morphisms of a cocomplete category A,
we denote by
cell (H)

the least class of morphisms containing ‘H and all identity morphisms which
is pushout-stable and closed under transfinite composition, i.e., contains the
colimit cocones of all chains in cell (). Members of cell (H) are called H-
cellular morphisms.

Remark. Pushout stability means, of course, that in any pushout, opposite
to an H-cellular morphism is always an #H-cellular morphism. Observe that
closedness under transfinite composition can be substituted by closedness
under (i) composition and (ii) multiple pushouts (meaning that for every
small discrete cone of H-cellular morphism the colimit cocone is formed by
‘H-cellular morphisms).

Example. (1) Let A = 3DSet and let H consist of the single morphism
() — 1. Then cell () = 5D monomorphisms. In fact, by pushout stabiltity
we get that the inclusion A — A + 1 is in cell (H) for every set A, and
transfinite composites then yield all monomorphisms A — B.

(2) Let A = D Top, the category of topological spaces and continuous
maps, and let H consist of the single embedding

e:{0,1} = [0,1]

of the discrete two-element space into the unit real interval. Then cell (H)
consists of the extensions of topological spaces A obtained by iteratively
glueing new paths to pairs of elements of A.

I1.3 Subcategories H-Inj. Given a class H of morphisms of A, an object
A is said to be H-injective provided that for every member h: H — H' of H
and every morphism [ : H — A there exists f': H' — A with f =3Df"- h.
We denote by

H-Inj

the full subcategory of all H-injective objects of A.

Example: A = 5DSet, H = 3D{0 — 1}, then H-1Inj is the full subcategory
of all nonempty sets. If A = 5D Top and H = 3D{e} above, then H-1Inj is
the full subcategory of all pathwise connected topological spaces.



I1.4 Weak Reflections Constructed by Iteration. Given an object K
of A we are going to construct a transfinite chain

K=3DKy—~+Ky = - =K, = =>K; = (1< jin Ord)

which will be proved to approximate a weak reflection of K in H-Inj in the
sense that, for every ordinal 1,

if K; is H-injective, then Ky — K; is a weak reflection of K;

Moreover, all members of that transfinite chain are H-cellular morphisms.

The first step of our construction, K = 3DK, — K;, will be performed
by a pointed endofunctor of A, i.e., by an endofunctor together with a natural
transformation from Id 4. The subsequent steps will consist of iterating that
endofunctor.

Notation. Let H be a set of morphisms in a cocomplete category A. We
define a pointed endofunctor

n:[dA—>C

of A as follows.
For every object K of A form a colimit of the following small diagram

H—"

K

consisting of all spans (f, h) where h : H — H' is any member of H and
J € hom(H, K). We denote a colimit cocone of that diagram as follows:

f

H—
P

(Since f depends on f and h, this is a slightly imprecise notation.)
To define C' on morphisms u : K — K of A, observe that there exists a
unique morphism

C(u) : C(K) — C(K)
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for which the diagrams

o - H'
i

K 7= C(K) |y
& C’(u)‘

K —57 C(K)

commute for all (f, ~) in the diagram above.

I1.5 Example. Let A = 5DSet and H = 3D{0 — 1}. Then C(K) =
3DK +1; more precisely, C' is a coproduct of Idge; and the constant functor
with value 1.

I1.6 Remark. As announced above, we are going to construct a weak re-
flection of an object K in H-Inj by iterating the above pointed endofunctor
C. There are, however, two “natural” possibilities of iteration : either

No(K)

K™ C(K) =% C*(K)

7702([()
e

or
K™ oK) 9% (k) O

It turns out that each of them has its advantages: the first one leads to an
H-cellular weak reflection, the latter to a natural one (see I11.17 below).

This makes a fundamental difference between the present injective-sub-
category problem and the orthogonal-subcategory problem: in the latter, the
corresponding functor C' is well-pointed, i.e., Cnp = 3DnC (see [K]). Here,
this equation does not hold in general, e.g., in the preceding example we have
Cn#nC.

I1.7 A Weak-Reflection Chain. Let H be a set of morphisms of a co-
complete category A. For every object K we define a transfinite chain of
objects K; (i € Ord) and H-cellular morphisms k;; : K; — K; (i € j) by the
following transfinite inductions:

First step: Ky = 3DK;

Isolated step: K;y1 = 3DC(K;) and k; ;1 = 3Dy,

Limit step: K; = 3D colim K; for every limit ordinal j, with a colimit
cocone k;; (i < 7).



To prove that the chain consists of H-cellular morphisms, it is obviously
sufficient to verify that ng is H-cellular for every object K. In fact, suppose
that we form a pushout of each span of the diagram defining C'(K):

H—"—
f[ Lf*
K% h,f

Then h € H implies h* € cell (H), and 7y is obtained as a multiple pushout
of all the morphisms h*, thus, nx € cell (H).

I1.8 Lemma. The above weak-reflection chain is an approximation of a weak
reflection of K in H-Inj in the following sense:

(a) every H-injective object is {ko; }-injective for all ordinals 1,
and

(b) if, for some ordinal i, K; is H-injective, then ko; : K — K; is a weak
reflection in H-Inj.

Remark. In (b), H-injectivity of K; is equivalent to the property that the
i-th step of the iteration, ng,, be a split monomorphism.

Proof. (a) Given A € H-Inj and a morphism u : K — A, we show that there
is a cocone u; : K; — A of the weak reflection chain above with uy = 3Du,
by transfinite induction.

[solated step:

Since A is H-injective, for each span (f, k) of the diagram defining C'(Kj;)
there exists f H' — A with fh = 3Du;f. These morphisms, together with
u;, form a cocone of that diagram, and we denote by w1 : C(K;) — A the
unique morphism that factors this cocone. In particular, u; = 3Dwu;41 - Nk, .

(b) follows from (a). O



II.9 Remark. The following corollary, due to Quillen [Q], is known as
Small Object Argument. An object K is called small w.r.t. H if there exists
an infinite cardinal A such that hom (K, —) preserves colimits of A-chains of
‘H-cellular morphisms.

I1.10 Small Object Argument. Let H be a set of morphisms of a cocom-
plete category A such that all objects are small w.r.t. H. Then H-Inj is
almost reflective with H-cellular weak reflections.

Proof. There exists an infinite cardinal A such that hom(H, —) preserves
colimits of A-chains of ‘H-cellular morphisms for every domain H of morphism
in H. We show that for every object K of A, the object K is H-injective,
which, by I1.8, proves that ko) : K — K, is an H-cellular weak reflection.

H—"—
e
Ki—— K\
For every span (f,h) with f : H — K there exists a factorization f =
3Dk;y - f* for some i < A (since hom(H, —) preserves K) = 3ch[z§nKi), and
<<

this proves the H-injectivity of K, : the morphism f factors through A since
Nk, - f*=3D(f*) - h, hence

[ =3Dk; - f*
= 3Dkiy1x 0k, - f*
= 3Dkipix- () - h. O

I1.11 Remark. It is our goal to present a result of the same type as the Small
Object Argument where, however, smallness w.r.t. ‘H would be substituted
by a (reasonably weak) property of the category A, independent of #. We call
this property “locally ranked” which is intended to be reminiscent of “locally
presentable” as introduced by Gabriel and Ulmer. The only drawback of this
general result is the requirement that A be cowellpowered (which was not
needed for the Small Object Argument). However, since most “everyday”
categories are cowellpowered, we do not think that this is a real obstacle.
Below, we use the fact that every cocomplete and cowellpowered category
has (epi, strong mono) factorization of morphisms, see 14.21 and 14C(d) in
[AHS]. Recall that a monomorphism m : A — B is called strong provided



that it has the diagonal-fill-in property w.r.t. epimorphisms. That is, given
a commutative square

X fA
Y - B

where e is an epimorphism, there exist a diagonal morphism Y — A rendering
both triangles commutative.

The whole theory below could be performed in any cocomplete cowellpow-
ered category with a proper factorization system (€, M) for morphisms. We
give an indication of this in the Remark following I1.14; but in order to sim-
plify the statement below, here we stick to £ = 2D epi and M = 3D strong
mono, in order to simplify the statements below.

I1.12 Definition. A category A is called locally ranked provided that it
is cocomplete and cowellpowered, and for every object K there exists an
infinite cardinal A (called rank of K) such that hom(K,—) preserves unions
of A-chains of strong subobjects.

Remark. Explicitly, K has rank X provided that for every A-chain of strong
monomorphisms, (A;);<x, with a colimit cocone a; : A; — A (i < A), every
morphism f : K — A factors through a; for some 7 < A. Every A-presentable
(in fact, every A-generated) object has this property, but not vice versa: recall
that e.g. in Top only the discrete spaces are A-generated.

I1.13 Examples. (1) All locally presentable categories (see [GU] or [AR])
are locally ranked. E.g., all varieties of algebras, the category of posets, and
the category of simplicial sets are locally ranked.

(2) Top, the category of topological spaces and continuous maps, is lo-
cally ranked (but not locally presentable). Here strong monomorphisms are
precisely the subspace embeddings. Every topological space K of cardinality
smaller than A, where A is an infinite cardinal, has rank A. In fact, given
[+ K — A = 3D colim A;, there exists i such that f[K] C a;[A4;]; hence
f factors as f = 3Da; - ' in Set, and the continuity of f implies that of
f': K — A; because a; : A; — A is a subspace embedding.

(3) More generally, all monotopological categories over Set, see [AHS],
are locally ranked. These include the category of uniform spaces, and the
category of Hausdorff topological spaces.



I1.14 Theorem (Generalized Small Object Argument). Given a set H of
morphisms in a locally ranked category, then every object has an H-cellular
weak reflection into H-Inj.
Remark. Instead of locally ranked, which refers to (epi, strong mono)-
factorizations, we can formulate and prove our result for categories with a
proper factorization system (£, M); i.e., £ is a class of epimorphisms and
M is a class of monomorphisms both closed under composition and such
that A = 3DME (i.e., every morphism [ of A factors as f = 3Dme with
m € M and e € £) and M-morphisms have the diagonal fill-in property
w.r.t. £-morphisms. Let us call a category A locally ranked w.r.t. a proper
factorization system (£, M) provided that A is cocomplete, E-cowellpowered,
and every object A has an M-rank, i.e., a cardinal A such that hom(A, —)
preserves unions of A-chains of M-monomorphisms.

The above theorem holds for all locally ranked categories w.r.t. a factor-
ization system.

Proof. We prove our results in the general (£, M)-setting of the Remark
above. According to I1.8 we only need to show that for every object K € A
there is © € Ord with K; € ‘H-Inj. Denote by

€55 ! K; — Xz'j(e 5) and mij . Xz'j — Kj(E M)
an (5, M)—factorization of kij K — Kj (Where X, = 3DKZ', ey = 3Dm;; =
3Did) in A. For each i € Ord we obtain a chain of £-morphisms e;;; :

Xi; = Xip (j <j'in Ord) by using the diagonal fill-in:

ij!
Ki - Xij’

87,]

.. .
g mij J
JJ

We obtain a two-dimensional diagram as follows:
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ko1 k12

Ky - K K,
€001 /61712 /ﬁfzs

XOI X12 X23
eo12 /61723 /;u

Xo2 X3 Xoy
€023 /61734 /ﬁ145

Xo3 X4 Xos
€034 €145 €256

where the diagonal morphisms are M-morphisms obtained, again, from the
diagonal fill-in (for all i <" < j):

kg €ilj
K, —— Ky - Xz'lj
81‘]"/ / ‘/mm
Xz'j . > Kj

Since K is £-cowellpowered, for every ordinal ¢ the chain e;; 1 K; — X5
(7 > 1) of E-quotients of K is strationary, i.e., there exists i* > i such that
all the quotients e;;; with j > 4" are equivalent. In other words,

(1) /cji*mz-z-* - M for all] Z i

We choose, for each i, our ordinal i* so that (—)* : Ord — Ord is monotone
and define the iteration of % as the following function ¢ : Ord — Ord :

2(0) = 3D0
p(i+1) = 3De(1)"
¢(j) =3D V (i) for limit ordinals j .

1<j
Let (L;) be the following chain:

Li = 3D X oy (i)
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and the connecting morphisms [;; are given by the diagonal fill-in for all ¢ < j:

EF(i)f(i)*
(2) Koty ——— Xo(iypli)-
ke (i)e (i) L Lm¢(i)¢(i)*
Kso(f) Kgo(z*)*
e‘F(j)‘F(j)* k&p(z)&p(g)*
X

o) ey H o)

Due to (1) we conclude

(3) lijeM forall +<y

and we have a natural transformation

(4) d; = 3Deyi)p0) * Koy =+ Liin & (i€ Ord).
Let us show that for every limit ordinal ;7 we have

K, = 3DcolimL; with colimit cocone
e(f) i<

Cij = 3DKo(o) o) - Mooty (1< 7)- (5)
Given a cocone h; : Ly — H (i < j) the cocone h;d; : K,i — L has a
unique factorization through K, = 3Dco_£z'mK¢(i). Thus, there is a unique
i<j
h: Kv(j) — H with

(6) h+ kpye) = 3Dhid; (i < ).
We conclude that
(7) h- Cij == 3th (Z < ])

because d; is an epimorphism with

hcy-di = 3Dh - kpgiyio() - M) * i by (5
= 3Dh - k(i () - Mep(iyeli)® * €op(i)eli) by (4
= 3Dh - kp(iy o) - Botiei)
= 3Dh - koiye()

— 3Dhyd, by (6)
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And h is unique because (7) implies (6).
We are ready to prove that K, is M-injective, whenever all domains
of M-morphisms have M-rank A. In fact, given

m:A— A inMand f: A— Ky

then since hom(A, —) preserves the colimit K,y of the M-chain (L;);<y,
there exists « < A such that f factors through c;yn) @ L;i — Ky, say

(8) f—3DCZf ffOI'SOHlef A—)L—3DX()()
For the morphism

(9) g—3DmW f A—)Kf()

we have ¢' : A" — Ky(y-41 with

(]_O) glm — 3Dkf(i)*,f(i)*+1 . 9‘

and we conclude

Ko(i)
Xo()et)*

[ =3Dcipn f i by (8)
= 3Dk iy p(3) - Mooty * f by (5)
= 3Dl€ (i) (A © g by (9)
= 3Dk) 41,001 >’%<z‘>*,w(z‘>*+1 g
= 3D(kw(t)*+1,w(k) . g’) m by (10)

This concludes the proof that K () is M-injective. O

I1.15 Remark. Following [AHRT], we call a subcategory D of a category
A naturally almost reflective provided that (i) A has a pointed endofunctor
o: Id 4 — R such that for every object K of A we have:

(%) o: K — RK is a weak reflection of K in B,

13



and that (ii) B is closed under retracts in A4 (which is automatic in case
B = 3DH-Inj). The above proof of Theorem I1.14 does not yield naturality:
the ordinal 7 for which ky; : K — K; is a weak reflection of K in B = 3DH-
Injy depends on K. This is a drawback in comparison with the Small Object
Argument (II.10): there we had one ordinal A for all objects K. Thus, a
weak-reflection endofunctor of A is obtained by A iterations of n : Id — C.
That is, define a A-chain in A4 by the following transfinite induction:

First step : Cj

Isolated step : Cj11 = 3DC - C; and ¢4 541 = 3DCe¢;5;

Limit step : C; = 3DcolimC; for limit ordinals j.

<]

Then
Co) - Id — C,\

is a pointed endofunctor satisfying (%) for B = 3DH-Inj. This has been
proved in II.10.

I1.16 Open Problem: Is H-Inj naturally and H-cellularly almost reflec-
tive in every locally ranked category A (and for every set H of morphisms in
A)?
That is, does there exist a pointed endofunctor p : Id 4 — R such that
for every object K, (x) holds for B = 3DH-1Inj, and pk is also H-cellular?

Example: The answer is affirmative for all locally presentable categories A.

I1.17 Remark. The above problem is really vexing since H-Inj is not only
H-cellularly almost reflective (as proved in I1.14) but also naturally almost
reflective in A. All we have to do is to apply the other “obvious” iteration
principle:

K75 oK) <% o2 (k) O

That is, for the pointed endofunctor n : Id 4 — C of 11.4 we define a transfi-
nite chain K; (i € Ord) in A by the following transfinite induction:

First step : K° = 3DK;

Isolated step : K*™' = 3DC(K?) and k't +1 = 3DC(kH7);

Limit step : K7 = 3DcolimK* for every limit ordinal j.
<]
Then for every object K the resulting chain is, again, an approximation of a

weak reflection in H-Inj, i.e., statements (a) and (b) of I1.8 hold for £% and
K*.
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Moreover, if H is a set of morphisms in a locally ranked category A,
then H-Inj is a naturally weak reflective subcategory. This follows from
another result of J. Reiterman: he studied in [R] the following situation.
Let ¢ : C'" — C be a natural transformation between endofunctors of A.
Form the category Alg(C) of C-algebras, i.e., the comma-category C' | Id
of all arrows C'(A) — A; analogously Alg(C") = 3DC" | Id. Denote by
U:Alg(C) — A and U’ : Alg(C") — A the natural forgetful functors. Then
@ gives us a function

¢* : Alg(C) — Alg(C") with U = 3DU" -

assigning to each C-algebra C'(4) — A its composite with ¢4 : C'(A) —
C(A). And ¢* often has a left adjoint obtained by the following transfinite
construction. For every C'-algebra, o : C'(A) — A, we form a transfinite
chain (A;) and a natural transformation from (FA;) to (A;+1) by using a
pushout on isolated steps, and a chain colimit on limit steps as follows:

C(ao1) C(ai2)

C'(4) —2— C(Ay) L O(A) : ...cgiing(An) - C(Ay) -
a|=3Dag [o31 ‘/az Qw Qo1
A — DAO ao1 . Al a1z AQ . e Aw — 3DCTOli7;U7;’,LAnam Au)—l—l e

From=20Corollary 8.5 in [KR] we conclude that if A is locally ranked and C
preserves unions of A-chains of strong subobjects, then for every C’-algebra
(A, ) there exists i € Ord with a; ;1 invertible; which yields a C-algebra

F(A, @) = O(A;) 2 Ay 2 4

And this defines a left adjoint F : Alg(C') — Alg(C) to ¢* together with a
natural transformation p: U’" — UF given by ag; : A — A;.

We apply this to C’ = 3D1Id and the functor C' of I1.4: choose an infinite
cardinal such that the domains of all members of H have rank A; then C
preserves unions of A-chains of strong subobjects. For every object K we have
a trivial C'-algebra K 5 K (presenting a full embedding ' : A — Alg(Id))
for which () reduces to our chain K* above:

15



Cnx) CZ(WK): o

K —% C(K) - C2(K)
id id id
K~ CO(K) s CX(K) -

We obtain the desired pointed endofunctor of A:
C=3DUFE: K = (K % K) = (C(KP) —» KW) 5 K
together with
7=3DpE :Id4y — UFE (U'E =3Did).

The trouble is that there is no reason to believe that 7k is H-cellular.

I1I. Weak Factorization Systems

II1.1. In this section we apply Theorem II.14 to generalize a result on weak
factorization systems from the realm of locally presentable categories to all
locally ranked categories.

We use the notation

JUyg
for the statement that the morphism f : A — B has the diagonal fill-in
property w.r.t. ¢ : C — D, i.e., for every commutative square

-

g

D

A
|
B

o

there exists a diagonal
EELENs

fZ/

g
P

D

making both triangles commutative. For every class # of morphisms in A
we denote by H= and PH the classes obtained by the Galois correspondence
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induced by [l:
HP =3D{g € mor A; hO g for all h € H}

and
O = 3D{f c¢ mor A; fOh for all h € H}.

ITI1.2 Remark. Observe that an object K is H-injective iff the unique
morphism K — 1 lies in H".

Conversely, a morphism ¢ : ¢’ — D lies in H- iff g as an object of the
comma-category A | D, ¢ is H-injective for the set H of all morphisms

H—"——q
"
of A| D with h € H. (See 12.4.2 in [H].)
The following definition appears in [B].

II1.3 Definition. By a weak factorization system in a category A is meant
a pair of classes £ and R of morphisms of 4 such that

(i) A=3DRL

(ii) R = 3DLY
and

(iii) £ = 3D"R
That is, every morphism of A has a factorization as an L-morphism fol-
lowed by an R-morphism, and £ and R determine each other in the Galois
correspondence induced by the diagonal fill-in relation [J on mor A.

ITII.4 Remark. (1) The above conditions (i)—(iii) are easily seen to be equiv-
alent to the following:

(i) A=>DRL,

(ii*y LOR, ie, [Orforalle L, re L,
and

(iii*) both £ and R are closed under retracts in the category A~.

Recall that A~ has as objects all morphisms of A, and as morphisms com-
mutative squares. Thus, (iii*) says that in every commutative diagram of A
of the following form
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id
g
VN
id

g € L implies f € L and ¢ € R implies f € R. Or, equivalently, that the
following implications hold:

whenever i - f € £ and p-i=3Did, then f € L
and

whenever f-q € R and ¢-j = 3Did, then f € R.

(2) In a weak factorization system,
LNR = 3>Dlso.

In fact, this follows from (ii) and (iii) only (see [Ri])

IT1.5 Examples. (1) Every factorization system in a category (which can
be defined as above except that “diagonalization property” is substituted
by “unique diagonalization property”, see [CHK]) is a weak factorization
system, see 14.6(3) in [AHS].

(2) Every Quillen model category, given by morphisms classes

F (fibrations),

C (cofibrations),
and

W (weak equivalences)
has two prominent weak factorization systems:

(C, Fy) where Fy = 3DF N W (trivial fibrations)

and
Co, F) where Cy = 3DC N W (trivial cofibrations),

see [Q].

(

[

(3) In Set, by (1) we have a (weak) factorization system (Epi, Mono).
o (

Also (Mono, Epi) is a weak factorization system. In fact:

(i) Every morphism f: A — B factors as

18



A - B

\ (Fid]

A+ B

(ii) Epi C Mono"™ because epimorphisms split:

given a commutative square

A——C
A

1 il g
/ |

BTD

with G; = 3Did, extend u to B by using v -7 on B — A. Further
Mono" C Epi which is trivial since ) — 1 is a monomorphism.

(iii) "Epi C Mono since for every morphism f : A — B in UEpi, f is a split
monomorphism due to the following square

P
|
B——1

ITI.6 Definition. Let H be a class of morphisms in a cocomplete category
A. A morphism [ : A — B is called an H-cofibration provided that, in the
comma category A | A, it is a retract, of an #-cellular morphism; that is:
there exist f': A — B’ in cell (%) and commutative triangles

A A
B———p — B
with r -7 = 3Did.
Remark. We denote by

B/

cof (H)
the class of all H-cofibrations. It is easy to show that

cof("H) = 3D"H

19



for every #H, see [H], 8.2.5-9 and 12.2.16. The following theorem generalizes
Theorem 1.1 of T. Beke [B;] from locally presentable categories to locally
ranked ones:

IT1.7 Theorem. Let H be a set of morphisms in a locally ranked category.
Then. (cof (H), H") is a weak factorization system.

Proof. Put R = >DH" and £ = 3D"R. Then we first prove that (£, R) is
a weak factorization system, and then that £ = 3D cof(H).

(a) Every morphism f: X — Y of A has an (£, R)-factorization: The
comma-category A | Y is obviously cocomplete and £-cowellpowered, where
& consists of all morphisms of A | Y whose underlying morphism in A is an
epimorphism. Moreover, A | Y has the proper factorization system (&, M)
where M consists of all morphisms whose underlying morphism in A is a
strong monomorphism. Finally, every object b : B — Y of A | Y has an
M-rank (see Remark I1.14): if B has rank A in A then (B, b) has M-rank A
in A | Y. Consequently, for every set of morphisms of A | Y weak cellular
reflections exist by I11.14. We apply this to the set H of all morphisms whose
underlying morphism in A lies in 4. Thus, the object f : X — Y given
above has an H-cellular weak reflection

in H-Inj. But H-Inj = 3DH" = 3DR, see 111.2, thus

ffeRrR.

Also, r € cell(H), i.e., r € cell(H), which implies r € cell (£) because
H C HH") = 5DL and by Remark IIL.5 we conclude

rel.

(b) £ = DR by definition.
(c) R = >DL" by definition of H and (a) above.

(d) £ = 3Dcof(H). In fact, it is clear that cof () is contained in £ =
>DYH"), see Remark IIL.5. Conversely, given f : X — Y in L, consider
the above factorization f = 3D f*r, where r € cell (H). It is sufficient to
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show that f is a retract of r in A | Y’; in fact, we can use the diagonal fill-in

property:
T g | £
Y T Y
0
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