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Abstract

In a category with injective hulls and a cogenerator, the embeddings
into injective hulls can never form a natural transformation, unless all
objects are injective. In particular, assigning to a field its algebraic closure,
to a poset or Boolean algebra its MacNeille completion, and to an R-
module its injective envelope is not functorial, if one wants the respective
embeddings to form a natural transformation.

Mathematics subject classification: 18G05, 16D50, 12F99, 06A23
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1 Introduction

Projectivity and injectivity are fundamental concepts of modern mathematics.
The question whether a given category has enough injectives (so that every ob-
ject may be embedded into an injective one) or even injective hulls (so that such
embeddings may be chosen to be essential), as well as the dual questions (enough
projectives, projective covers), have been investigated for many categories, par-
ticularly in commutative and homological algebra, algebraic geometry, topology,
and in functional analysis.

Existence of enough injectives is often facilitated by the existence of an
injective cogenerator in the given category, in which case it is easy to see that,
for each object A, the embedding 14 : A — E A into an injective object £ A may
be chosen naturally, so that E becomes an endofunctor of C and ¢ : Id¢ — F a
natural transformation. Under fairly mild additional conditions, the existence
of an injective cogenerator even gives injective hulls, and the question then is
again: are they natural? Although injective hulls are uniquely determined, up
to isomorphism, the somewhat surprising answer that we give in this paper is:
never, unless the situation was trivial, in the sense that all objects were injective,
in which case the injective-hull functor is given by the identity functor.
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2 Preliminaries

Throughout the paper, H is an arbitrary class of morphisms in a category C.
Although classically one thinks of the morphisms in H as “embeddings”, there
is no a-priori assumption on H. At first we recall some known definitions in
order to fix our terminology.

Definitions 2.1. (1) An object I of C is H-injective if the function C(h,I) :
C(B,I) — C(A,I)issurjectiveforevery h : A — Bin #H (sothatevery f: A — I
“extends” to some g : B — I with g-h = f). The H-injective objects form the
full subcategory H-Inj of C.

(2) A morphism h in H is H-essential if for every morphism g, the composite
g-hliesin H only if g does. The class of all H-essential morphism in C is denoted
by H*.

(3) C is said to have enough H-injectives if for every object A in C there is a
morphism 14 : A - FA in H with an H-injective object E'4; if, in addition, ¢4
can be chosen to be H-essential, then C has H-injective hulls (often also called
envelopes). If, in either case, E extends to an endofunctor of C making ¢ a
natural transformation, we shall say that C has naturally enough H-injectives
or that H-injective hulls are natural, respectively.

(4) A class G of objects is cogenerating (also coseparating) in C if for any
two distinct morphisms u,v : X — A in C there is a morphism h : A — G with
G € G and h-u # h - v; equivalently, if for every object 4 in C, the source of
all morphisms with domain A and codomain in G is monic. For G small, this is
the same as to say that the canonial morphism

g A— H GEAG)
Geg

is a monomorphism, provided that the needed products exist in C.

(5) By an H-cogenerator in C we mean a (small) set G of objects in C such
that all small-indexed products of G-objects exist in C and that the canonical
morphisms ¢4 of (4) lie in H. G is an H-injective H-cogenerator if, in addition,
all objects in G are H-injective.

(6) We often omit the prefix 7 if the choice of H is unambiguous, particularly
when H is the class of embeddings in the sense of [3].

Remarks 2.2. (1) The subcategory #H-Inj is closed under direct products and
retracts in C. To say that C has enough H-injectives is equivalent to saying



that H-Inj is weakly H-reflective in C (so that every object of C admits a weak
reflection into H-Inj belonging to H; more generally see 4.1 below), whereas
existence of H-injective hulls means that H-Inj is weakly H*-reflective in C. In
fact, in these cases H-Inj is even almost H-reflective (or almost H*-reflective)
in the sense of [13], that is: weakly H-reflective (or weakly H*-reflective) and
closed under retracts, since the only additionally required property comes for
free for H-Inj.

(2) H-injective hulls are unique, up to isomorphism. Since we work without
hypotheses on #H, we include the proof of this fact for the Reader’s convenience.
Consider H-essential morphisms h: A — I and k : A — J with I, J H-injective.
Then H-injectivity of J lets k factor as k = f-h, where f € H since h € H*. Now
H-injectivity of I makes 1; factor as 17 = ¢g - f, hence ¢ - k = h. Again k € H*
implies ¢ € H, so that H-injectivity of J gives [ with [ - ¢ = 1;. Consequently,
g+ J — I and then f are isomorphisms. Note that in fact we proved that
any morphism connecting two H-injective hulls of the same object must be an
isomorphism.

In order to establish naturally enough H-injectives, one normally resorts to
14 of 2.1(4):

Proposition 2.3. A category with an H-injective H-cogenerator has naturally
enough H-injectives.

Proof. There is a unique way of extending B4 = [[5.5 G to a functor
such that the canonical morphisms ¢4 become a natural transformation. O

For examples, see Section 3.

3 Non-naturality of injective hulls

At first, we consider some typical examples which lead us to a general result.

Examples 3.1. (1) For C = Set and H = Mono(Set), the injectives are pre-
cisely the non-empty sets, and every set with at least two elements is a (single-
object) cogenerator. With G = {2} (where 2 is a two-element set), 2.3 gives (up
to isomorphism) the embedding A — PPA (with P the contravariant powerset
functor), which sends every z € A to the free ultrafilter {U C A | z € U}. There
are, of course, many other natural embeddings, such as 4 — A 4+ 1 (where 1 is
a singleton set and + denotes disjoint union). The injective hull A* of a set A
may be given as A* =1 for A = (), and A* = A else. There is, however, no way
of making * a functor such that A < A* becomes natural; otherwise we would
have a commutative diagram (in the obvious sense)
—

] 1 2
y
l l/id lid
id z*

@* > 1*?2*
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B ——



which, for the two distinct maps z,y into 2, would render z*, ¥* simultaneously
equal and distinct.

(2) The same argumentation as in (1) carries over to much fancier contexts.
Let C = Field be the category of fields and their homomorphisms, and choose
H to be the class of algebraic extensions. A Zorn-Lemma argument shows that
H-injective means algebraically closed, and the injective hull F™* of a field F' is its
algebraic closure. Again, * cannot be naturally considered a functor; otherwise
the two R-automorphisms id, ¢ of the algebraic closure C of the reals R would
give a commutative diagram

i id
]RC—]>C—>(E

¢
J idl lid
7 id

R* —C* t:;* Cc*
which leads to a contradiction, no matter whether 7* =id or j* = t.

By considering this diagram in the (non-full) subcategory Fielda, (whose
morphisms are algebraic extensions) we obtain an ezample of a category with
enough injectives, but not naturally so.

(3) Turning back to sets, let C be the comma category Set/B of sets over a
fixed set B (or, equivalently, the presheaf category Set? of Set-valued functors
on the discrete category B), and let H be the set of one-to-one maps over B.
The injective objects of C are precisely given by surjective maps onto B, and
the family of maps B + 1 — B (which maps B identically) forms an injective
cogenerator of Set/B. An extension of an object (f : X — B) of Set/B to an
injective object is therefore given by a factorization f = h - g with g one-to-one
and h onto. A possible natural choice (in the sense of 2.1(3)) would be to factor
f in the form

X+B
(f,id)

f— B

X

The injective hull of f, however, is given by the fatorization

X+ (B—-imf)
,inclusion)
X/ s e B

which, as one easily sees, fails to be natural.
Existence theorems for enough injectives and injective hulls in general comma
categories and their applications to Quillen model categories are given in [2].

The negative statements above are instances of the following general fact.

Theorem 3.2. Assume that every isomorphism is in H* and that every mor-
phism h in H* is an extremal monomorphism of C (so that h = f - e with an
epimorphism e forces e to be iso). Then C cannot have natural H-injective hulls,
unless every object in C is H-injective.



Proof. Suppose we had natural H-injective hulls, given by 14 : A — A* for each
object A in C. We first show that with ¢ = 14, t* : A* — A** is an isomorphism.
Certainly, 1 4+ is an isomorphism since A* is H-injective; in fact, we may assume
ta~ = 14+ since every isomorphism is in ‘H*. By naturality, ¢ = +* - ¢, so that
by Remark 2.2(2) ¢* is an isomorphism. Now, by virtue of the following simple
lemma, we may conclude that ¢ must be an epimorphism and, already being an
extremal monomorphism, in fact an isomorphism. Hence, with A* also A is H-
injective. O

Lemma 3.3. For any endofunctor x of C pointed by 1, if 1 is pointwise monic
and * pointwise epic, then 1 is pointwise epic.

Proof. For an object A in C we write + = 14, and with a,b: A* — B we assume
a-t="0-1t. Then a*-1* =0b"-1*, hence a* = b* by hypothesis on :*. Now

tgra=a" ta-=b"-14- =1p-b

implies @ = b by hypothesis on .

A—‘>A*i>>3

b
Ll - l lLB
* a*

L
A* > A** —_— B*
b*

O

Examples 3.4. (1) The group Q/Z is an injective cogenerator of the cat-
egory Ab of abelian groups. For any ring R, the character module Rt =
Homyz (R, Q/7) takes on this role in the category Modpg of right R-modules.
Hence, there are naturally enough injectives in these categories, a classical re-
sult due to [5]. More generally, every complete abelian category with a gener-
ator and enough injectives has an injective cogenerator and therefore naturally
enough injectives; moreover, the hypothesis on enough injectives is redundant if
in each subobject lattice directed joins distribute over finite meets, i.e., in any
Grothendieck category with a generator (see, for example, [20]). Such categories
have even injective hulls, a result that for Modpg goes back to [9]; but unless
every object is injective, they cannot be natural. Unital rings R for which every
unital right R-module is injective have been characterized as the right Artinian
non-zero rings R which contain no non-zero nilpotent ideal (see [10], p. 56).
(2) All varieties of algebras have naturally enough projectives, with the al-
gebra with one free generator serving as a projective generator. In fact, more
generally, let C be a regular epi-reflective subcategory of a monadic category
over Set (i.e., an essentially algebraic category in the sense of [1]), then the ob-
ject representing the underlying-set functor is a projective generator. Prop. 2.3
and Thm. 3.2 applied to C°P with H = RegEpi(C) = {onto homomorphisms}
show that there are naturally enough projectives, but that projective covers,



whenever they exist and are not trivial, fail to be natural. Non-trivial projec-
tive covers seem to be fairly rare though. For example, an abelian group has
a projective cover in Ab only if it is projective, i.e. if it is free. Bass [8] char-
acterized so-called right-perfect rings (those R for which every right R-module
has a projective cover) as the rings satisfying the descending chain condition on
principal left ideals (see also [11], [12]).

(3) Being dually equivalent to Ab, the category of compact abelian groups
has naturally enough injectives, but fails to have injective hulls ([6]). Similarly,
the category CompHaus of compact Hausdorff spaces has naturally enough
injectives (the closed unit interval beings a cogenerator), but the only space
with a non-trivial essential extension is the empty space. Dually, the category
CCAlg of commutative C*-algebras has naturally enough projectives, but only
the trivial algebra has a non-trivial projective cover. The projective objects in
CompHaus are extremally disconnected compact Hausdorff spaces (i.e., the
retracts of Cech-Stone-compactifications of discrete spaces), and the coessential
quotient morphisms are the irreducible quotient morphisms (i.e., those con-
tinuous surjections X — Y that map no proper closed subset of X onto V).
Projective covers (normally called resolutions) exist in CompHaus but are not
natural, and the same is true for its full subcategory of Boolean spaces (i.e.,
zero-dimensional compact Hausdorff spaces). The dual statements are therefore
valid for CC*Alg, and for the category of Boolean algebras, where injective
means complete (see also (5) below).

(4) In the category Top, of TO-spaces with its injective (Sierpiriski) cogener-
ator, there are naturally enough injectives. Although each object has a unique
maximal essential extension, these are generally not injective ([7]); in fact, a
TO0-space has an injective hull if and only if its lattice of open sets is completely
distributive ([15]). For extensions of these facts to Top, see [25], [15]. In Top,,
Top, = Haus and Top;, 1= Tych, the only injective objects have exactly one
point (see [14]). The situation changes drastically if we restrict the class of
embeddings to H = {epimorphic embeddings}; then H-injective hulls exist in
Top, and are given by the sober reflection (see [22]) and, hence, are natural.

(5) In the category Pos of partially ordered sets, with H = {order em-
beddings }, the two-element chain is an injective cogenerator, and the injective
objects are precisely the complete lattices. Injective hulls are given by Mac-
Neille completion but are not natural. Similarly, in the category Met of metric
spaces, with non-expanding maps and H = {isometric embeddings}, injective
hulls exist and are given by the hyperconvex envelope (see [16]) but are not
natural.

We refer to [17], [3], [14] as sources for further examples and references to
such.

Remark 3.5. In generalization of results known for abelian categories (see
3.4(1)), for our general category C and without recourse to an H-injective H-
cogenerator, sufficient conditions for the existence of enough H-injectives and
for the existence of #H-injective hulls were developed in [6] and extendend in



[24]. Here is a set of sufficient conditions which is often applicable when # is a
class of “embeddings” (for details see [24]):

1. # is part of a proper orthogonal (&, H)-factorization system for morphisms
in C, such that C is £-cowellpowered and H-wellpowered;

2. for every object A in C, every small well-ordered diagram in the full sub-
category H4 of the comma category A\ C given by the morphisms in H
with domain A admits a cocone in H 4; this is referred to as the “H-chain
condition” in [24].

Then the following conditions are equivalent;:
i. C has H-injective hulls,
ii. C has enough H-injectives,

iii. C is H*-cowellpowered and has the H-transferability property (so that for
all morphisms f, A with common domain and h € H there are f’, A’ with
R -f=f"-hand ' € H).

Furthermore, it is shown in [24] that in the presence of a “well-behaved” sepa-
rating set in C and for H = Mono(C), conditions i-iii are also equivalent to:

iv. C has a coseparating set of injective objects.

4 Extensions of the naturality theme

Problems 4.1. The functoriality /naturality problem may be considered more
generally, as follows: for a functor U : A — C and for every object X in C, we
are given an object F'X in A and a morphism nx : X — UFX (normally in a
class H of morphisms in C). Then the following questions arise:

I (Natural functoriality of F) Can F' be made a functor F' : C — A such
that n : Ide — UF becomes a natural transformation?

IT (Unnatural functoriality of F') If the answer to I is negative, can F' be
made a functor (no condition on 7)?

In Sections 2 and 3 we dealt with the situation when U : H-Inj < C is the
inclusion functor. It seems natural to consider more generally, in lieu of H-Inj,
any weakly H-reflective subcategory A of C, or even an arbitrary weakly right
adjoint functor U : A — C, so that for every object X in C the given morphism
nx in H is weakly universal, that is: any morphism f : X — UA with A € A
factors as f = Ug - nx for some g: FX — Ain A.

We limit ourselves here to pointing to three interesting examples treated in
the literature.



Examples 4.2. (1) Suppose that an embedding of a set X into an injective
(= non-empty, see 3.1(1)) set FX has been given, with X = X for each
X # 0. As we saw, Question I then has a negative answer, but so does II: it is
shown in [21] (and it follows also from a result in [18]) that there is no functor
F' : Set — Inj with FFX = X for each non-empty set X. There is in fact no
functor F' : Set — Inj with |F'n| = n for n = 1,2,3. However, there exists a
functor F': Set — Inj with |F'1| = 1 and |F'2| = 2: just put

FX=1+{PCX||P|=2},

and for f: X — Y let F'f map P to f(P) if |f(P)| = 2; everything else gets
mapped to the only point of 1.

(2) Let ACP,, be the category of algebraically-closed fields of characteristic
p (p prime or 0), let Setyono be the category of sets and their monomorphisms,
and let U : ACP, — Setmono be the forgetful functor. For each set X, let
nx : X — FX be the embedding of X into an algebraically-closed field FX of
characteristic p with transcendency basis X. It is shown in [4] that the answer
to problem I is negative (which also implies the negative result of 3.1(2)), but
that II has a positive answer.

(3) In [23] Problem I is discussed in conjunction with the Lefschets-Nobeling-
Pontryagin Theorem which says that every n-dimensional compact metric space
can be homeomorphically embedded into a (2n 4+ 1)-dimensional separable me-
trizable group, namely into R*"*!. Hence let U : HausGrp_,. — Top be
the forgetful functor of finite-dimensional Hausdorff groups into the category of
topological spaces. The question then is whether for a suitable full subcategory C
of Top, there are a functor ' : C -+ HausGrp_,. and a natural transformation
n:J — UF (where J : C — Top is the inclusion functor) such that every nx
is an embedding. Shakhmatov shows that

e for C the category of 0-dimensional compact metrizable spaces, the answer
is positive, while

e for C the category of 1-dimensonal compact metrizable spaces the answer
is negative.
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