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Abstract

We propose a categorical definition of locally-compact Hausdorff object which gives the
right notion both, for topological spaces and for locales. Stability properties follow from easy
categorical arguments. The map version of the notion leads to an investigation of restrictions

of perfect maps to open subspaces.
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1 Introduction

Both, for topological spaces and for locales, locally compact Hausdorff spaces are characterized
as the spaces which are openly embeddable into compact Hausdorff spaces. While in Top this is
an obvious consequence of Alexandroff’s one-point-compactification, in Loc one uses results of
Vermeulen [10] to establish this result. In this note we show that, taking this characterization as
the defining property for (Hausdorff) local compactness, one establishes practically all standard
stability properties of local compactness — with the big exception of Whitehead’s Theorem —
with very brief and purely categorical arguments. Hence, Top and Loc may actually be replaced
by an arbitrary category X which comes equipped with a proper factorization system and a
closure operator, as in [4], [5], [2]. The only sticky point at this level of generality is the pullback
behaviour of c-open maps (w.r.t. the closure operator ¢), which is not as smooth as in Top
or Loc, but which has been described in general in [6]. We briefly recall this and all other
needed tools at the beginning of Section 2, where we introduce local c-compactness and derive
first properties. Section 3 presents further properties which are derivable in the presence of the
Stone-Cech compactification (w.r.t. ¢). All this is done in the context of topological spaces, while
Section 4 explains how to pass from spaces to objects in a category. This passage pays off as one
can now make the passage from spaces (or objects) to maps (or morphisms), by considering the
notion of local compactness in the slices of the given category. Hence, in Section 5 we exploit the
properties derived previously in the case of locally c-compact maps, which are simply restrictions

of c-perfect maps to c-open subobjects.
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2 Locally c-compact spaces

2.1 Preliminaries. In what follows, “space” means “topological space” and “map” means
“continuous mapping”. A closure operator ¢ on the category Top of spaces and maps assigns
toall M C X € Top a set cx(M) C X, such that cx is extensive and monotone and the c-
continuity condition is satisfied: f(cx(M)) C ey (f(M)) for all maps f: X — Y and M C X;
equivalently, ex (f 1(N)) C f L(ey(N)) for all f and N CY (cf. [4], [5]). Obviously, M C X is
called c-closed (c-dense) in X if ex (M) = M (ex (M) = X, respectively). c is idempotent (weakly
hereditary) if cx (M) is c-closed in X (if M is c-dense in cx (M), respectively), for all M C X.
(Subsets are always provided with the subspace topology.) ¢ is hereditary if cy (M) =Y Nex (M)
forall M CY C X € Top. The following classes of maps will be of interest:

fem & f embedding < f induces a homeomorphism X = f(X) CY,
feé & f surjective & f(X)=Y,

f€Ds(e) = fc-dense <  f(X) c-dense in Y,

f€Clc) & feclosed < flex(M))=cy(f(M)) forall M C X,
f€0p(e) & fc-open & [ ey (N)) =cx(f 1(N)) foral N CY,

f €ni(c) & fcuinitial & cx(M) = f"Yey(f(M))) for all M C X,

)
f €Fin(c) & f c-final & cy(N)= flex(f~1(N))) for all N C Y.

For ¢ the usual closure, the last five notions assume the expected meaning; for interrelationships
between them, see [6], [3]. In particular, we record the following useful observations made in [2],
[6]: denoting by m : M — X the inclusion map of M C X we have

(1) m c-closed < M c-closed in X and m c-initial;
(2) m c-closed < M c-closed in X, provided that ¢ is weakly hereditary;
(3) ¢ hereditary < m is c-initial for all M C X € Top.

We also use the following important result of [6].
2.2 Pullback Ascent and Descent. Consider the pullback diagram

g

U V

Y (1)

(Hence, U = X xy V ={(z,2) | f(z) =v(2)} C X x V.) Then

X




(1) g is c-closed (c-open, c-initial, c-final) if [ has the respective property, provided that u is
c-initial;

(2) [ is c-closed (c-open, c-initial, c-final) if g has the respective property, provided that v is
c-final.

Note that the provisions in (1), (2) are essential (see [6]). Finally we mention that, trivially,
gEM (ge&)if f € M (f €&, respectively); one says that M and & are (pullback-)stable, but

we note that in general none of the other classes is.

2.3 c¢-Hausdorff and c-compact spaces. A space X is ¢-Hausdorff if the diagonal Ay =
{(z,z)|z € X} is c-closed in X x X; equivalently (see [2]), if the map dx : X — X x X,
x — (z,), is c-closed. X is c-compact if the projection X x Y — Y is c-closed for every space
Y. In categorical generality, these notions seem to have appeared first in [8] but got treated
subsequently by many authors. Denoting by Haus(c) and Comp(c) the subcategories arising,

here we record the following properties (see [2]):
(1) X,Y € Haus(c) (Comp(c)) = X x Y € Haus(e) (Comp(c), resp.);
(2) M C X € Haus(c) = M < Haus(c);
(3) M C X c-closed, X € Comp(c), ¢ weakly hereditary = M € Comp(c);

(4) X € Comp(c), Y € Haus(c) = f: X =Y c-closed.

2.4 Definition. A space X is called locally c-compact if there is a c-Hausdorff c-compact space
K and a c-open embedding f : X — K. Hence, local ¢-compactness entails c-Hausdorffness. It is
clear that for ¢ the usual closure and for X Hausdorff, this definition gives the usual notion. For
the equivalence of this notion with the one proposed in [3] in the presence of the ¢-Stone-Cech
compactification, see 3.2 below. We show a number of stability properties for locally ¢-compact

spaces.

2.5 Proposition. For X locally c-compact, a subspace M is locally c-compact, provided that

one of the following conditions is satisfied:
(a) the embedding m : M — X is c-open;
(b) M is c-closed in X, and c is idempotent and weakly hereditary;

(c) M = AN B with B C X c-closed and A C X such that a : A — X is c-open, and c is
idempotent and weakly hereditary.

Proof. (a) is trivial since Op(c) N M is closed under composition.
(b) Consider f: X — K in Op(c) N M with K € CompHaus(c) = Comp(c) N Haus(c) and
form N := cg(f(M)). Since c-closedness of M and c-openness of f give

M = cx (M) = cx(f7 (M) = [ ex (f(M))),



one has the following pullback diagram:

/
M~——N

X—— K (2)

With 2.2(1) and 2.3(2),(3), f' € Op(c) N M and N € CompHaus(c), hence (a) applies.
(c¢) By hypothesis, there is a pullback diagram

al
M~——— B
b b
a

A———— X (3)

in which b and therefore also ' is c-closed, and in which A is locally c-compact, by (a). Hence,
the assertion follows with (b). O

2.6 Proposition.
(1) X xY is locally c-compact if X and Y are, and if Op(c) N M is stable.

(2) X is locally c-compact if X XY s, if Y has a c-closed point, and if ¢ is idempotent and
weakly hereditary.

Proof. (1) Consider f: X — K, ¢:Y — L in Op(c) " M with K, . € CompHaus(c). Since

fx1ly lg X g
XXxY—KxY KXY —— KxL
g
X———K Yy ———— [ (4)

are pullback diagrams, f X g = (1x x ¢)(f % 1ly) € Op(¢) N M, by hypothesis, with K x L €
CompHaus(c), by 2.3(1).
(2) The c-closed point y € Y gives a pullback diagram

<lx,y!lx >
C— X xY

1 %y»y (5)

with < 1x,y'!x > c-closed. Hence, 2.5(b) applies. O



2.7 Remark.

(1) Tt is easy to show that for Y ¢-Hausdorff, every point in YV is c-closed. Hence, in 2.6(2)
it suffices to ask for the existence of a point in Y: for X # (, there is an embedding
Y «— X xY with X XY c-Hausdorff, so that Y is e-Hausdorff, and for X = () the assertion
of 2.6(2) is trivial. See also 4.4 below.

(2) In general, the class Op(c) N M fails to be stable under pullback, even when c¢ is idempotent
and weakly hereditary: see Example 5.7.2 in [6].

3 In the presence of Stone-Cech

3.1 A space X is ¢-Tychonoff if there is an embedding f : X — K with K € CompHaus(c).
In this section we assume that CompHaus(c) is (c-dense)-reflective in the resulting subcategory
Tych(c) of Top; hence, for every X € Tych(e) there is a c¢-dense map By : X — X with
BX € CompHaus(c) through which every other map X — Y with Y € CompHaus(c¢) factors
uniquely. Clearly, for X € Tych(c) one has Sx € M (cf. [2]).

3.2 Theorem. Assume ¢ to be hereditary, or that Op(c) N M is stable. Then X is locally
c-compact if and only if X is c-Tychonoff and Bx is c-open.

Proof. For the non-trivial direction, we assume to have f : X — K in Op(ec) N M with

K € CompHaus(c) and first show that the commutative diagram
Bx
X ——pX

lx t
xe— - K (6)
(in which ¢ is uniquely determined) is a pullback. In fact, if one forms the pullback diagram

P:XXK6X¢>5X

4 t
X —K (7)

then the map d: X — P witht'-d =1x and f'-d = Bx is a c-dense embedding. This follows
immediately from the c-density of Sx once one shows that f’ € M is c-initial; but this is trivially
true when c is hereditary, and also when Op(¢) N M is stable, since Op(¢) N M C Ini(c). Since
P € Haus(c) (by 2.3(1),(2)), the c-dense embedding d is an epimorphism in Haus(c) and must



therefore be a homeomorphism. Consequently, (6) is a pullback diagram. Since 1y is trivially

c-initial, an application of 2.2(1) yields c-openness of Gx. O

3.3 In[2],amap f: X — Y was called ¢c-compact if for every pullback diagram (1), the map ¢
is c-closed. For ¢ hereditary and X,Y € Tych(e), it was shown that these are exactly the maps
for which

X
X o—"  .pBX

S Bf

Yy —pj3Y (8)
is a pullback diagram, i.e. that the c-version of the Henriksen-Isbell characterization holds true;

they are also called c-perfect.

3.4 Proposition. Let ¢ be hereditary or Op(c) N M stable, and let the map [ : X — Y be
surjective and Bf be c-open. Then Y is locally c-compact if Y is c-Tychonoff and X locally

c-compact.
Proof. It is elementary to show that with
Bf-Bx =0y f
also By is c-open when f is surjective. O

3.5 Theorem. ([3]) Let ¢ be hereditary and f : X —Y in Tych(c) be c-perfect. Then

(1) local c-compactness of X implies the same for Y if [ is surjective,

(2) local c-compactness of Y implies the same for X if f is c-initial, or if Op(c) N M is stable.

Proof. (1) Since By - f = [Bf - Bx is c-dense when f is surjective, also Sf is c-dense. But by
2.3(4) Bf is also c-closed, hence surjective, even ¢-final. Now, with 2.2(2) one concludes that
c-openness of fx implies the same for fy. (2) follows immediately from the fact that (8) is a
pullback diagram and from 2.2(1).

O

3.6 Remarks.

(1) In the context of 3.4, c-openness of 8f implies c-openness of f.

(2) If, in 3.5(2), one assumes f to be an embedding (as it was done in [3]), one just obtains a

weakened version of 2.5(b).

3.7 Theorem. Let ¢ be idempotent and hereditary. Then every c-dense embedding [ : X —Y

of a locally c-compact space X into a c-Tychonoff space is c-open.

Proof. We first consider the case Y € CompHaus(c). As in 3.2, one has the pullback diagram
(6). Since ¢ is hereditary, with f = ¢- Ox also ¢ is c-dense, but also c-closed, by 2.3(4). Hence ¢

is surjective, even c¢-final, so that 2.2(2) gives c-openness of f.



In the general case one considers the composite

J / Y(ﬁy sy

which is e-dense when ¢ is idempotent. Hence, as already shown, By - f is c-open, which implies

c-openness of f since By € M. O

4 In a category

4.1 We adopt the setting of [2], [6] and let X be a finitely-complete category with a proper
(€, M) factorization system and a closure operator ¢ w.r.t. M. With the understanding that

now
- “gpace” means “object in X”
- “map” means “morphism in A7

“subspace of X” means “equivalence class of morphisms in M with codomain X7

preimages and images of subspaces are given by pullback and (€, M)-factorization,

it is immediately clear that all statements (except Remark 2.7) carry over from Top to X, as

follows.

4.2 Theorem. If & is stable under pullback, under the translations given in 4.1, all statements

of Sections 2 and 3 are valid in X.

4.3 Remark. Since there are important examples in which £ fails to be stable under pullback
(see 4.5 below), it is worth analyzing to which extent this hypothesis is being used in the results
of Sections 2 and 3. In its full generality, it is used in the Pullback Ascent and Descent Theorem
2.2, via the Beck-Chevalley Property (see [2], [6]). However, subsequently we apply this result
only in very special situations, which require no or very limited use of pullback stability of £.

Specifically, the only places where additional hypotheses on £ are needed are

- 3.5(1) where € needs to be stable under pullback along those morphisms in M that are c-dense

or of the form ¢(m) (i.e., c-closed, if ¢ is idempotent),
- 3.5(2) for the case “f c-initial” only, where £ needs to be stable along morphisms in M,

- 3.7 where £ needs to be stable along c-closed M-morphisms.

4.4 Example. In the category Gph of (thin) directed graphs (where objects are sets with a
binary relation written as x—y, and where morphisms are maps preserving the relation) with its

(surjective, embedding)-factorization structure, consider the up-closure ¢ =1 with

tx (M)={ze€ X |z € Mor Jy e M with y—z},



which is hereditary but not idempotent. One then has:

X € Haus(?) & Vz,y,z2€ X (z—y & 222 = y=2);
X eComp(t) & VreX FJyeX : zoy;

hence, CompHaus(?1) consists exactly of those graphs X whose relation is the graph of a mapping
X — X. For every X € Haus(7) one may construct a reflexion Sx : X — X into CompHaus(1)
by attaching to every z € X with tx ({z}) \ {z} = 0 a copy of IN (with the successor relation).
The natural embedding Bx is T-open, hence every T-Hausdorff graph is already locally T-compact.

In this example, the hypothesis of 2.6(2) that Y has a (1-closed) point is essential (i.e., it is
not sufficient to require Y # 0): let X = {0—1} with 0 having a loop, but 1 not so, and Y = {-}
(the “naked point”); then Y and X x Y = {- -} are locally t-compact, but X is not.

4.5 Example. We consider the category Loc of locales (i.e., the dual of the category of frames,
see [7]) with its usual closure ¢. Next we show that a Hausdorff locale is locally compact (in the
usual sense, i.e it is a continuous lattice) if and only if it is openly embeddable into a compact
Hausdorff locale.

Let us first observe that

- a locale is regular if it is compact Hausdorff (see [10], Prop. 2.3)

- the rather-below relation < implies the way-below relation < in a compact locale (see [10],
Lemma 4.1).

These two properties together guarantee that a compact Hausdorff locale is locally c-compact.
Furthermore, local c-compactness is obviously open-hereditary.

Conversely, one first checks that every locally compact locale X is covered by the interiors of
its compact sublocales (see [10], Prop. 4.7). Then one constructs the one-point compactification
of X by Artin-glueing (see [1]) a point to its filter of compact sublocales.

Hence, the definition given in 2.4 is equivalent to the usual notion of local compactness in
Loc.

5 Locally c-perfect maps

5.1 Having a categorical setting as in 4.1 makes it easy to extend object notions to morphisms,
via slicing. As it is done in [2], the factorization structure (£, M) and the closure operator ¢ of
X give corresponding structures in each comma category X /B (B an object of X'). A c-compact
morphism f : X — Y (see 3.3) is simply a c-compact object in X'/Y; likewise, c-Hausdorffness
is defined for morphisms, and c-compact ¢-Hausdorff morphisms are called c-perfect. For details
we refer the Reader to [2].

5.2 Definition. A morphism f : X — Y is called locally c-perfect if it is locally c-compact

as an object in X'/Y. These are exactly the restrictions of e-perfect morphisms to subobjects



whose representing morphism is c-open:

VA

c—oly X}\)erfect

X ; Y )

Directly from the statements of Sections 2 and 3 (keeping in mind Theorem 4.2) one derives:

5.3 Corollary. Let ¢ be idempotent and weakly hereditary. Then, with [ also f-m is locally
c-perfect if the morphism m € M is (a) c-open or (b) c-closed or (c) the intersection of a

morphism of type (a) with one of type (b).

5.4 Corollary. Let Op(c) N M be stable, and consider the pullback diagram (1). Then
(1) with [ also g is locally c-perfect;
(2) with [ and v also [-u=v-g is locally c-perfect;

(3) with f-u=wv-g also f is locally c-perfect, provided that v is the retraction of a c-open or

c-closed section and c is weakly hereditary.

Proof. (1) follows directly from the definition, and (2), (3) from 2.6, with the remark that 2.6(2)

obviously holds also in the presence of a c-open point, rather than a c-closed point. O

5.5 Remark. For the remainder of the paper, let ¢ be hereditary, and let the hypothesis of
3.1 be satisfied. With the characterization given in 3.3, it is easy to see that the reflexion of
a morphism f : X — Y in Tych(e) (considered as an object of Tych(c)/Y) into a c-perfect

morphism is given by the left commutative triangle of
X
N
P 86X
S

m Bf
By

Y BY (10)

with P =Y xgy X (see [9]); in other words, the pullback projection m is the Stone-Cech

compactification of f, with reflexion e. Now 3.2 gives:

5.6 Corollary. A morphism [ of c-Tychonoff objects X, Y is locally c-perfect if and only if
its “antiperfect factor” e is open.

5.7 Corollary. Let [ : X =Y and g : Y — Z be morphisms in Tych(c), with f c-perfect.
Then:

(1) g is locally c-perfect, if g - [ has this property with f € £ and £ stable under pullback along

c-dense morphisms in M and c-closures of M-morphisms (see 4.3).



(2) g- f is locally c-perfect, if g has this property and if [ is c-initial.
Proof. Follows from 3.5 applied to the morphism [ : (X,¢- f) — (Y, g) in Tych(e)/Z. O

5.8 Corollary. Let ¢ be idempotent (in addition to being hereditary), and consider morphisms
f: X =Y andg:Y — Z in Tych(e). If f € M is c-dense, g c-perfect and g- [ locally c-perfect,
then f is c-open.

5.9 In addition to these consequences of the facts presented in Section 3 we have the following

improvement of 5.7(2):

Theorem. If Op(c) N M is stable, then the class of locally c-perfect morphisms is closed under

composition.

Proof. It suffices to show that the composite f = s- ¢ of a c-perfect morphism ¢ : X — Z
followed by a c-open morphism s: Z < Y in M is locally e-perfect, and for that we must show

that its antiperfect factor e as in (10) is c-open. But the S-naturality diagram for f decomposes

as
X 68X
g By
Z' Bz 47
S Bs
' By
y — " By (11)

with the upper square a pullback, since g is c-perfect. With €' the antiperfect factor of s,
diagram decomposes further, as follows:

€
X — YXﬁyﬂX

BX

g 1y xfBg By

/
7 ——— Yxgyf(Z

BZ
Here is a pullback diagram since and are pullbacks. As the antiperfect factor of a

c-open (and therefore locally c-perfect morphism), € is c-open; consequently, also e is c-open. O

5.10 Remark. We restricted ourselves to considering only morphisms in Tych(e) from 5.5
on, only in order to have a convenient description of the antiperfect-perfect factorization of a
morphism, as in [9]. However, it suffices to have just these factorizations, whose existence may

be guaranteed in much more general situations; see [2].
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