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1 Introduction

1.1 Perhaps the shortest way of defining a category C to be abelian is to require that (see, for
example, 1.597 of [Freyd-Scedrov 90] and 41.A of [Herrlich-Strecker 72])

(A*1) C has finite products, and a zero object,

(A*2) C has (normal epi, normal mono)-factorizations, i.e., every morphism in C factors into a

cokernel followed by a kernel.

Among the many consequences of these two powerful conditions, we note here only that C must
be additive, and that therefore the finite products are biproducts, i.e., serve also as coproducts.
It is fair to say that the study of abelian categories dominated the first two decades of Cate-
gory Theory; indeed, it figures prominently in many important papers and monographs of the
time — see, for example, [Buchsbaum 55], [Cartan-Eilenberg 56|, [Grothendieck 57|, [Heller 58],
[Gabriel 62], [Mac Lane 63], [Freyd 64], [Mitchell 65], [Brinkmann-Puppe 69]. After the name
“abelian (bi)category” had been used by [Mac Lane 50] to denote a more restrictive concept
(which involved a predecessor of Grothendieck’s famous AB5 axiom), the notion in today’s sense
appeared first in [Buchsbaum 55], but under the name “exact category” (which later was reserved
for categories satisfying just (A*2)).

Of course, the “role model” for all abelian categories is the category of abelian groups (a
statement that has been made precise in 1.59 of [Freyd-Scedrov 90]), while the category of (not
necessarily abelian) groups is painfully non-abelian (since not all monomorphisms are normal).

However, when reading once again from [Mac Lane 50, p. 507] that

“A further development giving the first and second isomorphism theorem, and so on,
can be made by introducing additional carefully chosen axioms. This will be done

below only in the more symmetrical abelian case”,

we are reminded that, right from the beginning of Category Theory, it was very much the
intention to find a list of axioms which reflect the properties of groups, rings and algebras as
nicely as the abelian-category axioms do for abelian groups and modules. This is the theme of

this paper.

1.2 There seems to be no easy way of weakening (A*1), (A*2) and arriving at such a list.
Indeed, there have been many proposals for axioms in order to give a categorical approach to
the isomorphism and decomposition theorems of group theory, to the general theory of radicals,
and to homological algebra of non-abelian structures, but no generally accepted list of axioms
emerged from these investigations. Nevertheless we find it useful to recall several of these early
developments, especially since some of them seem to have been forgotten, if not ignored from
the outset, but still have considerable bearing on this paper.

Let us recall then that one important line of early categorical research grew out of the desire
to establish isomorphism and decomposition theorems for general varieties of universal alge-
bras and then for categories satisfying certain axioms (see particularly [Baer 47|, [Goldie 52],
[Atiyah 56], [Higgins 56], [Kurosh 59|, [Hilton-Ledermann 60], [Eckmann-Hilton 62], [Tsalenko



67]), ultimately leading to rather efficient lists of the needed categorical hypotheses, as presented
in [Shul’'geifer 72] and especially in [Wyler 71], [Fritsch-Wyler 71]. Another line of categorical
research was marked by [Amitsur 54] and [Shul’geifer 60] which led to rather concise lists of ax-
ioms for categorical radical theory, as presented in [Holcombe-Walker 78] and, more compactly,
in [Mérki-Wiegandt 82]. Thirdly we mention a group of early categorical papers directed at non-
abelian homological algebra, including the little-known articles [Hofmann 60] and [Frohlich 61],
which were used later in [Huq 68] to deal abstractly with commutators, nilpotency, and solvabil-
ity, and in [Botha-Buys 85] and [Botha 97] with primary ideals. Better known is the important
paper [Gerstenhaber 70] which introduces a set of axioms suitable for general Baer extension
theory (see also [Orzech 72]). Other than the existence of certain limits and colimits, the axioms
given in each of these papers require “good behaviour” of normal epi- and monomorphisms. In

this paper, we generally refer to these types of requirements as to old (-style) azioms.

1.3 A distinctly new era began with [Barr 71]. Barr-ezact categories no longer require the
existence of a zero object and replace normal epimorphisms by regular epimorphisms, which had
been studied systematically in [Kelly 69]. Their subtle exactness condition (that equivalence
relations be effective) is satisfied by all varieties of universal algebras; yet, Barr’s notion is

strong enough to satisfy Tierney’s “equation” for pointed categories:
(Barr-exact) + (additive) = (abelian).

But their generality also means that Barr-exact categories are not restrictive enough to capture
typical properties which would distinguish groups, rings and algebras from pointed sets, monoids
and lattices, say. Universal algebraists have therefore pointed at the modularity of the congru-
ence lattices in group-like varieties. This property is usually deduced from the stronger property
that every reflexive (homomorphic) relation is already an equivalence relation, a condition which
is equivalent to congruence permutability and which defines Malcev varieties. Among many
other things, they allow for a satisfactory commutator theory (see [Smith 76]). For their cat-
egorical generalization, the Reader is referred to [Carboni-Kelly-Pedicchio 93], which combines
and elaborates on crucial observations by [Klein 70|, [Meisen 74], [Fay 77], [Fay 78], [Burgess-
Caicado 81], [Johnstone 89|, [Faro 89|, [Carboni-Lambek-Pedicchio 90], and others. The paper
convincingly establishes the notion of Malcev category and characterizes Barr-ezact Malcev cate-
gories. Commutator theory was extended from Malcev varieties to congruence-modular varieties
in [Hagemann-Herrmann 79] (see also [Gumm 83|, [Freese-McKenzie 87|, and, for recent de-
velopments in the non-modular case, [Kearnes-Szendrei 98]) and then treated categorically in
[Pedicchio 95], [Pedicchio 96], [Janelidze-Pedicchio 98]; however, a good categorical definition

appeared already in [Huq 68], under general conditions close to ours.

1.4 The notion of semi-abelian category as proposed in this paper is slightly stronger than that
of a Barr-exact Malcev category which seems to suit, in many aspects, the needs of universal
algebra perfectly, but those of homological algebra of group- and ring-like structures much less
so. It combines Barr’s exactness property with a crucial property that Mac Lane at the very

end of [Mac Lane 50] calls the ABC extension equivalence theorem and which we formulate here



equivalently as the:

Short Five Lemma For every commutative diagram

[ q
L F C

K E B (1)

with reqular epimorphisms p, q and k, [ their kernels, respectively, w is an isomorphism if u and

v are isomorphisms.

In fact, in the presence of Barr-exactness it suffices to require this property just for split
epimorphisms, and it can be formulated without reference to a zero object and kernels, just
using pullbacks. This then is Bourn’s elegant notion of protomodular category (see [Bourn 91]),
a term coined after Carboni’s modular categories [Carboni 89], although the connection with
the Short Five Lemma is also emphasized in Bourn’s paper. Despite the fact of being a very
elementary concept, protomodularity provides very powerful group-like tools. For example, in
a Barr-exact category with pushouts of split monomorphisms it is equivalent to the existence
of semi-direct products (see [Bourn-Janelidze 98|), with the latter property also referred to as
semi-additivity when C has finite coproducts and a zero object. Hence, when we define a category
to be semi-abelian if it is Barr-exact and Bourn-protomodular with finite coproducts and a zero

object, there is (almost by definition) the “equation”
(Barr-exact) + (semi-additive) = (semi-abelian)

for pointed categories. Unlike abelianness, semi-abelianness is of course not self-dual; however,

the conjunction with the dual concept is easily seen to give abelianness:
(semi-abelian) + (semi-abelian)°” = (abelian).

These facts are presented in Sections 2 and 4 of the paper.

1.5 The main part of this paper is Section 3 where we describe the new notion of semi-
abelian category (which grows out of Barr-exactness and Bourn-protomodularity) with old-style
axioms, in terms of normal monomorphisms and normal epimorphisms. Apart from Mac Lane’s
original work, the “old” counterpart of protomodularity seems to appear as an axiom first in the

practically unknown paper [Hofmann 61], in the following form:

Hofmann’s Axiom For every commutative diagram

q
F

C




with normal epimorphisms p, ¢ and monomorphisms v, w, the monomorphism w is normal if v

s normal and kerp < w.

The only other old axioms needed to characterize semi-abelian categories concern the exis-
tence of finite limits and colimits as well as of images and inverse images of (normal) subobjects.
In this context, Barr’s exactness condition is hidden under the slogan that images of normal

subobjects under normal epimorphisms are normal.

1.6 We finally wish to point out that all axioms considered in this paper are of first-order
type, whereas many “old papers” contain second-order requirements (such as “the subobjects
of each object form a set”). Nevertheless, the references given in this Introduction show that

semi-abelian categories provide a good foundation for a meaningful categorical treatment of
- isomorphism and decomposition theorems
- radical and commutator theory
- homology theory of non-abelian structures

and therefore seem to capture precisely Mac Lane’s fundamental ideas of half a century ago.
Further evidence for this has been provided by Bourn in two recent preprints: see [Bourn 99a],
[Bourn 99b].

Acknowledgement ~ We thank Dominique Bourn for many helpful comments on a first draft of

this paper.

2 Semi-abelian categories in terms of “new” axioms

2.1 For a category C to be Barr-exact or effective reqular (see, for example, [Freyd-Scedrov

90], [Taylor 99]) one usually postulates that
(Ex1) C has finite limits,
(Ex2) C has a pullback-stable (regular epi, mono)-factorization system,
(Ex3) all equivalence relations in C are effective;

conditions (Ex1), (Ex2) make C regular. Axiom (Exl) is somewhat arbitrary; indeed, Barr
himself did not require it (see [Barr 71]).

Recall that reqular epimorphisms are morphisms occurring as coequalizers of pairs of parallel
morphisms; pullback stability means that every pullback of a (regular epi, mono)-factorization
is again such a factorization. An equivalence relation on an object A in C is given by a pair of
morphisms ri,rs : R — A for which the maps hom(X,r), hom(X,rs) are (up to isomorphism)
the projections of an equivalence relation on the set hom(X, A), for every object X in C (see
[Barr-Wells 85|, [Borceux 94]); it is effective if it is induced by some morphism f : A — B, i.e.,

if it is the kernelpair of some f.



For a (regular epi, mono)-factorization f = m - e in any category C, the morphism e is
necessarily the coequalizer of the kernelpair of f, provided that the latter exists. Conversely,
letting e be the coequalizer of the kernelpair of f and m be the morphism with f = m - e, then
m is certainly a monomorphism if all pullbacks of e are epic, since then the kernelpair of m must
be trivial.

Taking into account also the well-known fact that the diagrams

B Ax B
g lax <g,1p >
f <]-A7f>><]-B
A C AXB AxCxB (3)

have isomorphic limits, we arrive at the following equivalent formulation of (Ex1), (Ex2):
(Exla) C has finite products,
(Ex1b) C has pullbacks of pairs of (split) monomorphisms,
(Ex2a) C has coequalizers of kernelpairs,
(Ex2b) regular epimorphisms are stable under pullback.

We mention that in (Ex2) and (Ex2b), regular epimorphisms may be traded for strong ones,
i.e., those which are orthogonal to monomorphisms (see [Taylor 99]). However, the formally

weaker strong epimorphisms (even extremal ones, see 2.4 below) then turn out to be regular.

2.2 For a category C with a terminal object 1, put PtC = (1 | C). For an object B in any
category C, call Pt¢(B) = Pt(C | B) the category of points of B in C; its objects are triples
(E,p,s) with morphisms p : £ — B, s : B — FE in C with p-s = 1p, and a morphism
f:(E,p,s)— (E',p,s) in Pte(B) satisfies p' - f =p, f-s=45.

A category C is (Bourn-)protomodular (see [Bourn 91]) if C has pullbacks and if

(PM) for every morphism v : C — B in C, the pullback functor v* : Pte(B) — Pte(C) (which
pulls back p of (E,p, s) along v) reflects isomorphisms.

It is easy to see that in the presence of pullbacks, (PM) is equivalent to the condition that in

every commutative diagram

T
G D

Y M x
" ¢

w U
P B (4)



for which both @ and || are pullback diagrams, also 2 is a pullback diagram, provided that ¢ is
a split epimorphism (just consider the pullback F xp C; see Proposition 8 of [Bourn 91]). As
shown in [Bourn-Janelidze 98|, the provision may be changed to the requirement that ¢ be a
regular epimorphism and p an effective descent morphism in C. If C is Barr-exact, so that every
regular epimorphism is effective for descent (see [Janelidze-Tholen 94]), it suffices to let p, ¢ be

regular epimorphisms.

2.3 In the presence of a zero object 0 in C, condition (PM) may be simplified further. Then it
suffices to consider the morphism ip : 0 — B instead of an arbitrary morphism v : C' — B (since
ip = v -ic, so that reflection of isomorphisms by i}, = i, - v* implies the same for v*). Pulling

back p: E — B along i is taking the kernel of p; hence, (PM) now becomes:

(PMy) for every object B in C, the kernel functor kerg : Pte(B) — C (22 Pte(0)) reflects

isomorphisms.

More elaborately, (PMy) means that the Split Short Five Lemma holds true in C: consider

any commutative diagram

{ q
L F C
U w U
k
K E B (5)

in C with & = kerp and [ = ker¢; then w is an isomorphism if u, v are isomorphisms and p,
g are split epimorphisms (see [Bourn 91]). Equivalently: @ is a pullback diagram, if u is an
isomorphism and ¢ is a split epimorphism; or if « is an isomorphism, ¢ a regular epimorphism
and p an effective descent morphism (see [Bourn-Janelidze 98]). Hence, if C is Barr-exact with a
zero object, (PMy) is equivalent to the Short Five Lemma as stated in the Introduction, as well
as to the pullback cancellation property discussed in 2.2, where now just ¢ (not necessarily p) is

assumed to be a regular epimorphism.

2.4 If C has binary sums (=coproducts), in addition to pullbacks and a zero object, then the
functor kerg : Ptg(B) — C of 2.3 has a left adjoint, given by

K—>(K+B,(10

) , coproduct injection).
B

Consequently, kerp reflects isomorphisms if and only if the counits of this adjunction do not
factor through proper subobjects of their codomains; since C has equalizers, this simply means
that the counits are extremal epimorphisms.

Calling a diagram
k p
E

K B

. (6)

with £ = kerp and p- s = 1p a split short ezact sequence, we now see that (PM) is equivalent to:




k
(PM{) for every split short exact sequence (6), the morphism ( ) : K+ B — FE is an
s

extremal epimorphism.

Note that if C is regular, “extremal” is equivalent to “regular”. Analysing this condition further,

one obtains:

Proposition. A category C with pullbacks, binary sums and a zero object is protomodular if and

only if:

k
(PM0+1) for every split short exact sequence (6), the morphism < ) : K+ B — FE is an
s
epimorphism,

(PM0+2) for every commutative diagram (2) with monomorphisms w,v and ker p < w, reqularity

of v implies regqularity of w, provided that q is a split epimorphism.

The provision in (PM(J{Q) may be changed to p being effective for descent and g a reqular epimor-
phism; even to p,q being regular epimorphisms when C is Barr-ezact.

Proof. (PM{) trivially implies (PM{ 1), but also (PM{2). In fact, given (2) (=2 as in (5)) with
monomorphisms v, w and k = ker p < w, the morphism [ with w-[ = k is the kernel of ¢. Hence,

if ¢ splits, (2) is a pullback diagram, so that regularity of v implies the same for w.
Conversely, given the split short exact sequence (6), assuming ( ) = w- f with a monomor-
s

phism w, we may put v =1p, ¢ =p-w,l = f-iand t = f-j (with 7, the injections of K + B)
and obtain ¢ -t = 1p, w-[ = k, hence ker p < w. Now, w is an epimorphism, by (PM(‘)"I), and a
regular monomorphism, by (PMS'Q), hence an isomorphism. This shows extremality of ( i ),
as needed in (PM{).
Remark. In the Proposition above, we may relativize (PM[)Ir 2) by trading regular monomor-
phisms for any class M of morphisms in C which is stable under pullback and satisfies M NEpiC =
IsoC, as follows:
for every commutative diagram (2) with monomorphisms w, v with ker p<w, v € M implies
w € M, provided that q is a split epimorphism.
The choice M = IsoC gives the Short Five Lemma of 2.3, while M = {normal monos} gives

Hofmann’s Axiom 1.5.
2.5 We now combine the conditions discussed so far:

Definition. C is called semi-abelian if C is Barr-exact and Bourn-protomodular and if C has a

zero object and finite sums (=coproducts).

Phrased less redundantly, a semi-abelian category C is a category which satisfies:
(SA1) C has binary products and sums and a zero object;

(SA2) C has pullbacks of (split) monomorphisms;



(SA3) C has coequalizers of kernelpairs;
(SA4) the Split Short Five Lemma holds true in C (see 2.3);
(SAB) reqular epimorphisms in C are stable under pullback;

(SA6) equivalence relations in C are effective.

2.6 Examples. (1) Abelian categories. Barr-exact categories which are additive (=enriched
over the category of abelian groups) give precisely the abelian categories. They are semiabelian,
since additive categories with kernels satisfy (PMg) (see [Bourn 99b]), and since products in
them are biproducts. The category of (not necessarily abelian) groups gives an example of a

semi-abelian category which is not abelian.

(2) Q-groups. Every variety of universal algebras (for a finitary or infinitary theory 7) gives
a Barr-exact category T-Alg(Set). Furthermore, every variety of Q-groups (i.e., a variety of
universal algebras with underlying group structure such that the trivial subgroup is a subalgebra,
see [Higgins 56]) is protomodular and therefore semi-abelian. Hence, in addition to the category
of groups, many “classical” algebraic categories (rings (not necessarily unital), Lie algebras,
Jordan algebras (over a ring), etc.) are semi-abelian.

In fact (finitary) varieties 7-Alg(Set) of T-algebras which are semi-abelian have been com-

pletely characterized in [Bourn-Janelidze 99], by the following syntactical condition:

there are a nullary operation e € Q, binary terms t1,---,t, and an (n + 1)-ary term
t such that

t(:c,tl(:c,y), T atn('fay)) =Y,
ti(z,z) = =ty(x,z) =,
w(e,--+,e) =e for allw € Q

are identities in T -Alg(Set).

(3) Internal varieties. Recall that the abelian group objects in an exact category form an
abelian category (see [Freyd-Scedrov 90], 1.595); in fact, every abelian category is of this form,
since the abelian group objects of an abelian category give the same category. The characteri-

zation of semi-abelian varieties in (2) can be used to prove:

Theorem. Let the Lawvere theory T be such that T-Alg(Set) is semi-abelian. Then the category
T-Alg(C) of internal T -algebras in a Barr-exact category C is semi-abelian if and only if it has

finite coproducts.

Proof. Only the “if” part needs proof. With C also T-Alg(C) is Barr-exact. Furthermore, using
the syntactical features of 7 given in (2), one proves protomodularity of 7-Alg(C) as in the case

C = Set, i.e., the argumentation is Yoneda invariant.

(4) Crossed modules. The category of crossed modules (= internal category objects of the

category of groups) can be considered as a variety of Q-groups and is therefore semi-abelian;



likewise for pre-crossed modules, crossed complexes, etc. This fact is based on the observation
that Loday’s categorical groups (see [Loday 1982]) may be described as groups equipped with two
idempotent endomorphisms satisfying additional identities (see also [Janelidze-Pedicchio 1997]).

(5) Relation with Malcev categories. Recall that a Malcev operation on a set X is a map
7 : X% — X satisfying the equations 7(z,y,y) = = and 7(z, z,y) = y (see [Smith 76]). A finitely
complete category C is naturally Malcev if it admits a natural transformation 7y : X3 — X
satisfying the identities of a Malcev operation (see [Johnstone 89]). Pointed naturally Malcev
categories are additive (see [Bourn 91]), hence trivially semi-abelian, in case they are Barr-exact
with finite coproducts.

Conversely, protomodular categories have the important property that every reflexive relation
(i.e., every monic pair ri,79 : B — A with a common splitting) is already an equivalence
relation (see [Bourn 96)); in other words: every protomodular (and, a fortiori, every semi-abelian
category) is Malcev in the sense of [Carboni-Lambek-Pedicchio 96]. Moreover, the converse
implication fails, even in the presence of a zero object: consider the variety of algebras with one

Malcev operation and one nullary operation.

(6) Further examples. The category of Heyting algebras (= cartesian closed posets with finite
joins) is protomodular ([Bourn 96]) and therefore semi-abelian. The category Set°? and, in fact,
the dual category of any elementary topos is exact and protomodular (see [Bourn 96]) but in
general not semi-abelian, because of the missing zero object. However, the dual of the category
of pointed sets (or of poined objects in any topos) is semi-abelian. More generally, if C is an
exact protomodular category with finite colimits, then Ptc(A) is clearly semi-abelian, for every
object A.

2.7 We conclude this section with two useful observations on quotient objects in protomodular
categories (the second of which was already established in [Bourn 91]). First recall that for every

object A in any category C with limits and colimits as needed, there is a Galois equivalence

coequ
EER(4) T~ Q(4)
kerpair

(7)

between the ordered class of quotients of A (represented by regular epimorphisms with domain
A) and the ordered class of effective equivalence relations on A. If C has a zero object, there is

also the Galois correspondence
ker

Q(A) S(4)

(8)

with S(A) the ordered class of subobjects of A (represented by monomorphisms with codomain

coker

A); this restricts to an equivalence

ker
NQ(A) ~ NS(A)
coker

(9)

between normal quotients and normal subobjects of A. Since in any pullback diagram arrows

on opposite sides have isomorphic kernels, the composite map ker - coequ of (7) and (8) can be

10



displayed as

ker
EER(A) S(A)
r=(R :::; A) b———— kerry (= kerro). (10)

Proposition. Let C be protomodular. Then:

(1) If equivalence relations are effective in C and if C has (regular epi, mono)-factorizations,

then pushouts of reqular epimorphisms exist in C.

(2) If C has a zero object and cokernels of kernels, then every regular epimorphism in C is

normal.

Proof. (1) Since a protomodular category is Malcev (see 2.6(3)), binary suprema exist in the or-
dered class ER(A) of equivalence relations on A which, under (Ex3), is equal to EER(A). Hence,
suprema exist in Q(A). (Note that the factorization system provides coequalizers of effective
equivalence relations.) Now it only remains to verify that the supremum of two regular epimor-
phisms with domain A satisfies the universal property of a pushout, which follows elementarily
with the given factorization system.

(2) For p € Q(A) and ¢ = coker(kerp) < p, we have ker p = ker ¢q. Hence, letting r, s be the

induced equivalence relations of p, ¢, respectively, in order to obtain p = ¢ we just need to show:
s < r and ker sy = kerr{ implies s = r,

which is an immediate consequence of (PMj).

2.8 In the presence of finite coproducts, pushouts of split epimorphisms suffice to obtain the

existence of all finite colimits (see 2.1, dual). Hence, Proposition 2.7 gives immediately:

Corollary. A semi-abelian category C has all finite colimits and a stable (normal epi, mono)-

factorization system.

3 Semi-abelian categories in terms of “old” axioms.

3.1 Consider the following old-style conditions on a category C:
(SA*1)=(SA1) C has binary products and sums and a zero object.

(SA*2) C has binary intersections of monomorphisms (that is: S(A) has binary infima, for every
object A in C).

(SA*3a) Every product projection is a normal epimorphism.

11



(SA*3b) (Images under normal epimorphisms) For every normal epimorphism p: E — B and

every monomorphism w : F' — E, there is a commutative diagram

q
F

C

E

B

with a monomorphism v and a normal epimorphism q.

(11)

(SA*4) (Hofmann’s Axiom) For every commutative diagram (11) with normal epimorphisms

p,q and monomorphisms v,w, the morphism w is normal, provided that v is normal and

that every normal monomorphism k: K — E with p -k = 0 factors through w.

(SA*5) (Inverse images under normal epimorphisms) For every normal epimorphism p : E —

B and every monomorphism v : C — B, there is a commutative diagram (11) with a

monomorphism w and a normal epimorphism q.

(SA*6) For every commutative diagram (11) with normal epimorphisms p, q¢ and monomor-

phisms v, w, the morphism v is normal if w is normal.

The purpose of this section is to show that conditions (SA 1-6) are equivalent to (SA* 1-6).

More precisely, we shall often work with the (formally weaker) conditions
(SA**2) C has binary intersections of split monomorphisms,
(SA**3)=(SA*3a)&(SA*3b), but with p a normal split epimorphism,
(SA**4)=(SA*4), but with p, ¢ normal split epimorphisms,
(SA**5)=(SA*5) (no change),

(SA**6)=(SA*6), but with p, ¢ normal split epimorphisms,

and then prove:

Theorem. Let C satisfy (SA1) and (SA**2). Then:

(1) C has (normal epi, mono)-factorizations if and only if (SA**3) is satisfied; in this case C

has all finite limits.

(2) C is protomodular with (normal epi, mono)-factorizations if and only if (SA**3) and (SA**4)

are satisfied; in this case, the canonical morphism

1
< O):A—l—B—>A><B
01

is a normal epimorphism, for all objects A, B.

12



(3) C is protomodular with stable (normal epi, mono)-factorizations if and only if (SA**3-5) are
satisfied.

(4) C is protomodular and Barr ezact if and only if (SA**3-6) or, equivalently, if (SA*3-6) are

satisfied; in this case, C has all finite colimits.

3.2 First we note that a regular category C trivially satisfies (SA2), hence (SA*2), but also
(SA*3b) and (SA*5), provided that regular epimorphisms are normal. This provision is certainly

given when C is semi-abelian (see 2.7); here we show its link with (SA*3a):

Proposition Let the category C satisfy (SA1) and (SA**2). Then:
(1) The following conditions are equivalent:

i) C has (normal epi, mono)-factorizations;

ii) C satisfies (SA*™*3);

(
(
(iii) C satisfies (SA*3b), and split epimorphisms are normal,
(iv) C satisfies (SA*3b), and regular epimorphisms are normal.
(2) Each of (1)-(iv) implies that C has all finite limits, and that

(v) kernels and their cokernels exist in C, and every morphism f with kerf = 0 is a

monomorphism.

(3) In the presence of (SA*5), condition (v) is equivalent to (i)-(iv).

Proof. (1) The implications (iv) = (iii) = (ii) are trivial, and for (ii) = (i) factor the given
morphism f: A — B through its graph as in

A
<la, f>

AXB B (12)

Then note that (SA*3a) allows us to apply (the split version of) (SA*3b) in this situation and
obtain the desired factorization of f.

(i) = (iv) Condition (i) trivially gives (SA*3b), and also that extremal epimorphisms in C
must be normal, which is then a fortiori true for regular epimorphisms.

(2) Having (normal epi, mono)-factorizations one shows immediately that infima in S(A)
enjoy the universal property of pullbacks. Hence, using 2.1, from (SA1) and (SA**2) we obtain
the existence of all finite limits in C. In particular, any morphism f must have a kernel, the
cokernel of which is the normal-epi part of f. In case kerf = 0 the cokernel is 1, and f coincides

with the mono part of its factorization.
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(3) For (v) = (i), consider the commutative diagram

[
L ——C
K A B

with & = kerf, p = coker k and [ = kerm. With (SA*5) one can find a normal epimorphism

g: D — L and a morphism w: D — A with[l-¢ =p-w. Since f-w=m-1-¢q =0, w factors
as w = k - x, and since [ is monic, one sees that the normal epimorphism ¢ must be 0. Hence

L =0, and we obtain with (v) that m is a monomorphism.

Corollary. Under conditions (SA*1 — 3b), C has all finite limits and (normal epi, mono)-
factorizations; these are stable under pullback along monomorphisms if and only if (SA*5) is
satisfied.

Proof. Apply 2.1 and the Proposition above. For the additional statement use the fact that, in
the presence of the factorization system, a composite ¢ = r - ¢ is a normal epimorphism only if r

1s one.

3.3 Next we wish to clarify the meaning of (SA*4) in modern terms. In fact, first we shall be
able to do this only for (SA**4):

Proposition. Let C have pullbacks, a zero object and (normal epi, mono)-factorizations. Then
C 1s protomodular if and only if (SA**4) is satisfied.

Proof. Tt is clear that (SA**4) follows from (PMy), just as (PMg 2) was derived in Proposition
2.4: consider M = {normal monos} in Remark 2.4.

Conversely, checking (PMy) we consider the commutative diagram (5) with split epimor-
phisms p, ¢, isomorphisms u, v, and k& = kerp, [ = kerq. Now w has a (normal epi, mono)-
factorization w = m - e. Any morphism z with ¢ -z = 0 factors as £ = [ - ¢, and from
k-u-y=m-e-x =0 one derives y = 0 and then x = 0. Hence, the normal epimorphism e is
the cokernel of 0 and therefore an isomorphism. Consequently, in (5) we may assume w to be
monic. The implication (i) = (iii) of Proposition 3.2 shows that the split epimorphisms p, ¢ are
normal, so that an application of (SA**4) gives that w is a normal monomorphism. Dually to
the argumentation employed previously one shows that any morphism z with x - u = 0 must be

0. Hence, w is an isomorphism.
Corollary. Let C satisfy (SA*1), (SA*2) and (SA*3b). Then the following conditions are equi-

valent:

(i) C is protomodular;

k
(ii) (SA**4) is satisfied, and for every split short exact sequence (6), ( ) :K+B — FEisan

s
epimorphism;
(iii) (SA**4) is satisfied, and for all objects A, B, the canonical morphism e: A+ B — A X B

18 an epimorphism;
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(iv) (SA*3a) and (SA**4) are satisfied.

Proof. (i) = (ii) follows from the Proposition and (PMgl) of 2.4.

(ii) = (iii) is trivial, as one may consider the split short exact sequence

< 14,0> p
Ax B

A

B.

<0,1p > (14)

(iii) = (iv) In (14), we must show that the projection p is the cokernel of < 14,0 >. But
for any z with z- < 14,0 >= 0 one routinely checks that z- < 0,1 > ‘p-e = x - e, hence
z- < 0,1 > -p = z under hypothesis (iii). Also, any morphism y with y - p = z necessarily
satisfies y =y -p- < 0,1p >=2z- < 0,1 >.

(iv) = (i) follows from the Proposition, in conjunction with Corollary 3.2.

Remarks. (1) In the Corollary, “epimorphism” may be replaced by “extremal epimorphism”
(see (PM{) of 2.4) and then in fact by “normal epimorphism” (since by Proposition 3.2 we have
(normal epi, mono)-factorizations).

(2) The Corollary in conjunction with Proposition 3.2 proves Theorem 3.1(1), (2).

(3) Once we have established Barr-exactness of C we may trade (SA**4) for (SA*4): see the

equivalent formulations of (PMjp) in 2.3.

3.4 Next we give the proof of Theorem 3.1 (3). All that needs to be done after Corollary 3.2
and Remark 3.3 is to show that, in the presence of (SA**4), condition (SA*5) guarantees full
pullback stability, not just along monomorphisms.

In any pullback diagram ,

B (15)

f factors through a split epi followed by a split mono, as in (12).

Hence, we may assume f to be a split epimorphism. Considering now the (normal epi, mono)-
factorization p’ = m - e, putting g := f - m we have a pullback diagram

e
D

C
f 9

E

B (16)

Hence, ker ¢ = kerf’ = kerf. Furthermore, since with f also f’ is a split epimorphism, with p

also p- f' = g - e and then ¢ are regular epimorphisms. Since [ is effective for descent, (PMj)
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applied to

m IB

B (17)

gives that m is an isomorphism; equivalently, that p’ is a normal epimorphism.

A

3.5 Towards Theorem 3.1(4) we first prove:

Proposition. In a protomodular category C with a zero object and (normal epi, mono)-factoriza-

tions satisfying (SA**6), reflexive relations are effective equivalence relations.

Proof. A reflexive relation is a monic pair rq, ro : B — A with a common section d. Let
k = kerr; and n = r9 - k. Clearly, n is a monomorphism (since r; - k-2 =0 =1 -k -y for all
x,y); in fact, it is normal, as one sees applying (SA**6) to

Ik
K

K

T2

R A (18)

We now let ¢ = cokern : A — B and s be its induced equivalence relation s1,s9 : S — A. One
has

g1 k=0=q-n=q-ra-k,qg-r1-d=q=q-re-d,

hence g - 71 = g - 79, since k, d are jointly epic in the protomodular category C (cp. (PMg1)).
Consequently, there is a morphism ¢ : R — S with s; -t =r; (i = 1,2).
We must show that ¢ is an isomorphism. But since h := ker s; = ker ¢, we have the commu-

tative diagram

k 1
K R A
1k t 1a
h 81
K S A (19)

in which the horizontal arrows form split short exact sequences. Hence, everything follows with
(PMy).

3.6 In order to complete the proof of Theorem 3.1, we only need to show:

Proposition. A semi-abelian category C satisfies (SA*6).

Proof. Considering once again the commutative diagram (2) with normal epimorphisms p, ¢,

a monomorphism v and a normal monomorphism w, we let ¢ = coker w. In the exact Malcev
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category C the pushout diagram

Q (20)
exists, and the canonical morphism h : E — P Xg B is a normal epimorphism: see [Carboni-
Kelly-Pedicchio 93], Theorem 5.7. Let k& = kerf, and let ¢t : C — K be the monomorphism with
k-t =w. Since the pullback f': P xg B — P of f along ¢ has the same kernel as f, k' = kerf’
satisfies ¢’ - k' = k, where ¢’ : P xg B — B is the pullback of g along f. Now the commutative

P

diagram
w e

F E P

t-q h 1p

K f!

PxqB P (21)

shows that its left-hand side is a pullback. Consequently, £ - ¢ is a normal epimorphism, whence

K

also ¢ is one. Hence, t is in fact an isomorphism, and v must be normal.

3.7 Combining 2.5, 3.1 and 3.2 we see that the following list of “old” conditions also charac-

terizes semi-abelian categories C:
(SA’1)=(SA1) C has binary products and sums and a zero object;
(SA’2)=(SA2) C has pullbacks of (split) monomorphisms;
(SA’3) C has cokernels of kernels, and every morphism with zero kernel is a monomorphism;
(SA’4)=(SA4) the (Split) Short Five Lemma holds true in C;
(SA’5) normal epimorphisms are stable under pullback;

(SA’6) images of normal monomorphisms under normal epimorphisms are normal monomor-

phisms.

4 Additional remarks

4.1 We mentioned in 1.4 that a category C is abelian if and only if both C and C°P are semi-
abelian. In fact, with 1.59 of [Freyd-Scedrov 90], this follows from the following rather obvious

statement:

Proposition. If for the pointed protomodular category C also its dual category C°P is protomod-

ular, then finite products in C are biproducts.
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Proof. We must show that, for all objects A, B in C, the canonical morphism A+ B —+ A X B
is an isomorphism. Indeed, applying (PMj) to (14) one sees that it is an extremal epimorphism

and, dually, also an extremal monomorphism.
Remark. For the Proposition it suffices that C°P satisfies (PM7 1) (see 2.4).

4.2 We wish to explain the notion of semi-additive category as mentioned in 1.4. In [Bourn-
Janelidze 98], a category C with (split) pullbacks is said to have semidirect products if the functor
v* : Pte(B) — Pte(E) is monadic for all v : E — B in C; it is shown that when C is Barr-exact
and protomodular, Pte(B) has coequalizers of reflexive pairs and v* preserves them. Hence, if
C is Barr-ezact, C has semi-direct products if and only if it is protomodular and has pushouts of
split monomorphisms (with the latter guaranteeing the existence of left adjoints to the functors

v*; see [Bourn 91]).

Corollary. If C is Barr-ezact with finite coproducts and a zero object, C is semi-abelian if and

only if C has semidirect products.

To explain what semi-direct products are in this situation, consider v = i : 0 — B, so
that v* = kerg : Pt¢(B) — C. With T the monad induced by kerp, the semi-direct product
(X,&) X B of a Tg-algebra (X,¢{) with B is simply the Pt¢(B)-object corresponding to (X, &)
under the category equivalence Pt¢(B) ~ CT2. The paper [Bourn-Janelidze 98] explains that this
definition gives indeed the usual semidirect product in the category of groups. If C is an additive
category, Tp is simply (isomorphic to) the identity monad on C, so that (X, &) is given by the
object X alone, and the semi-direct product becomes the direct sum: X X B=XxB =X&B.

If we therefore call a category C semi-additive if C has finite sums, a zero object and kernels

such that each kernel functor Pt¢(B) — C is monadic, we obtain

Corollary. C is semi-abelian if and only if C is Barr-ezact and semi-additive.

4.3 As an epilogue we wish to reflect once again on the choice of axioms for semi-abelianness.
We hope that the Reader will agree that the requirements of Barr-exactness and protomodularity
are natural and indispensable. Also the requirement for the existence of finite coproducts seems
natural since they provide fundamental algebraic constructions. There then remains the condi-
tion for the existence of a zero object, which really breaks down into the existence requirement
for an initial object 0 and a terminal object 1 on the one hand, and the condition 0 2 1 on
the other. Under the mission outlined in the Introduction, it is this very last condition which
appears to be dispensable. Abandoning it would certainly give additional interesting examples
but would also come with a considerable price tag in terms of technical complications (as the
Reader of [Bourn 99a] and [Bourn 99b] will realize immediately). But more importantly for our
paper, a direct comparison with old-style axioms would no longer be possible.

References

[1] S.A. Amitsur, A general theory of radicals, II. Radicals in rings and bicategories, Amer. J. Math. 76
(1954) 100-125.

[2] M. Atiyah, On the Krull-Schmidt Theorem with applications to sheaves, Bull. Soc. Math. France 84
(1956) 307-317.

18



[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]

[20]

[21]
[22]

[23]
[24]

[25]
[26]

R. Baer, Direct decompositions, Trans. Amer. Math. Soc. 62 (1947) 62-98.

M. Barr, Ezact Categories, in: Lecture Notes in Math. 236, pp. 1-120 (Springer-Verlag, Berlin 1971).
M. Barr and C. Wells, Toposes, Triples and Theories (Springer-Verlag, Berlin 1985).

F. Borceux, Handbook of Categorical Algebra, vol. 1-3 (Cambridge University Press, Cambridge 1994).
S.G. Botha, Primary ideals in categories, Preprint (UNISA, Pretoria 1997).

S.G. Botha and A. Buys, Prime ideals in categories, Comm. Algebra 13 (1985) 1171-1186.

D. Bourn, Normalization equivalence, kernel equivalence and affine categories, in: Lecture Notes in
Math. 1488, pp. 43-62 (Springer-Verlag, Berlin 1991).

D. Bourn, Mal’cev categories and fibrations of pointed objects, Appl. Categorical Structures 4 (1996)
307-327.

D. Bourn, Baer sums and fibred aspects of Mal’cev operations, preprint (Université du Littoral, Calais
1999).

D. Bourn, Normal subobjects and abelian objects in protomodular categories, preprint (Université du
Littoral, Calais 1999).

D. Bourn and G. Janelidze, Protomodularity, descent, and semi-direct products, Theory Appl. Cate-
gories 4 (1998) 37-46.

D. Bourn and G. Janelidze, Characterization of protomodular varieties of universal algebras (in

preparation).

H.-B. Brinkmann and D. Puppe, Abelsche und exakte Kategorien, Korrespondenzen, Lecture Notes
in Math. 96 (Springer-Verlag, Berlin 1969).

D.A. Buchsbaum, Ezact categories and duality, Trans. Amer. Math. Soc. 80 (1955) 1-34.

W.D. Burgess and X. Caicedo, Congruences in regular categories, Rev. Columbiana de Matemdticas
15 (1981) 43-64.

A. Carboni, Categories of affine spaces, J. Pure Appl. Algebra 61 (1989) 243-250.

A. Carboni, G.M. Kelly and M.C. Pedicchio, Some remarks on Maltsev and Goursat categories, Appl.
Categorical Structures 1 (1993) 385-421.

A. Carboni, J. Lambek and M.C. Pedicchio, Diagram chasing in Mal’cev categories, J. Pure Appl.
Algebra 69 (1991) 271-284.

H. Cartan and S. Eilenberg, Homological Algebra (Princeton University Press, Princeton 1956).

B. Eckmann and P.J. Hilton, Group-like structures in general categories I, Math. Ann. 145 (1962)
227-255.

E. Faro, On a conjecture of Lawvere, preprint (S.U.N.Y., Buffalo 1989).

T.H. Fay, On commuting congruences in regular categories, Math. Colloq. Univ. Cape Town 11 (1977)
13-31.

T.H. Fay, On categorical conditions for congruences to commute, Algebra Univ. 8 (1978) 173-179.

R. Freese and R. McKenzie, Commautator Theory for Congruence Modular Varieties, London Math.
Soc. Lecture Notes 125 (Cambridge 1987).

19



[27]

[28]
[29]

[30]

31]
[32]

[33]

[34]
[35]

[36]

[37]
[38]
[39]
[40]

[41]

[42]
[43]

[44]

[45]
[46]
[47]

[48]

[49]
[50]

P. Freyd, Abelian Categories. An Introduction to the Theory of Functors (Harper& Row, New York
1964).

P. Freyd and A. Scedrov, Categories, Allegories (North Holland, Amsterdam, 1990).

R. Fritsch and O. Wyler, The Schreier Refinement Theorem for categories, Arch. Math. 22 (1971)
570-572.

A. Frohlich, Non-abelian homological algebra I, Derived functors and satelites, Proc. London Math.
Soc. (3) 11 (1961) 239-275.

P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962) 323-448.

M. Gerstenhaber, A categorical setting for the Baer extension theory, in: Proc. of Symposia in Pure
Mathematics 17, pp. 50-64 (Amer. Math. Soc., Providence 1970).

A W. Goldie, The Jordan-Holder theorem for general abstract algebras, Proc. London Math. Soc. (2)
52 (1950) 107-113.

A. Grothendieck, Sur quelques points d’algébre homologique, Téhoku Math. J. 2 (1957) 119-221.

H.P. Gumm, Geometrical methods in congruence modular varieties, Mem. Amer. Math. Soc. 45
(1983).

J. Hagemann and C. Herrmann, A concrete ideal multiplication for algebraic systems and its relation
to congruence distributivity, Arch. Math. 32 (1979) 234-245.

A. Heller, Homological algebra in abelian categories, Ann. Math. 68 (1958) 484-525.
H. Herrlich and G.E. Strecker, Category Theory (Allyn Bacon, Boston 1973).
P.J. Higgins, Groups with multiple operators, Proc. London Math. Soc. (3) 6 (1956) 366-416.

P.J. Hilton and W. Ledermann, On the Jordan-Hdlder theorem in homological monoids, Proc. London
Math. Soc. 10 (1960) 321-334.

F. Hofmann, Uber eine die K ategorie der Gruppen umfassende Kategorie, Sitzungsberichte Bayerische
Akad. Wissenschaften, Math. Naturw. Klasse (1960) 163-204.

M. Holcombe and R. Walker, Radicals in categories, Proc. Edinburgh Math. Soc. 21 (1978) 111-128.

S.A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Math. Oxford (2) 19 (1968)
363-389.

G. Janelidze and M.C. Pedicchio, Internal categories and groupoids in congruence modular varieties,
J. Algebra 193 (1997) 552-570.

G. Janelidze and M.C. Pedicchio, Pseudogroupoids and commautators, preprint (Trieste, 1998).
G. Janelidze and W. Tholen, Facets of descent I, Appl. Categorical Structures 2 (1994) 245-281.

P.T. Johnstone, Affine categories and naturally Maltsev categories, J. Pure Appl. Algebra 61 (1989)
251-256.

K. Kearnes and A. Szendrei, The relationship between two commutators, Internat. J. Algeba and
Comput. 8 (1998) 497-531.

G.M. Kelly, Monomorphisms, epimorphisms and pullbacks, J. Austral. Math. Soc. 9 (1969) 124-142.
A. Klein, Relations in categories, Ill. J. Math. 14 (1970) 536-550.

20



[51]

[52]

[53]
[54]
[55]
[56]
[57]

[58]
[59]
[60]

[61]
[62]

[63]

[64]

[65]
[66]
[67]

[68]

A.G. Kurosh, Direct decompositions in algebraic categories (Russian), Trudy Mosk. Mat. Obshch. 8
(1959) 391-412.

J.-L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Algebra 24 (1982)
179-202.

S. Mac Lane, Duality for groups, Bull. Amer. Math. Soc. 56 (1950) 485-516.

S. Mac Lane, Homology (Springer-Verlag, Berlin 1963).

S. Mac Lane, Categories for the Working Mathematician, 2nd ed. (Springer-Verlag, New York 1998).
A. Mal’tsev, Defining relations in categories (Russian), Dokl. Akad. Nauk SSSR 119 (1958) 187-189.

L. Méarki and R. Wiegandt, Remarks on radicals in categories, Lecture Notes in Math. 962 (Springer-
Verlag, Berlin 1982) pp. 190-196.

J. Meisen, On bicategories of relations and pullback spans, Comm. Algebra 1 (1974) 377-401.
B. Mitchell, Theory of Categories (Academic Press, New York 1965).

G. Orzech, Obstruction theory in algebraic categories, I and II, J. Pure Appl. Algebra 2 (1972)
287-314 and 315-340.

M.C. Pedicchio, A categorical approach to commutator theory, J. Algebra 177 (1995) 647-657.

M.C. Pedicchio, Arithmetical categories and commutator theory, Appl. Categorical Structures 4
(1996) 297-305.

E.G. Shul’geifer, On the general theory of radicals in categories (Russian), Math. Sb. (N.S.) 51 (1960)
487-500.

E.G. Shul'geifer, The Schreier Theorem in normal categories (Russian), Sib. Mat. Z. 13 (1972) 688-
697.

J.D.H. Smith, Mal’cev Varieties, Lecture Notes in Math. 554 (Springer-Verlag, Berlin 1976).
P.T. Taylor, Practical Foundations (Cambridge University Press, Cambridge 1999).

M.S. Tsalenko, Correspondences over a quasi-exact category (Russian), Mat. Sh. 73 (115) (1967)
564-584.

O. Wyler, The Zassenhaus Lemma for categories, Arch. Math. 22 (1971) 561-569.

gjanel@rmi.acnet.ge
marki@math-inst.hu

tholen@pascal.math.yorku.ca

21



