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COMPLETIONS OF CATEGORIES AND SHAPE THEORY

W. Tholen

Abstract. Completions of categories with respect to an arbitrary class D of
small categories are investigated. Generalizing the classical construction of
pro-categories by Grothendieck and Verdier we give a sufficient condition on D
for every category to admit a one step construction of a D -(co)completion.
General shape categories are embedded into these completions and a short proof
of the Deleanu-Hilton equivalence theorem is given. Finally, by a generalized
n"$ech condition", shape categories are described via relatively adjoint functors.
AMS subject classification: 18A35, 18340, 54C56

0. Introduction

There are mainly two ways to endow a given category K with (co)limits of
a prescribed type: adjoin the needed (co)limits to K "stepwise" by an iterated
process (cf. Isbell [15], Trnkova [29]), or try to embed K into some larger
(co) complete caiegory R and consider the hull of K in R under the forma-
tion of the needed (co)limits (cf. Lambek [18], Trnkova [30], kelly [17]). If K
is a category with small hom-classes, the suitable embedding is the Yoneda em-
bedding

YK:K-R=[K°P,Se,t], arK(-,n),
and the cocompletion of K (with respect to all small colimits) is given by the
full subcategory of small functors in R , i.e. the left Kan extensions along
functors H:D=K°®? with small D ; this subcategory

(a) K

(b) K is cocomplete,

(c)y K
K-objects,

is like K a legitimate category with small hom-classes,
is dense in K , i.e. every E—object is a canonical colimit of

(d) the embedding K-K is universal, i.e. every functor T :K-L such
that colim TH exists for all small diagrams H in K is the restriction of a
unique functor S:K-=L oreserving the canonical colimits mentioned in (c) .

One cannot expect that the embedding K=K preserves colimits: there is a

% I am indebted to Armin Frei who introduced me to Categorical Shape Theory
while I was on leave at the University of British Columbia at Vancouver in 1980.
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counter-example by Trnkova [29] concerning finite coproducts and one by Isbell
[16] concerning coequalizers. This phenomen does not occur if one allows cate-
gories to have proper hom-classes as Trnkova |29] showed.

Completely analogous results were obtained before by Grothendieck and Ver-
dier [13] who constructed a cocompletion of K with respect to all small fil-
tered colimits.In this paper we take up again their construction, but with re-
spect to an arbitrary class D of small categories. It is shown that every-
thing works nicely (i.e. properties (a)-(d) are satisfied relatively to D ),
if the family T of all categories which appear as the codomains of final func-
tors with domain in D are closed under the formation of colimits of type D
in CAT (see Proposition 5 and Theorems 2 and 4). The main tool to get this re-
sult is to embed the D -cocompletion Ind(D ,K) into the comma category
CAT/K instead of the functor category E , since then Ind(D,K) turns out to
be a reflective subcategory of D /K which is the full subcategory of CAT/K
containing all functors with domain in if (see Theorem 3).

The advantage of this construction is that it gives a D -cocompletion in
one step: no ordinal induction is needed. Corresponding results were obtained
recently for concrete categories (cf. [1,14,4]) which, however, do not cover the
theory of completions of abstract categories.

Categorical shape theory goes back to Marde¥ie [23] who described shape
morphisms of topological spaces implicitly by natural transformations. Explicit-
ly this was first done by Porter [27] and, more generally, by LeVan [19] who de-
fined the shape category with respect to an arbitrary category L and a full
subcategory K ; classically one takes for L the homotopy category of topolo-
gical spaces and for K the subcategory of polytopes. Deleanu and Hilton [5,6,71,
Frei [9,10], and MacDonald [21] considered shape categories even with respect to
arbitrary functors and gave also non-topological examples. They rediscovered
Linton's construction of the full clone of operations of an arbitrary functor
(cf£. [20]). In this note we give, for a shape adequate functor F:K-L (this
is "Condition C" in Frei [9]), a new characterization of the shape category
Sh(F) and the canonical functor SF: L=-sSh(F) : it is universal with re-
spect to the property that the composition SFF is codense (see Theorem 5).

Another categorical approach to shape theory is close to the classical des-
sription by ANR-systems (cf. MardeSi& and Segal [24,25]) and uses inverse sys-
tems of CW-complexes (cf. Morita [26]); it amounts to define the shape category
of (pointed) topological spaces as a certain full subcategory of a pro-category
(cf. Dydak and Segal [8], Borsuk and Dydak [2]). The equivalence of both ap-

proaches was shown in full generality by Deleanu and Hilton [5]; here we give a

very short proof of their theorem (see Theorem 6).
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Finally we discuss the so-called Cech condition for F; it is equivalent to
the existence of a "Cech functor" C: L=Pro-K which is left adjoint to the
induced functor Pro-K—=Pro-L relatively to the embedding L-Pro-L . (cf.
Theorem 7). The shape category is then isomorphic to the full image of C ;
this gives precisely the description [8,2] in case of topological spaces and
polytopes.

We use MacLane's terminology [22], but categories are always assumed to
have small hom-sets. To avoid too many contravariant functors we investigate co-
completions instead of completions and coshape categories instead of shape cate-
gories, except in Section5; there is no difficulty to dualize the notions and

results.

1. Categories of diagrams

Let K be a category, and let D be a class of small categories contai-
ning the terminal category J={‘} . A diagram in K of type D is a functor
H: D=+K with DED . A morphism (F,0) : H=J3 of diagrams in K is given by
a functor F:D-+E (=dom J) and a natural transformation ¢ :H-=JF . For an-
other morphism (G,¥) one defines the composition with (F,9) by
(G,¥) (F,0) = (G F,yF * ®) . This way we obtain the category D/ K of D-diagrams
over K . It contains the (not necessarily full) subcategory D /K containing
all morphisms (F,p) with ¢@=1 , i.e. JF=H . There is a cancnical (but not
necessarily faithful) functor

Ug: D/ K=Cat , (F,0)=F .

For every DED ,the functor category [D,K] can be embedded (not necessarily
fully) into D/ K by the functor

k' [D,K]=D /K , o= (Tap.0) -

In case D=1 we obtain (up to an isomorphism K= [1,K]) the full embedding

/A‘< :K -D/K
which assigns to every object A the constant functor AA: 1=K with value A.

Our first propositiondescribes the behaviour of AK with respect toc li-

mits and connected colimits and is easily proved:
PROPOSITION 1. Ay preserves all limits and comnected colimits.O

Coproducts are not preserved in general: if D , considered as a full sub-
category of Cat , is closed under the formation of coproducts (i.e. disjoint
unions), then - independently of the existence of coproducts in K - the cate-
gory D //K always has coproducts and they are formed like in Cat , i.e. Uy

preserves them. With respect to limits and coequalizers one can prove:

THEOREM 1. (1) For a small category C , let D be closed under C-limits in
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Cat . Then, 2f K <8 C-complete, so ¢ D/ K , and all the functors Uy and
ID, g Ppreserve C-limits.

(2) Let D be closed under coequalizers in Cat . Then, if K <s cocom—
plete, D/ K has coequalizers, and all the functors Uy and ID, g Preserve
them.

In (2), the cocompleteness of K is needed in order to construct certain
left Kan extensions. For an explicit proof see Guitart - van den Bril [32],
p. 376.0

REMARK. (Co)completeness of K is not a necessary condition for (co)completeness
of D/K: consider D =obCat and K={-*}Z7ul . Then a functor H: D=K

is completely determined by a pair (Do'vl) with Dou D1 =70 . From this one
easily sees that D/ K is equivalent to the complete and cocomplete category
Cat x Cat .

2. The Yoneda- and the Kan-representation of a functor

Let F:K-L be a functor. The (right) Yoneda-representation of F is the
canonical functor

¥ s L~ (K, Set]
which assigns to every object X€ L the functor L(F-,X) : K®P+Set . (The reader
may disregard the fact that [KOP,SQI] is a category in a higher universe. The
same holds for the meta-category CAT/K of all categories over K which is de-
fined like Cat/K.) The (right) Kan-representation of F is the functor

K : L-CAT/K
which assigns to every object XE L the projection functor Px : F/X+K where
F/X is the comma category of F-comorphisms over X : objects are pairs (A,u)
with AEObK and u:FA=-X in L ; a morphism £: (A,u)—~ (B,v) is given by a
K-morphism £:A-B satisfying v'Ff=u . Every w:X-=Y in L induces cano-
nically a functor F/w:F/X=F/Y which commutes with the projections, so we can
take it as the value under KF.

These two representations are related via the so called element construc-—
tion. We define a functor

Ey ¢ [KP,Set] = Cat/K
as follows: for T :K°P—Sef 1let EL (T) be the (comma-)category whose objects
are pairs (A,a) with A€O0bK and a€TA ; a morphism f: (A,a)= (B,b) is gi-
ven by a K-morphism f:A-=B with (Tf)(b)=a ; now EK assigns to T the ca-
nonical projection functor T E1(T) =K . For a natural transformation & :T-=§S,
there is a functor EKa : EL(T) =EL(S) , (A,a)* (A, (ad) (a)) , which commutes with
the projections.

The following proposition is easily verified:
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PROPOSITION 2. Ey 28 a full embedding which commutes with Yoneda— and Kan— re—
presentations, i.e. the following triangle ts commutative:

Il

s
[K°P,set] CAT/K .O

B
COROLLARY. The following assertions are equivalent:
(i) F <8 dense (= colimit dense),
CESIN 78 full and faithful ,
(i) K, 28 full and faithful .

Proof. (i) <> (ii) holds by definition of density, and (ii) <=> (iii)
follows from Proposition 2.0

PROPOSITION 3. Y_ and K, preserve all extsting limits in L .

The proof is straightforward.O
If F is full and faithful, one can prove a stronger result for YF . The
proof is not more difficult than in the case F=1Id when one has the usual Yo-

neda embedding of a category:
PROPOSITION 4. If F <¢ full and faithful, ¥, 28 (colimit-)dense. O

REMARK., If F is not full (and faithful), ¥F need not be dense. This may be

seen from the functor F: K- ; here YF maps the only object in | to the
functor A1: K°P= Set , A1 . On the other hand, the functors G: =K show
that KG need not be dense even if G is full and faithful (as all functors
1+K are). Namely, K. K- CAT = CAT/1 assigns to each X€ObK the hom class
K(XG,X) considered as a discrete category; here X

G .

s denotes the only value of

3. The D-cocompletion of a category

Like in Section 1, let D CobCat with 1ED be given. In order to find
a suitable extension of K which has sufficiently many colimits of type D
and which belongs to the same universe, we first consider the (meta-)category
K=[K°®,Set] into which K is embedded by the Yoneda embedding ¥, . We then
form like in Section 1 the (meta-)category D//E . The functor YK can be ca-
nonically extended to a functor

D/¥:D/K =D/K with (DY) b= Aty .
Since K is cocomplete, AE embeds" K.as a full reflexive subcategory into
D/ K . The reflector colimg : D/ K=K assigns to every H:D-=K its colimit.

It can be chosen in such a way that colimE/AR=Idk' holds. We now consider the
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functor

D//YK = colimE .
LK=(D//K—A D/ Ki—————— K:)

and form its full image factorization

4 Sl
L= (D/ K —— Ina(D ,K) —— K ).
So the category Ind(D,K) of <Znductive systeme over K of type D has the
same objects as D/ K , and its hom classes are given by
Ind(D ,K) (8,3) = K(LH, L)
= K(cogim YKHD, LKJ)

= lém K(YKHD, LK‘”

= lim (L, J) (HD) /ﬁ;< K
D

=1lim colim K(HD, JE) . K
D E

This shows that Ind(D ,K) has small hom classes, so it is a legitimate category.
The functor C,< is the identity on objects whereas JK is the identity on mor-
k= Sk AK . Since Jg is full and faith-
ful we get immediately from the corresponding statement about YK=JKMK (cf.

phisms. We now consider the functor M

Proposition 4):

PROPOSITION 5. M : K= Ina(D ,K) 78 a full and (colimit-)dense embedding and pre-
serves all limits. O

In order to study the category Ind(D ,K) in more detail it is useful to
consider the Kan representation of MK , i.e.
wK:lS‘K : Ind(D ,K) = CAT/K .

From the Corollary of Proposition 2 we know that WK is full and faithful. We
want to show that, for the element functor EK: K- CAT/K , we have EKJKSWK.
For this let H:D-=+K be in Ind(D,K) . The objects of the category E1(J
are pairs (A,a) with A€0bK and

g

u€ (I H)A=colim K(a,8-) = 1nd(D ,K) ( /B H) = Ind(D ,K) (MR, H)
therefore they correspond bijectively to the objects of MK/H . Now one easily
proves that this is the object part of a bijective functor IH : El (JKH) -’MK/H
which commutes with the projections of the comma categories. Finally, since IH
is natural in H , we have a natural equivalence

Wy

—
K Eg
K

Ind(D ,K) CAT/K
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LEMMA 1. For every E:D-K with DED there is a final functor
RH:D-'MK/H with PR =H

satisfying the following universal property: for every J€Ob Ind(D,K) and

every functor G: D-MK/J with P.G=H there is a unique Ind(D ,K)-morphism

Y :H=J with (MK/Y)RH=G ,» t.e. in CAT/K we have the following diagram:

Ge————1m
-

Proof. By the above isomorphism, we identify MK/H with El (JKH) . We use
the usual colimit construction in Sef: objects in El(JKH) are given by pairs
(a,[£,0]) with A€ob K, D€Eob D , anda £fEK(A,BD) ; here [£,D] denotes the
equivalence class of (£,D) in

(IH) A= colim K(A,H-) = (I, K(a,HD*))/~ ,
where ~ is smallest equivalence relation with (£,D)~ (Hd - £,D') for all
d:Dp=D' in D . A morphism h: (a,[£,0]) = (B,[g,E]) in EL(JiH) is a K-mox-
phism h:A-B with [£,D]=[gh,E] . On objects, R, is now defined by
RHD= (HD,[lHD,D]) ; on morphisms it is determined by PHRH=H . To prove that
RH is final is left to reader.

The universal property can be proved as follows: Since MK is dense we
have a canonical colimit /\H : MKPH-AH , and since P}l is final also
AHRH 2 MKB-—AH is a colimit. Therefore, if J and G are given, one gets a
unique Ind(D ,K)-morphism y:H-=J with AW\HRH=/\JG . This equa‘ion can be
easily seen to be equivalent with (wa)RH=G P 0|

COROLLARY. For every object H in Ind(D ,K) one has HScolim M H .0

THEOREM 2. Let T:K-=L be any functor such that, for every H:D-K with
DED y colim TH exists in L . Then there is a funetor S:Ind(D,K)=L with
SMy =T and S(colim MKB)E colim TH for all H , and S <8, up to natural equi-

valence, uniquely determined.

Proof. On objects, S is defined by SH=colim TH . Then one first consi-
ders the morphisms a: MKA-'H with AEObK and puts Su=AH(A,a) ; here
>‘B - TPH-—ASB is a colimit which exists since colim TH exists and since RH
with PHRH=H is final. Now, if we consider more generally a morphism 8 :H-=>J
in Ind(D.,K) , S is already defined on all morphisms Ba= B/\H(A,a) :MKA-J
(/\H is like in the proof of Lemma 1). This way we get a cocone 'I'PH-’ASJ which,
by the colimit property in L , defines the morphism

S8 : SH=SJ with ASB - )\H=S(AB 2 /\H) .

S is well defined and does everything one wants. O
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Completeness and cocompleteness properties of Ind(D K) can now be de-
rived from those of CAT/K . For this we first modify the class D as is
suggested by Lemma 1:

D ={Dcob CAT | 3 R:E+D final with EED] .

Since final functors do not change colimits we obviously have that Ind(D ,K)
and Ind(D.,K) are equivalent even though B may contain non-small categories.

Now the universal property of Lemma 1 reads as follows:

THEOREM 3. Inda(D.,K) can be embedded into D /K as a full refiective subcate—
gory. O

This is the main result of the paper as full reflective subcategories inhe-
rit (co)completeness. Therefore, if B is closed under certain colimits in
CAT , then D /K is closed under these colimits in CAT/K and so is Ind(D ,K).
For a well chosen class I one should expect at least that B is closed un-

der the colimit types given by D . We therefore define:

DEFINITION. D CObCAT is called admissible, iff D is closed under D-coli-
mits in CAT for all DED.

THEOREM 4. For an admissible class D , the category 1Ind(D ,K) Ze Pp-cocomplete,
Z.e. D-cocomplete for all DED .0

With respect to shape theory we are mainly interested in the class Dr of
all r-directed sets (considered as small categories) where r is a regular car-
dinal. Analogously to the Grothendieck-Verdier proof in case r=No (c£. [13],
p. 65) one can show that Dr consists of all r-filtered categories P such
that there exists a subset KSObU with the following property: for every
DEObD there isa f:D—-E in D with EEK . Since r-directed colimits in
CAT are formed like in Sef one can easily see that Br is closed under r-di-
rected colimits in CAT . Thus we have that Dr is an admissible class whence
Theorem 4 applies to Dr . In case r=8° the category Ind(Dr ,K) is denoted
by Ind-K . From Theorems 2,3,4 we get:

COROLLARY. For every category K , the functor My 18 a full and dense embed-

ding of K into the category Ind-K which has all small filtered colimits. Eve-
vy functor T from K into a category L with small filtered colimits factors,
up to a natural equivalence, uniquely over My by a functor S which preserves

filtered colimits, O

The category of projective systems over K of type D is defined as
Pro(D ,K) = (1nd(D °%,K))®
with D P={0°®|DepD} . The canonical embedding

Ny : K- Pro(D ,K)
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is defined by NK= (MKop)OP . For D being the class of all (downwards) direc-
ted sets one obtains the so called pro-category of K as Pro-K=Pro(D ,K) .

4. The coshape category of a functor

For a general functor F:K-L the coshape category Sh*(F) of F is defined

to be the full image of the Yoneda functor Y (cf. Section 2), i.e. objects

F
of Sh*(F) are the objects of L , and the hom-sets are given by the formula
*
Sh (F) (X,¥) = K(¥ X, ¥ ¥) = Nat (L(F=,X) , L(F-,¥)) = (CAT/K) (K X,K.Y)

(Proposition 2). We have the cancnical factorization

*
Sh (F)
S* I
/ \
L K .
YF
S* acts on morphisms like Y does, and I is full and faithful. Therefore,

F o E
from the Corollary of Proposition 2 and from the Propositions 2 and 3 we obtain

immediately:

PROPOSITION 6 . S, preserves all limits. If F 1is full and faithful, both,

* * . - 8 £ 2
Sp and IF are dense. Sp t8 a bijeetive functor, iff F 1is dense .0

* *
Surprisingly, the composition Fo= SFF : K=sh (F) might be dense even for
non-faithful F . The most general sufficient condition for FO to be dense was

pointed out by Frei [9]:

DEFINITION. F is called coshape-adequate, if for all AEObK and XEObL , the
Nat(L(F-,FA),L(F-,X)) .

functor YF induces a bijection L(FA,X)

For every XEObL , let )‘X s FPX — AX Dbe the canonical cocone with
Ay (Brw) =u, (A,u) €0b(F/X) . The following has been proved in [9] (except the

equivalence of assertions (2) (ii) and (iii)):

PROPOSITION 7. (1) If F <8 full or dense, then F 1<s coshape adequate.
(2) The following assertions are equivalent:
(i) F <8 coshape adequate.
(ii) For all X€obl’, s; induces a bijective functor

* ¥*
(Sphy F/X-SFF/i
(iii) The functors (Sp) g

(iv) For all a€o0bK , the canonical cocone )‘FA: FP_, = OFA i8 a

, XEobl , are final.

colimit in L .
. o * * * O
(3) If F is coshape adequate, then, with F =S_.F , S.0:8h (F) =sSh (F)
i8 a bijective functor, and F° is dense; morveover, for all X€ObL ,the

A * o s re = *
canonical cocone SF)‘x i F Px*Ax is a colimit in Sh (F) . DO
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*
The colimit presentation of the objects in Sh (F) is characteristic for
*
the coshape construction: the following theorem describes SF as the "univer-

sal densificator" of F .

THEOREM 5. If F s coshape adequate and if T:L=M Zs any functor such that
TF 143 dense and T induces a final functor Ty ¢ F/X~TF/TX for all X€OblL ,
then there 18 a unique functor U : sh*(F) =M with US;=T -

*

Proof. Necessarily the cocone SFAX is transformed into TAx 2 TI-"PX-vA’I'x

by U . Since TF is dense and Tx is final this cocone is a colimit in M .
*

Therefore, for every B :X-=Y in Sh (F) , UR must be the unigue M-moxrphism
rendering the diagram TAX
—
TE‘)?X ATX

N lAUB

ATY commutative
~ ~ *
where £ is defined by 8(a,a)=8a for all (A,a) € SFF/XEF/X (this construc-

tion is similar to that one in the proof of Theorem 2) .O

REMARK. The condition that induced functors 'I‘x are final is satisfied, if T
is full and faithful on the hom sets L(FA,X) , AE0bK . For these functors there
is alsc a couniversal characterization of the shape category contrasting with
Theorem 5 (cf. Marde¥ic [23], Theorem 3.1 and Frei [9], Theorem 4.6). If all
functors Tx axe final, then T is full on the hom-sets L(FA,X) , but not

necessarily faithful.

We will now present coshape categories as categories of inductive systems.
For this we assume that we can choose a class D of small categories such that
all comma categories F/X , XE€ObL , belong to B as defined before Theorem 3.
We also assume that only at most one of these comma categories is empty. One now
considers the full embedding W

Ind(D ,K) = 1nd(D ,K)

D/K , B= (/E~K) .

LEMMA 2. For all X€E€Obl , the projection functor P s F/x-K <8 tsomorphic to
WPy in D/K .

Proof (sketch). wKPx is the projection functor MK/PX-*K (with MK like
in Section 3) . Objects in MK/PXEEMJKPX) are pairs (A,u) with A€O0bK
and u€colim K(A,Px—) . This colimit is explicitly given by L(FA,X) (since
L(FA,-) is the left Kan extension of K(A,-) along F ). This way we get a
one-to-one correspondence between the objects of MK/Px and of F/X which is

trivially extended to morphisms. O

Let IndF(K) be the full subcategory of Ind (D ,K) generated by all pro-
jections Py ¢ F/X=K , X€EoblL .
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oty - *
THEOREM 6.IndF(K) 78 isomorphic to Sh (F) .

Proof. On objects the bijection is given by X»Px (here we use that for
only one X the comma category F/X may be empty) . Since WI< is full and
faithful we have the isomorphisms

IndF(K) (Py +Py) =£/ K (prx'"KPY)

=D/ K (PX.PY) (Lemma 2)
= CAT/K (X _X,K.Y)
UnE E T,
=Ssh (F) (X,Y) ,
and this establishes a bijective functor Sh*(F) *IndF(K) .0

5. The Cech condition and relative adjoints

The Shape category Sh(F) of F is defined by Sh(F)= (Sh’ (F°P))°® (with
FoP . KOP->LC'p ) . There is a canonical functor
Sp= (5" )% L=sn(®)
F
which fulfills all the assertions one obtains by formally dualizing the previous
results. Explicitly one has Ob Sh(F) =0blL and
Sh(F) (X,¥) =Nat(L(¥,F-),L(X,F-))
= Pro (B*,K) (QX,QY)) (Theorem 6)
=1lim colim K(Qx—,Qy-) :
Y\F X\F
here Q-8 X\F~K is the projection functor of the comma category X\F of
F-morphisms with domain X , and D is chosen in a way such that

D= {DEOBCAT| 3R : E=D cofinal with E€D}
contains all comma categories X\F .

Thellech eondition which is defined below implies that these comma categories
belong to B*, if D is a given class of small, weakly cofiltered categories
with 1€D . We remind the reader that a category D is weakly cofiltered, iff

(1) for all Do,DleobD there are D—morphisms di % D*Di y =054

(2) for all D-morphisms c, Di*c , 1=0,1 , there are D-morphisms

di:D-Di , 1=0,1 , with codo=c1d1 v

DEFINITION. F:K=L satisfies the Cech condition (with respect to D ), iff
for every X€EObL there exists a category UXG D , a functor Cy = Dx*K and a
cone my : Ax-ch such that the following holds:

(I) for all AEObK and every u:X-=FA in L there are DEObDX and
£:C,D>A in K with FE-n.D=u,

(I1) for all DEObe , AEObK and f,q: ch-—A with Ff - wxD=Fg " mD

one has Dx-morphisms d,e: E-D with £°* de= g- Cxe -

v
The main consequence of the Cech condition is that it allows a more “classi-
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cal" description of the shape category Sh(F) . The reason for this is:

LEMMA 3. With the data as chosen above one obtains a cofinal functor
I, Dx-x\F satiefying the equations QM =Cy and D= (,D,C D) for all
DEObe. 0

By Lemma 3 we have that, in Pro(ﬁ*,K) ’ CX=QXHXEQX . Therefore, for all
X,YEObL , we get
Sh(F) (x,Y) =Pro(D ,K) (Cy.Cy)
= lim colim K(CXD,CYE) .
EGDY DEUX
So a shape morphism from X to Y may be described by a family

([fE'DE])EEObDY

one has

[cge - £..0.1 = [£,,,Dp, )i
here the brackets denote the equivalence classes of the relation

(£,D)~ (£*,D") €=>3a: D" =-D , d*':D" =D' = £~ de=f' G cxd'
(~ is an equivalence relation since Dx is weakly cofiltered) . If
([gJ’EJ])JED describes a morphism in Sh(Y,Z) , then the composition is des-

Z

cribed by

(lg,.E.]) (L., 1) = (lg,£, D 1

5 A | Jeobvz E'"E EEObDY JE;E; JEDZ

compared to the elegant setting using natural transformations this is a rather
clumsy description of shape morphisms, but it is used to prove the following

theorem. To formulate it we need the canonical functor ¥ :Pro(D ,K)—=-Pro(D, L)

with NL§=FNK S (NK is introduced at the end of Section 3).

THEOREM 7. The following assertions are equivalent:
(i) F satisfies the Jech condition.
(ii) For every XEObL , there are Cy EOb pro(D ,K) and a Pro(D ,L)-mor-

phiem T N )(--?‘cx such that the following holds: every Pro(D ,L)-morphtsm

L

m:NLx-i‘H with HEOb Pro(D ,K) factorizes over tw, by a wnigue Pro(D K-

%
morphism 1 : cx-H:

X
N X E‘cx Cy

o Fy
¥H
(iii) There is a functor c: L-=Pro(D ,K) which is left adjoint to F
relatively to N| (ef. Ulmer [31] ).

e

Proof (sketch). One first proves that (i) is equivalent to a restr

(ii) , namely where H=NKA for an object AEObK . Using the above dSescription

o F, ’ B!
with DEGObDX ; fEG K(CXDE,CYE) such that, for all e :E-=E',

.
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of shape morphisms one easily sees that condition (I) of the Cech condition is
equivalent to the existence part of the factorization property whereas (II) ex-
presses its uniqueness. Then it is not difficult to derive property (ii) in its
general form from the "pointwise version" with H==NKA g

The equivalence of (ii) and (iii) is well known and describes just the

fact that "universal solutions" are functorial. O

COROLLARY. If F satiefies the Sech condition, then Sh(F) <s isomorphic to the
full image of the functor c: L-=Pro(D ,K) which i left adjoint to ¥ rela-
tively to N, .

REMARKS. (1) Taking in the Corollary L as the homotopy category of pointed to-
pological spaces, K as the full subcategory of all pointed spaces homotopy
equivalent to pointed polytopes and F as the inclusion one gets the shape cate-
gory described by Dydak and Segal. For a pointed space (x,xo) 2 C(x,xo) is its
¥ech system (cf. [8]).

(2) In the terminology of Pumpliin [28] , property (iii) means that the pair
(NL,ﬁ) admits a universal solution. Marde%i& calls F dense iff property (ii)
is fulfilled, but this may be confused with the older categorical meaning:
dense = colimit dense. Giuli [11] and Tozzi [12] have given a series of suffi-
cient conditions for F +to fulfill property (ii) using Adjoint Functor Theorem
methods. Obviously the Cech condition (I) is already a kind of solution set con-
dition.

(3) If F satisfies the ech condition and if F is shape adequate (= dual
of coshape adequate), i.e. SF ig full and faithful on the hom-sets L(X,FA) ,
X€oblL and AEObK , then, by the dual Proposition 7 (3) and by Lemma 3, we
have a limit presentation X =1lim FOCx with F°=SFF in Sh(F) .
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